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ABSTRACT

Wearable exosuits require flexible, linearly contractile, and lightweight actuators to
provide sufficient force to move the respective limb. This thesis presents the concept,
design, fabrication, experimental performance characterization, and numerical mod-
eling of two types of respectively thin and low-profile vacuum-driven, soft, linearly
contractile actuators. The proposed soft actuators are made of an inextensible yet flex-
ible thin-skinned pouch supported by a collapsible skeleton that orients the collapse of
the actuator in the longitudinal axis upon the evacuation of the air within the pouch.
The proposed novel soft, lightweight, contractile actuators are thin (ThinVAc) and low-
profile (LPVAc). Both these actuators are lightweight (ThinVAc: 0.75 g; LPVAc: 14
g), provide high maximum blocked forces (ThinVAc: 5.2 N; LPVAc: 39 N), provide
maximum stresses similar to that expected from biological muscles (ThinVAc: 184
kPa; LPVAc: 117 kPa) and have high force-to-weight ratios (ThinVAc: 477; LPVAc:
285). The ThinVAc can combine to create multifilament actuators for force scaling.
Combining 15 units of 500 mm ThinVAcs generates a maximum blocked force of 54
N (Max. stress: 62 kPa), 290 times the self-weight. The LPVAc integrates a position
sensor based on an inductive sensor allowing closed-loop control with minimal error at
0.25 Hz. Numerical models for the contraction and blocked force of mono- and multi-
filament actuators allow for predicting their behavior independent of external sensors.
The proposed actuators are tested in wearable applications to check their suitability.
The ThinVAc is integrated into a knee rehabilitation assist device, and the LPVAc is
incorporated into a novel mono-articular sit-to-stand transition (StSt) assist exosuit,
helping to reduce muscle activity by 45%. These actuators have the potential to be
integrated into a wide range of assistive devices and orthoses, such as knee or ankle
braces, exoskeletons, and prosthetics, to provide the necessary support for people with
mobility impairments.

Keywords: Linear soft actuators, contractile vacuum actuators, Exosuits, Soft robotics, Soft
sensors
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