DEVELOPMENT OF A SOFT LINEAR ACTUATOR TO USE IN WEARABLE ASSISTIVE EXOSUITS

A.L. Kulasekera

178036T

Doctor of Philosophy

Department of Mechanical Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > February 2023

DEVELOPMENT OF A SOFT LINEAR ACTUATOR TO USE IN WEARABLE ASSISTIVE EXOSUITS

A.L. Kulasekera

178036T

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy

Department of Mechanical Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > February 2023

DECLARATION

I declare that this is my own work and this Thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

```
Signature: UOM Verified Signature Date: 24/02/2023
```

The supervisors should certify the Thesis with the following declaration.

The above candidate has carried out research for the Doctor of Philosophy Thesis under our supervision. We confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Dr. K.V.D.S. Chathuranga					
Signature of the Supervisor: UOM Verif	<i>Tied Signature</i> Date:	27/02/2023			
Name of Supervisor: Prof. R.A.R.C. Gopura					
Signature of the Supervisor: UOM Ver	ified Signature Date:	24/02/2023			
Name of Supervisor: Dr. S.W.H.M.T.D. Lalitharatne					
Signature of the Supervisor: UOM V	erified Signature Date:	24/02/2023			

ii

DEDICATION

То

Vidhun,

Mihiru,

and

Minuki.

iv

ACKNOWLEDGEMENT

I am wholeheartedly grateful to all those who supported me in completing this research and thesis. First, I would like to thank Dr. Damith Chathuranga for always being there, understanding, and motivating me to achieve my best no matter the circumstances. I thank him for providing me with invaluable opportunities to develop myself, learn to lead a research lab, and be part of an exceptional research team. I want to thank Prof. Ruwan Gopura, who has always been a great mentor throughout my research and academic life and an excellent beacon for my academic, professional, and personal growth. His constant guidance, insight, and support were vital in completing my research. I also thank Dr. Thilina Lalitharathne for his continuous support and intuitive guidance. I am sincerely grateful to all three of my research supervisors for the exceptional support, guidance, critical mentoring, and friendship provided throughout.

My progress review panel's generous feedback and guidance were instrumental in this research. I thank Prof. Buddhika Jayasekera and Dr. Palitha Dassanayake for their valuable input and critical feedback in developing and honing my research.

I want to thank the fantastic support I had from fellow laboratory colleagues in every aspect of my research. I thank Mr. Rancimal Arumathanthri, Mr. Chanaka Premachandra, and Mr. Chanuka Lihini for enriching my research and the company that made this a joyous journey. Next, I need to thank the colleagues from the Bionics laboratory, Mr. Pubudu Ranaweera, for his constant aid at a minute's notice and the critical analysis whenever needed, and Mr. Sanka Chandrasiri for his assistance in human subject testing. Next, I would like to extend my gratitude to the past and present heads of the Department of Mechanical Engineering, Prof. Gopura, and Dr. Himan Punchihewa, the past and current research coordinators, Dr. Damith and Dr. Nalaka Samaraweera, for the continued administrative support.

Next, I would like to thank the AOTULE program for allowing me to conduct part of my research at the Tokyo Institute of Technology, Tokyo, Japan. I want to thank Prof. Yasuke Sugahara and Prof. Yukio Takeda for their kind and helpful guidance during my time at Tokyo Tech. I also want to thank my Mechanical Systems Design Lab colleagues, Mr. Andres Osorio and Mr. Jyuon Yamakazi, for their collaborative contributions and friendship. Further, it would be amiss if I did not thank Sam, Yathest, and Salika for their inspiration and camaraderie during my stay in Japan.

I express my gratitude to the National Research Council of Sri Lanka (17-018) and the University of Moratuwa-Senate Research Committee (SRC/TP/ 2017/10) for their financial support in completing this research. I again thank the University of Moratuwa-Senate Research Committee for the publication aid provided via the conference and publication support scheme.

