DEVELOPING A TOOLKIT TO INCORPORATE ENVIRONMENTAL IMPROVEMENTS INTO THE FASHION DESIGN PROCESS

Prabod Dharshana Munasinghe

(178087A)

Doctor of Philosophy

Department of Textile and Apparel Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

February 2023

DEVELOPING A TOOLKIT TO INCORPORATE ENVIRONMENTAL IMPROVEMENTS INTO THE FASHION DESIGN PROCESS

Prabod Dharshana Munasinghe

(178087A)

Doctor of Philosophy

Department of Textile and Apparel Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

February 2023

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or Institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 13/02/2023

The above candidate has carried out research for the PhD thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of the supervisor: Dr. DGK Dissanayake

	UOM Verified Signature
Signature of the supervisor:	

Date:16/02/2023

Name of the supervisor: Prof. A Druckman

UOM Verified SignatureSignature of the supervisor:Date:13/02/2023

DEDICATION

I would like to dedicate this thesis to my Parents Mrs Deyalage Dona Suneetha who was the class first until Grade 11 at the village school and had no financial support to continue the Advance Level examination in bio stream and later worked as a sewing operator to feed the family and Mr Ananda Ranjith Munasinghe, who was lost his entire education due to the eczema disease and later devoted his most of the life at the warm weather of Gulf countries to feed the family. Both of them knew the value of education, therefore they offered their entire spirit to build me to the current state.

ACKNOWLEDGEMENT

Words cannot express my gratitude to my Supervisors Dr DGK Dissanayake and Prof. Angela Druckman for their invaluable patience and feedback. I also could not have undertaken this journey without my progress reviewing committee, who generously provided knowledge and expertise. I would like to express my deepest gratitude to the research coordinators of the Department of Textile and Apparel Engineering who have supported and encouraged me to complete my research journey smoothly. Additionally, this endeavour would not have been possible without the generous support from the University Grant Commission of Sri Lanka and the Center for Environmental Sustainability University of Surrey (CES), United Kingdom, who financed my research.

I'm extremely grateful to all the interviewees and the other stakeholders from all over the world who have voluntarily contributed to this study by sharing their experience, knowledge and expertise because the final outcome could be a dream without their support. Especially I must pay my heartiest gratitude to Mr Lahiru Lomitha, IT undergraduate of the University of Rajarata who has voluntarily simulated the final outcome of a web-based application, His contribution made a huge impact on the entire outcome of the study.

I am also grateful to my friend from CES and the staff members, senior lecturers, and non-academic staff who have always encouraged me to complete this study with good colours. Especially my batch mates and seniors of the first degree, for their late-night feedback sessions and moral support. Thanks should also go to the University Business linkage cell for their immense support and the guidance to apply for the patent, their contribution impacted and inspired my learning journey a lot.

I would like to extend my sincere thanks to Mrs Juliet Coombe and Mr Krishantha Hapugoda and his Family for the immense kindness they have shown during my visits to United Kingdome, without having them I may be gotten lost on the crowded road in London

Lastly, I would be remiss in not mentioning my family, especially my parents, parentsin-law, spouse, and my brother. Mainly I should reserve some words for my wife Danindi for her continued tolerance in every minute of the last few years until I finish this journey. Their belief in me has kept my spirits and motivation high during this process. I would also like to thank my pet dog, Jilly, for all the entertainment and emotional support that was given to release my stressful days of the learning journey.

ABSTRACT

Developing a toolkit to incorporate environmental improvements into the fashion design process

The fashion industry plays a vital role in the development of the global economy while creating significant stress on the environment throughout its supply chains, due to high resource consumption, waste generation, and carbon emissions. The mass-market is the major market segment that creates sustainability concerns due to high volumes of production and low product prices that motivate consumers to buy more and throw away often. Consumer awareness and governmental concern regarding the sustainability of the fashion industry have increased and the industry is now being urged to take steps to mitigate environmental concerns. The literature reports many initiatives by various parties to address the environmental challenges in the fashion industry, but little success has been achieved to date. To address the sustainability issues of fashion products, environmental impacts need to be taken into consideration during the early stages of the product development process, and not once the product development stage, yet a comprehensive tool that supports making environmentally conscious decisions is lacking.