Finally, I would like to thank my loving wife, Dr. Himanga Benaragama, for her constant support, without which this research would not have been possible, and Vidhun, Mihiru, and Minuki, for understanding my absence during their play times.

vi

ABSTRACT

Wearable exosuits require flexible, linearly contractile, and lightweight actuators to provide sufficient force to move the respective limb. This thesis presents the concept, design, fabrication, experimental performance characterization, and numerical modeling of two types of respectively thin and low-profile vacuum-driven, soft, linearly contractile actuators. The proposed soft actuators are made of an inextensible yet flexible thin-skinned pouch supported by a collapsible skeleton that orients the collapse of the actuator in the longitudinal axis upon the evacuation of the air within the pouch. The proposed novel soft, lightweight, contractile actuators are thin (ThinVAc) and lowprofile (LPVAc). Both these actuators are lightweight (ThinVAc: 0.75 g; LPVAc: 14 g), provide high maximum blocked forces (ThinVAc: 5.2 N; LPVAc: 39 N), provide maximum stresses similar to that expected from biological muscles (ThinVAc: 184 kPa; LPVAc: 117 kPa) and have high force-to-weight ratios (ThinVAc: 477; LPVAc: 285). The ThinVAc can combine to create multifilament actuators for force scaling. Combining 15 units of 500 mm ThinVAcs generates a maximum blocked force of 54 N (Max. stress: 62 kPa), 290 times the self-weight. The LPVAc integrates a position sensor based on an inductive sensor allowing closed-loop control with minimal error at 0.25 Hz. Numerical models for the contraction and blocked force of mono- and multifilament actuators allow for predicting their behavior independent of external sensors. The proposed actuators are tested in wearable applications to check their suitability. The ThinVAc is integrated into a knee rehabilitation assist device, and the LPVAc is incorporated into a novel mono-articular sit-to-stand transition (StSt) assist exosuit, helping to reduce muscle activity by 45%. These actuators have the potential to be integrated into a wide range of assistive devices and orthoses, such as knee or ankle braces, exoskeletons, and prosthetics, to provide the necessary support for people with mobility impairments.

Keywords: Linear soft actuators, contractile vacuum actuators, Exosuits, Soft robotics, Soft sensors

viii

TABLE OF CONTENTS

De	clarat	ion of th	ne Candidate & Supervisor	i
De	dicati	on		iii
Acknowledgement			v	
Abstract			vii	
Tal	ole of	Content	ts	ix
Lis	st of F	igures		xiii
Lis	st of T	ables		XV
Lis	t of A	ppendic	ces	xvii
1 Introduction			1	
	1.1	Introdu	action and motivation	1
	1.2	Resear	ch problem	2
	1.3	Thesis	outline	2
	1.4	Main c	ontributions	3
2	Liter	ature rev	view	5
	2.1	Soft flu	iidic actuators	5
	2.2	Pneum	atic artificial muscles	7
	2.3	Vacuur	n-driven soft actuators	8
	2.4	Vacuur	n-driven contractile actuators	9
	2.5	Sensing	g in soft actuators	12
	2.6	Assess	ment of PAM performance	12
	2.7	Soft ex	osuits	13
		2.7.1	Advantages and disadvantages over rigid exoskeletons	15
		2.7.2	Knee rehabilitation assist devices	16
		2.7.3	Sit-to-stand-transition assist exosuits	17
	2.8	Summa	ary	17
3	Deve	elopmen	t of soft linear actuators	23
	3.1	Introdu	iction	23
	3.2	Concep	ptual Design	23

	3.3	Thin V	/acuum Actuator (ThinVAc)	24
		3.3.1	LDPE-ThinVAc	25
		3.3.2	LDPE-ThinVAc Multi-filament actuators	26
		3.3.3	TPU-ThinVAc	27
		3.3.4	TPU-ThinVAc multi-filament actuator	28
	3.4	Low-p	profile Vacuum Actuator (LPVAc)	29
		3.4.1	Integrated sensing for the LPVAc	32
	3.5	Summ	ary	34
4	Actu	ator Pe	rformance evaluation	37
	4.1	Perfor	mance evaluation of the ThinVAc	37
		4.1.1	Contraction performance of the ThinVAc	38
		4.1.2	Force-displacement characteristics of the ThinVAc	38
		4.1.3	Blocked force performance of the ThinVAc	39
		4.1.4	Applications of the proposed ThinVAc	40
		4.1.5	Blocked force performance of multi-filament ThinVAc	42
	4.2	Perfor	mance evaluation of the LPVAc	44
		4.2.1	Spring properties	44
		4.2.2	Contraction performance of the LPVAc	45
		4.2.3	Force-displacement characteristics of the LPVAc	46
		4.2.4	Blocked force performance of the LPVAc	46
		4.2.5	Blocked force performance with varying width-to-height ratio	47
		4.2.6	Integrated displacement sensor calibration	50
		4.2.7	Characterization of the integrated sensor	52
		4.2.8	Using the integrated sensor for feedback control of the LPVAc	54
	4.3	Summ	ary	55
5	Nun	nerical n	nodels for contraction and force	59
	5.1	LDPE	-ThinVAc contraction model	59
	5.2	TPU-7	ThinVAc contraction model	61
	5.3	LDPE	-ThinVAc blocked force model	62
	5.4	TPU-7	ThinVAc blocked force model	63
	5.5	Summ	ary	65