This study describes the development of a user-friendly toolkit for mass-market fashion designers, that facilitates environmentally responsible decision-making during the product development process. The toolkit is expected to provide a simple, timeefficient and inexpensive method that integrates sustainability into the design of apparel products. This study employed a mixed-method approach which used both quantitative and qualitative investigations. A systematic literature review was conducted with a meta-analysis to investigate the environmental impact of the life cycle of the fashion product to develop a database which comprises impact data across the clothing lifecycle Semi-structured interviews were conducted with mass-market fashion designers and sustainable design practitioners to investigate the key activities and decisions of the mass-market design process and to explore views concerning the impact of those decisions on the environment. Thematic analysis was used to analyse the qualitative data. Later the interconnections of both quantitative and qualitative aspects were made and those interconnections were composed into a comprehensive structure to develop the toolkit. The model is simulated as a simple web-based application that can be used as a toolkit to facilitate sustainable decision-making in the product development process. The toolkit structure includes data processing and visualisation methods, decision support protocols to improve the sustainability of the design, and a user interface of the toolkit: data inputs, decision making, presenting results and a bridge to link each interface. Finally, the simulated IT-based toolkit was validated by the fashion designers, during which the toolkit was proven to be successful in facilitating a user-friendly sustainable decision-making process.

Keywords: Sustainable fashion, Environmental sustainability, Design process, Toolkit, Sustainable development goal 12 (responsible consumption and production)

TABLE OF CONTENTS

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENT	v
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiv
LIST OF APPENDICES	xvi
PUBLICATIONS AND THE FUNDING SOURCES	xvii
CHAPTER 1 – INTRODUCTION	1
1.1 Aims and objectives	4
1.2 Structure of the thesis	4
CHAPTER 2 - LITERATURE REVIEW	5
2. 1 Introduction	5
2.2 Fashion Industry	5
2.2.1 Introduction	5
2.2.2 History of the fashion industry	5
2.2.2.1 The rise of the ready-to-wear market	6
2.2.2.2 Ecosystem of the mass fashion industry	7
2.2.3 Structure of the current fashion industry	10
2.2.3.1 Haute coutoure and couture	10
2.2.3.2 Ready to wear	11
2.2.3.3 The Mass-market	11
2.2.5 Product development process	12
2.3 Sustainability of the fashion industry	17
2.3.1 Sustainable development	17
2.3.2 Fashion industry and sustainability	19
2.3.3 Environmental impacts of the fashion life cycle	19
2.3.3.1 Materials production	20
2.3.3.2 Apparel production process	22
2.3.3.3 Post-production stages	23
2.3.4 Sustainable approaches to mitigate the environmental impacts in the	
fashion industry	24
2.3.4.1 The circular economy	24
2.3.4.2 Planetary boundary (PB)	25
2.3.4.3 G4 guidelines	25
2.3.4.4 Design for sustainability (D4S) – 2009 – Delft University	25
2.3.4.5 Sustainable Clothing Action Plan – SCAP	26
2.3.4.6 Sustainable design strategies (SDS)	27
2.3.4.7 ISO 14062: 2002 design approaches	27

2.3.5 Tools	28
2.3.5.1 Life Cycle Analysis (LCA)	28
2.3.5.2 Higg index	29
2.3.5.3 Fashion design for sustainability (FDS)	29
2.3.5.4 Nike environmental design tool	31
2.3.5.5 My Ep& L	31
2.4 Research gap	31
2.5 Summary	34
CHAPTER 3 – METHODOLOGY	35
3.1 Conceptual framework	35
3.2 Research approach	36
3.2.1 Study 1: Life cycle analysis related data exploration	37
3.2.2.1 Search questions	38
3.2.2.2 Keywords	39
3.2.2.3 The inclusion and exclusion protocol	39
3.2.2.4 Data extraction and analytical procedure	39
3.2.2 Study 2: Case studies	39
3.2.2.1 Data collection	40
3.2.2.1 The sampling method of study	40
3.2.2.2 Sampling procedure	41
3.2.2.3 Data recording	44
3.2.2.4 Data analysis	44
3.2.3 Study 3: Toolkit development	45
3.2.4 Study 4: Validation of the toolkit	47
3.3 Credibility of the research	48
3.4 Risk Analysis and mitigation plan	49
CHAPTER 4: STUDY 1: LIFE CYCLE ANALYSIS RELATED DATA	
EXPLORATION	50
4.1 Initial results of the systematic literature review	50
4.2 Environmental footprints	52
4.2.1 Raw material extraction	56
4.2.2 Fabric manufacturing	57
4.2.3 Apparel manufacturing stage	61
4.2.4 Retailing stage	61
4.2.5 End-use	62
4.2.6 Post-End-Use	64
4.3 Summary of chapter	65
CHAPTER 5: STUDY 2: CASE STUDIES	66
5.1 Decision-making process in the mass-market fashion design process	66
5.1.1 Design process	66
5.1.1.1 Research	69
5.1.1.1.1 Key design decisions in the research stage	71
5.1.1.2 Creating trend packs	72
5.1.1.2.1 Key design decisions in the trend pack creation stage	75

5.1.1.3 Design developments	76
5.1.1.3.1 Key design decisions in the design development stage	78
5.1.1.4 Technical package creation	79
5.1.1.4.1 Key design decisions in the technical package creation	
stage	80
5.1.1.5 Prototype development	81
5.1.1.5.1 Key design decisions in the prototype development stage	e 82
5.1.1.6 Finalising the range	82
5.1.1.6.1 Key design decisions in the range finalising stage	84
5.1.1.7 Signing off the collection	85
5.1.2 Involvement of the third parties	85
5.1.3 Key design decisions	88
5.2 Interviews with sustainable practitioners	90
5.2.1 Key emerged sustainable themes	93
5.2.2 Methods to reduce the environmental impact of design decisions	96
5.3 Summary of chapter	99
CHAPTER 6: DEVELOPMENT AND VALIDATION OF THE TOOLKI	T 100
6.1 Section 01: Toolkit development process (Study 3)	100
6.1.1 Data processing method	100
6.1.2 Data visualisation method	119
6.1.3 Extra supporting methods for the decisions made	121
6.1.3.1 Qualitative support for decision making (SDS Protocol)	121
6.1.3.2 Quantitative support for decision making (SMT Protocol)	123
6.1.4 User interfaces and databases	123
6.1.4.1 User interfaces	123
6.1.4.1.1 Interface 01 (Initial data input interface)	123
6.1.4.1.2 Interface 2 (Design decision-making interface)	124
6.1.4.1.3 Interface 3 (Results presentation interface)	125
6.1.4.1.4 Interface 4 (Bridge)	126
6.1.4.2 Final toolkit	126
6.1.5 Summary of section 02	128
6.2 Section 02: Validation of the toolkit (Study 4)	129
6.2.1 Initial prototyping of the toolkit	129
6.2.1.1 Initial testing with the design students to find functional errors	3 134
6.2.2 Face validation with experts	134
6.2.2.1 Introduction to the toolkit	134
6.2.2.2 The attractiveness of the interface	135
6.2.2.4 Availability of the required data	135
6.2.2.5 User-friendliness of the toolkit	137
6.2.2.5 Willingness to use the toolkit in future application	137
6.2.2.6 Perception of sustainable decision-making in the design proce	ss 138
6.2.2.7 Other comments about the toolkit	138
6.2.3 Summary of section 02	140
CHAPTER 7 – DISCUSSION AND CONCLUSION	142

7.1 Introduction	142
7.2 Objective 1: Investigate the environmental implications of the life cycle of a	
fashion product.	142
7.3 Objective 2: Investigate the effects of the decision-making process of the	
fashion design stage in generating environmental implications along the	
product life cycle.	144
7.4 Objective 3: Analyze how sustainable design strategies can be incorporated	
to address the environmental implications along the product life cycle.	149
7.5 Objective 4: Formulate a toolkit that facilitates designers to minimize the	
environmental implications of products	151
7.6 Objective 5: Validate the toolkit and provide recommendations to the	
designers and the industry.	153
7.7 Research implications	155
7.8 Summary of the research	157
7.9 Limitations of the research	157
7.10 Conclusion and recommendations for future research	160
REFERENCES	162