6 Exosuit development and testing		67		
	6.1	Knee	e rehabilitation assist device	67
		6.1.1	Introduction	67
		6.1.2	Knee extension assist system	67
	6.2	Sit-to	o-stand-transition assist exosuit	69
		6.2.1	Introduction	69
		6.2.2	Exosuit design	71
		6.2.3	Performance evaluation of the exosuit	72
		6.2.4	EMG capture test setup	72
		6.2.5	EMG analysis	74
	6.3	Sum	mary	75
7	Cond	clusio	ns and Future work	77
	7.1	Conc	clusions	77
	7.2	Futu	re directions	78
8	List	of pub	olications	79
Re	ferend	ces		81
Ap	pendi	хA	Plane and motion notations used in anatomy	95
Ap	pendi	хB	Muscle recruitment in Lower limb motions	97
Ap	pendi	x C	Types of lower limb orthoses	99
Appendix D Regression models used for LDPE-ThinVAc			101	

xii

LIST OF FIGURES

FigureDescriptionPageFigure 2.1Classification of EIAs based on motion path.6Figure 2.2Contemporary contractile vacuum actuators.10Figure 2.3The concept of origami-inspired vacuum actuators11

Figure 2.2	Contemporary contractile vacuum actuators.	10
Figure 2.3	The concept of origami-inspired vacuum actuators.	11
Figure 2.4	Soft sensors used in PAMs.	12
Figure 2.5	Static characterization of PAMs.	13
Figure 2.6	The Wehner soft exosuit design.	14
Figure 2.7	Bowden cable driven exosuits.	19
Figure 2.8	Other contemporary exosuits.	20
Figure 2.9	Knee rehabilitation assist devices found in literature.	21
Figure 2.10	Sit-to-Stand-transition assist exosuits.	21
Figure 3.1	The potential design paths.	24
Figure 3.2	Concept of the proposed thin vacuum actuator (ThinVAc).	25
Figure 3.3	The proposed thin vacuum actuator (ThinVAc).	26
Figure 3.4	The proposed multi-filament actuator design and fabricated actuators.	27
Figure 3.5	TPU-ThinVAc: main components and fabricated actuators	28
Figure 3.6	Multi-filament TPU-ThinVAcs: 3- and 5-filament.	29
Figure 3.7	Concept of the proposed low-profile vacuum actuator (LPVAc).	30
Figure 3.8	Conceptual design of the LPVAc and the fabricated actuator.	31
Figure 3.9	The main steps of fabricating the proposed LPVAc.	31
Figure 3.10	A parallel LC tank circuit.	33
Figure 3.11	LDC1614 functional block diagram and module.	33
Figure 3.12	LPVAc with the integrated inductive displacement sensing module.	34
Figure 4.1	The general experimental setup.	37
Figure 4.2	ThinVAc experimental test setups.	38
Figure 4.3	ThinVAc no-load contraction.	39
Figure 4.4	ThinVAc force-displacement characteristics.	40
Figure 4.5	LDPE-ThinVAc force-displacement characteristics (CR).	40
Figure 4.6	ThinVAc force-displacement characteristics (CR).	41
Figure 4.7	ThinVAc maximum blocked force.	42
Figure 4.8	Actuation of a soft toy using a 100 mm LDPE-ThinVAc.	43
Figure 4.9	Actuation of a compliant gripper by the ThinVAc.	43
Figure 4.10	Time domain response of the compliant gripper tip motion.	44
Figure 4.11	LDPE-ThinVAc multi-filament actuator blocked force characteristics.	45
Figure 4.12	LDPE-ThinVAc multi-filament actuator operating while deformed.	46
Figure 4.13	LDPE-ThinVAc multi-filament lifting 10.6 N.	47
Figure 4.14	TPU-ThinVAc multi-filament maximum blocked force performance.	48
Figure 4.15	MS and GI obround spring coefficients.	48
Figure 4.16	LPVAc experimental test setups.	49
Figure 4.17	LPVAc isotonic performance (load:200g).	49
Figure 4.18	LPVAc maximum strain (65% at 20 kPa(abs.)).	50