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	A Generic lifecycle diagram for clothing based on the literature.	9
Figure 2.2	Market segments in the fashion industry	10
Figure 2.3	Basic design cycle adapted from Roozenburg and Eekels	
	(1995), pp. 84-93	13
Figure 2.4	ISO 14062:2002 Environmental management - Integrating	
	environmental aspects into product design and development	14
Figure 2.5	General fashion design process	15
Figure 2.6	Why a world conservation strategy is needed	17
Figure 2.7	Sustainable Development Goals	18
Figure 2.8	Global material flows for clothing in 2015	20
Figure 2.9	Distribution of fibre consumption worldwide in 2019	21
Figure 2.10	Water consumption for different fibre types for the UK in	
	2016	22
Figure 2.11	Growth of clothing sales and a decline in clothing utilization	
	since 2000	24
Figure 2.12	Circular economy	25
Figure 2.13	FDS Tool	30
Figure 2.14	Comparison of existing environmental sustainability tools	
	and theories	34
Figure 3.1	Conceptual framework	35
Figure 3.2	The summary of achieving the objectives using the	
	methodology	36
Figure 3.3	Overall picture of the final tool kit	45
Figure 3.4	Methodology of the toolkit development process	46
Figure 3.5	Risk Mapping	49
Figure 4.1	Filtration process	50
Figure 4.2	Summary of the selected articles according to the databases	51
Figure 5.1	Thematic analysis: Hierarchy chart of the main theme	
	"process" created through NVIVO12	66
Figure 5.2	Mass-market design process (Munasinghe, Dissanayake and	
	Druckman, 2021)	67
Figure 5.3	Thematic analysis: Hierarchy chart of the main theme	
	"Design Elements" created through NVIVO 12	68
Figure 5.4	Key design decisions	69
Figure 5.5	Cluster analysis of the research stage using NVIVO12	70
Figure 5.6	Cluster analysis of the trend pack creating stage using	
	NVIVO12	72

Figure	Description	Page
Figure 5.7	Matrix coding results of NVIOVO 12 trend pack creation vs	
C	research-related sub-themes	73
Figure 5.8	Emerged themes of the design development stage using	
-	NVIVO 12	78
Figure 5.9	Cluster analysis based on the word frequency of technical	
-	package creation stage using NVIVO 12	79
Figure 5.10	Cluster analysis based on the coding similarity of the	
	prototyping stage using NVIVO 12	81
Figure 5.11	Cluster analysis based on the coding similarity of the range	
	finalisation stage using NVIVO 12	83
Figure 5.12	Internal forces – emerged themes through NVIVO 12	86
Figure 5.13	External forces- Emerged themes through NVIVO 12	86
Figure 5.14	Link of internal and external forces to the design	87
Figure 5.15	A mindmap example 1 that is created with an interviewee	91
Figure 5.16	A mindmap example 2 that is created with an interviewee	91
Figure 5.17	A mindmap example 3 that is created with an interviewee	92
Figure 6.1	Design decisions and their quantitative results map	100
Figure 6.2	Refined design decisions and their quantitative results map	102
Figure 6.3	Pattern details of a sample silhouette	103
Figure 6.4	Factors relates to the R1, R2 and R3	103
Figure 6.5	Factors relating to R4	106
Figure 6.6	Pocket details for calculations	107
Figure 6.7	Dart details for the calculations	107
Figure 6.8	Box details for the calculations	108
Figure 6.9	Knife pleats details for the calculations	108
Figure 6.10	Factors relating to the R5	110
Figure 6.11	Factors related to the R6	111
Figure 6.12	Factors relates to the R7 and R8	112
Figure 6.13	Themes of the toolkit	114
Figure 6.14	Data processing method	119
Figure 6.15	Greenhouse gas emissions – Material extraction stage	119
Figure 6.16	Energy usage - material extraction stage	120
Figure 6.17	Water usage - Material extraction stage	120
Figure 6.18	Data inputs of the interface 1	124
Figure 6.19	Interface 2	124
Figure 6.20	Interface 3	125
Figure 6.21	Interface 4	126
Figure 6.22	General protocol and its functionality	126

Figure Description

Page

Figure 6.23	Toolkit interface in the design development stage and its	
	related factors	127
Figure 6.24	Alignment of the toolkit with international standards	128
Figure 6.25	Simulated toolkit - interface 4	129
Figure 6.26	Window 1	130
Figure 6.27	Window 2	130
Figure 6.28	Window 3	131
Figure 6.29	Window 4	131
Figure 6.30	Window 5	131
Figure 6.31	Window 6	132
Figure 6.32	Window 7	132
Figure 6.33	Window 8	132
Figure 6.34	Window 9	133
Figure 6.35	Interface 3	133
Figure 6.36	Overall rating about the introduction to using the toolkit	134
Figure 6.37	The attractiveness of the interface	135
Figure 6.38	Refined toolkit based on the expert feedback	136
Figure 6.39	User-friendliness of the toolkit	137
Figure 6.40	Perception of the potential of the toolkit to help sustainable	
	decision-making in the fashion design process	138
Figure 6.41	Overall comments about the toolkit - Created by using	
	NVIOV12	140
Figure 7.1	Gaps identified in study 1. Source Munasinghe, Druckman	
	and Dissanayake (2021), figure A.1 page 17.	143
Figure 7.2	Comparison of the General fashion design process and	
	mass-market design process	145
Figure 7.3	Mass-market design process and the key decision-makers	147
Figure 7.4	Design development process and quantitative factors	149
Figure 7.5	Sustainable design strategies vs selection of design elements	150
Figure 7.6	Results of the execution of the toolkit designing	
	methodology	151
Figure 7.7	Key feedback on the face validation process	153
Figure 7.8	Research implications	155

LIST OF TABLES

Table	Description	Page
Table 2.1	main areas life cycle analysis (adapted from ISO 14040)	28
Table 2.2	Comparison of existing environmental sustainability tools	
	and theories	33
Table 3.1	Considered environmental impact categories based on ISO	
	14040:2006	38
Table 3.2	Systematic review- keywords plan	39
Table 3.3	Brands which are worked by interviewees	41
Table 3.4	Details of the sample	42
Table 3.5	Interactive research to identify potential sustainability	
	practitioners	43
Table 3.6	Expert panel of the validation process	48
Table 4.1	Summary of selected articles according to the journal	51
Table 4.2	Data availability for different impact categories in the	
	selected papers	52
Table 4.3	Data availability for different lifecycle stages in the	
	selected papers	52
Table 4.4	Selected journal articles and their LCI contents	52
Table 4.5	LCI data of raw material extraction stage	56
Table 4.6	LCI data for the yarn manufacturing stage	58
Table 4.7	LCI data relating to the fabric manufacturing stage	59
Table 4.8	LCI data relating to the garment manufacturing and	
	retailing stages	61
Table 4.9	LCI data of end-user transportation- adapted from Bertram	
	and Chi (2018)	62
Table 4.10	LCI data for the end-use phase	63
Table 4.11	LCI data for the post-end use stage	64
Table 5.1	Cross-analysis of the process and the design elements and	
	the number of references from the interviews	69
Table 5.2	Key design decisions vs design elements in the research	
	stage	72
Table 5.3	Co relationship between research activities and trend pack	
	creation stage	74
Table 5.4	Key design decisions vs design elements in the trend pack	
	creation stage	75
Table 5.5	Key design decisions vs design elements in the design	
	development stage	79