Figure 4.19	LPVAc load-displacement characteristics.	50
Figure 4.20	LPVAc blocked force performance.	51
Figure 4.21	LPVAc blocked force variation with W/H ratio.	51
Figure 4.22	Inductive sensor calibration.	52
Figure 4.23	Hysteresis performance of the integrated sensor.	53
Figure 4.24	Repeatability performance of the integrated sensor.	53
Figure 4.25	Measurement error of the LPVAc over its working range.	54
Figure 4.26	LPVAc feedback control test setup.	55
Figure 4.27	LPVAc feedback control block diagram.	55
Figure 4.28	LPVAc sensor response.	56
Figure 4.29	Comparison of the actuators with literature.	58
Figure 5.1	Multi-parameter regression contraction model for the LDPE-ThinVAc.	60
Figure 5.2	Multi-parameter regression contraction model for the LDPE-ThinVAc	61
Figure 5.3	The multiplicative blocked force model for the LDPE-ThinVAc multi-	
	filamant actuators.	63
Figure 5.4	The blocked force model for the TPU-ThinVAc multi-filamant actuators.	64
Figure 6.1	CAD model of Knee extension assist setup.	68
Figure 6.2	Knee extension with 15 x 100 mm LDPE-ThinVAc multi-filament.	69
Figure 6.3	Knee extension with 10 x 200 mm LDPE-ThinVAc multi-filament.	69
Figure 6.4	Time response of shank angle: 15 x 100 mm LDPE-ThinVAc multi-	
	filament.	70
Figure 6.5	Time response of shank angle: 10 x 200 mm LDPE-ThinVAc multi-	
	filament.	70
Figure 6.6	The proposed novel mono-articular StSt-assist soft exosuit.	71
Figure 6.7	The test protocol used for StSt assist performance evaluation.	73
Figure 6.8	The Bagnoli EMG capture system.	73
Figure 6.9	The EMG capture test setup.	74
Figure 6.10	EMG reduction observed in the test subjects.	75
Figure A.1	Body plane notions used in anatomy	95
Figure A.2	Limb motion definitions	95
Figure B.1	Classification of the muscles used for lower limb motions	97
Figure C.1	Types of lower limb orthoses.	99
Figure D.1	Model 1: CR	101
Figure D.2	LDPE-ThinVAc isobaric CR	103

LIST OF TABLES

TableDescription

Table 2.1	Comparison of biological muscles and PAMs	8
Table 3.1	Characteristics of the SS spring used in the ThinVAc	25
Table 3.2	Weight of each Multifilament actuator combination	27
Table 3.3	The main parameters of the fabricated LPVAcs	32
Table 3.4	The main features available on the LDC1614 module.	34
Table 3.5	A comparison of the developed actuators.	35
Table 4.1	ThinVAc no-load contraction performance at 20 kPA (abs.)	39
Table 4.2	A summary of characteristics of the monofilament ThinVAcs.	41
Table 4.3	A summary of LDPE-ThinVAc multi-filament actuator performance	44
Table 4.4	LPVAc blocked force performance with varying W/H ratio	49
Table 4.5	Performance measures for repeatability of the integrated sensor	52
Table 4.6	ThinVAc force performance in comparison to literature.	57
Table 5.1	The goodness of fit parameters for the multi-parameter LDPE-ThinVAc	
	monofilament contraction model.	60
Table 5.2	RMSE of contraction ratio (%) : LDPE-ThinVAc	61
Table 5.3	RMSE of contraction ratio (%): LDPE-ThinVAc	61
Table 5.4	Regression fits for the LDPE-ThinVAc blocked force performance	62
Table 5.5	RMSE values for the initial and correction fit for the multiplicative	
	model for the LDPE-ThinVAc multi-filament actuators	63
Table 5.6	Comparison of predicted and experimental values for blocked force for	
	the LDPE-ThinVAc	64
Table 5.7	TPU-ThinVAc multi-filament blocked force model evaluation	65
Table 6.1	Shank response with ThinVAc actuation.	68
Table 6.2	Test subject details and observed sEMG signal reduction	72
Table D.1	Linear regression fit: ThinVAc length and pressure level (model I).	102
Table D.2	Isobaric comparison of RMSE for contraction and contraction ratio lin-	
	ear regression models.	103

xvi

LIST OF APPENDICES

Appendix	Description	Page
Appendix -A	Plane and motion notations used in anatomy	95
Appendix -B	Muscle recruitment in Lower limb motions	97
Appendix -C	Types of lower limb orthoses	99
Appendix -D	Regression models used for LDPE-ThinVAc	101