Table	Description	Page
Table 5.6	Key design decisions vs design elements in the tech pack	
	creation stage	80
Table 5.7	Key design decisions vs design elements in the prototype	
	development stage	82
Table 5.8	Key design decisions vs design elements in the range finalising stage	85
Table 5.9	Link of internal and external forces to the design	88
Table 5.10	Summary of qualitative and quantitative aspects of key	
	design decisions in the design process	88
Table 5.11	Details of the sustainability practitioners	90
Table 5.12	Thematic analysis results that are generated by NVIVO 12	92
Table 5.13	Key themes for the designer	93
Table 5.14	summary of the interviews with the sustainability	
	practitioners	96
Table 5.15	Quantitative and qualitative impact of design elements on	
	the environment	98
Table 6.1	Analysis of the design decisions vs apparel product lifecycle	101
Table 6.2	Calculations for the total weight of different design details	108
Table 6.3	Value range	121
Table 6.4	Sustainable design suggestions	121
Table 6.5	Details of each window	129
Table 6.6	Summary of the feedback and actions	141
Table 7.1	Design elements vs key stages of the mass-market design	
	process	146
Table 7.2	Comparison between existing methods, tools and the novel	
	toolkit	154
Table 7.3	Designer's feedback and the actions that are taken to	
	address the feedback	157
Table 7.4	Summary of the research	

LIST OF ABBREVIATIONS

Abbreviation	Description
BC	Before Christ
BHS	British Home Store
BRM	The Business and Retail Module
BSI	British Standards Institution
CBI	The Centre for the Promotion of Imports from developing
	countries
COVID19	2019 Novel Coronavirus
D4S	Design for Sustainability
DDM	Design and Development Module
Ed	Environmental impact data of dyeing
E_{gm}	Environmental impact data of garment construction methods
E _{ir}	Environmental impact data of ironing
E _{mm}	Environmental impact data of Material manufacturing
E _{me}	Environmental impact data for extraction of different
	materials
E _p	environmental impact per square meter of specific value
	addition
E _{rcy}	Environmental impact data of recycling
ES	Earth System
$E_{\rm v}$	environmental impact per kilogramme of specific value addition
E_{w}	Environmental impact data of washing
F&F	Florence & Fred
FDS	Fashion Design for Sustainability
FEM	Facility environmental module
GFA	Global Fashion Agenda
GHG	Green House Gas
GRI	Global Reporting Initiative
GSM	Grammes per Square Meters
H&M	Hennes & Mauritz
IDMC	Internal Displacement Monitoring Centre
ISO	International Organization for Standardization
IT	Information Technology
IUCN	The International Union for the Conservation of Nature and
	Natural Resources

Abbreviation	Description
LCA	Life Cycle Analysis
Abbreviation	Description
LCI	Life-Cycle Inventory
MDG	Millenium Development Goals
MSI	Material Sustainability Index
PB	Planetary Boundary
PhD	Doctor of Philosophy
PM	Product Module
RILA	The Retail Industry Leaders Association
SAC	The Sustainable Fashion Academy
SCAP	Sustainable Clothing Action Plan
SDG	Sustainable Development Goals
SDS	Sustainable Design Strategies
SMT	Sustainable Material and Techniques
Tex	Unite weight of threads
USD	United States Dollars
WTO	World Trade Organization
WRAP	The Waste and Resources Action Programme
UNEP	United Nations Environment Programme
USA	Unites States of America
UK	United Kingdom
UN	United Nations
UNDP	United Nations Development Programme
WCED	World Commission on Environment and Development
UNIDO	United Nations Industrial Development Organization
UNESCO	United Nations Educational, Scientific and Cultural
	Organization
UNDESA	United Nations Department of Economic and Social Affairs
NIPO	National Intellectual Property Office of Sri Lanka

LIST OF APPENDICES

Appendix	Description	Page
Appendix 01	Interview Guide	178
Appendix 2	Transcription form	179
Appendix 3	Risk Assessment	180
Appendix 4	Data Management Plan	181
Appendix 5	Ethical Clearance of the University of Surrey	183
Appendix 6	Ethical Clearance of University of Moratuwa	187
Appendix 7	Information sheet	189
Appendix 8	Consent form	191
Appendix 9	Face validation questionnaire	192
Appendix 10	Patent application confirmation letter	198
Appendix 11	Summary of the general fashion design process.	199