LIFE CYCLE ASSESSMENT OF BIOETHANOL PRODUCTION FROM WATER HYACINTH USING PROCESS SIMULATION

Dulanji Imalsha Abeysuriya

218024D

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Chemical and Process Engineering

Department of Chemical Engineering

University of Moratuwa

Sri Lanka

October 2023

Declaration of the candidate and supervisors

Declaration of the candidate

I declare that this is my own work, and this thesis does not incorporate any material previously submitted for a Degree or Diploma in any other university or educational institute of higher learning, without acknowledgement. Further, to the best of my knowledge and belief, this document does not contain any material formerly published or written by another author except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in full or part in future works (such as articles or books).

UOM Verified Signature

Signature:

Date: 13/10/2023

Declaration of the supervisor

The above candidate has carried out research for the Master's thesis under my supervision.

Name of the supervisor:		1. Dr. H. H. M. P. Rathnayake			
	2.	Dr. G.S.M.D.P. Sethunga			
Signature of the supervisor:	1.	UOM Verified Signature	Date:	13/10/2023	
	2.	UOM Verified Signature	Date:	13/10/2023	

Abstract

Water Hyacinth (WH) is an undesirable plant in the aquatic vegetation with a proven record of the possibility as a raw material to produce bioethanol. One of the advantages of using water hyacinth as a bioethanol feedstock is that it does not require land use or significant resource consumption for cultivation. The aim of this study was to evaluate the performance of water hyacinth as a bioethanol feedstock by modelling bioethanol production plant for future industrial purposes beyond labs-scale for different bioethanol production methods using the Aspen Plus software. By alternating two feedstock pretreatment methods (alkaline and dilute acid) and two bioethanol dehydration techniques (extractive and azeotropic distillation), four process scenarios were created (WH1, WH2, WH3, and WH4) for mass and energy flow comparison. Results showed that the alkaline pretreatment provided a 254 L/tonne-WH yield which is higher compared with the obtained by yield dilute acid pretreatment method (210 L/tonne-WH). Additionally, the process pathway that used NaOH for pretreatment and extractive distillation for the dehydration (WH1) resulted the least energy usage for the plant (45,310 MJ/FU). Based on these results, a comprehensive LCA was performed for bioethanol production from WH. The total energy consumption for the cradle-to-gate life cycle to produce bioethanol from WH is 56,202 MJ/FU. The study also evaluated energy sustainability indicators resulting 0.54 net ratio and a 1.87 renewability factor. Further, the study conducted a sensitivity analysis to interpret the effects of the key process parameters at two stages within the research project; first, for the bioethanol production process; second, for the life cycle. The prominent finding is that the parameter with the highest impact on the production plant and the life cycle is the solid loading ratio. Moreover, the energy hotspot was identified as the pretreatment stage. Finally, the study discussed feasible methods water hyacinth can be used for commercial production of fuelgrade bioethanol.

Keywords: Bioethanol Production, Feedstock Pretreatment, Life Cycle Assessment, Water Hyacinth, Process Simulation.

Acknowledgement

I would like to extend my sincere gratitude to my two supervisors Dr Mahinsasa Rathnayake and Dr Dilhara Sethunga, for mentoring me throughout my journey in completing this thesis. I thank them for their invaluable guidance, advice, and encouragement throughout the research process.

This research study was supported by the Senate Research Committee Grant with grant No. SRC/LT/2021/18 at the University of Moratuwa, Sri Lanka. Further, the funding for the purchase of the SimaPro LCA software was provided by the EUSL-TESS (Techno-economic Societal Sustainable Development Training in Sri Lanka) project, which is co-funded by the European Union under the auspices of Erasmus+ Capacity Building in Higher Education Programme. I would like to acknowledge the Department of Chemical and Process Engineering, University of Moratuwa, Sri Lanka, for providing the required process simulation software tools and computational facilities.

Table of Content

Declaration of the candidate and supervisors	i
Abstract	ii
Acknowledgement	iii
Table of Content	iv
List of Figures	vii
List of Tables	viii
List of symbols/abbreviations	ix
Chapter 1	1
Introduction	1
Objectives of study	4
Scope of study	4
Chapter 2	6
Literature review	6
2.1 The study background	6
2.2 Lignocellulosic biomass	7
2.3 Significance of WH	8
2.4 The conversion process of WH to bioethanol	10
2.4.2 Alkali pretreatment process conditions	16
2.4.3 Simultaneous Saccharification and Fermentation (SSF)	18
2.4.4 Dehydration	18
2.5 Life Cycle Assessment	19

Chapter 3	22
Methodology	22
3.1 Standard LCA Methodology and Framework	22
3.2 Goal and scope definition	22
3.3 Inventory analysis	25
3.3.1 Literature-based inventory data calculations	25
3.3.2 Process simulation-based inventory data calculations	27
3.4 Scenario description	28
3.3.1 Energy supply for bioethanol plant	32
3.5 Scenario-based mass and energy flow analysis	34
3.6 Life Cycle Impact Assessment	35
3.6.1 Net Energy Analysis	35
3.6.2 Global Warming Potential (GWP)	35
3.6.3 Life Cycle Environmental Impact Assessment	36
3.7 Interpretation of LCA Results	36
3.7.1 Sensitivity analysis	36
Chapter 4	38
Results and discussion	38
4.1 Process Simulation Results and Analysis	38
4.1.1 Process mass flow analysis	38
4.1.2 Process energy analysis	45
4.2 Life cycle mass flow analysis	54
4.3 Life cycle net energy analysis	55
4.4 Life cycle environmental impact assessment	57

4.4.1 Life cycle sensitivity analysis	64
4.4.2 GHG comparison for different gasohol blends	68
4.5 Limitations of this study and future works	68
Conclusion and Recommendations	70
References	71

List of Figures

Figure		Page
1.1	Global bioethanol and biodiesel production in 2009 and 2019	2
1.2	Progress in bioethanol production in the last decade	2
2.1	Lignocellulosic biomass to bioethanol	10
2.2	Schematic structure of lignocellulose before and after	11
3.1	Standard LCA Framework according to ISO14040/44	22
3.2	Overall research methodology	23
3.3	Life cycle scope for bioethanol production from WH	24
3.4	System boundary diagram for the LCA	25
3.5	Diagram of the process system boundary	29
4.1	Simulated process diagram – WH1	40
4.2	Simulated process diagram – WH2	41
4.3	Simulated process diagram – WH3	42
4.4	Simulated process diagram – WH4	43
4.5	Stagewise energy consumption for WH1 – WH4 scenarios	46
4.6	Results for process NER and Rn indicator for WH1 – WH4 scenarios	48
4.7	Energy flow for WH1 scenario	49
4.8	Sensitivity analysis results indicating	53
4.9	Impact assessment for base case (WH1)	61
4.10	Impact assessment of Base case excluding crude oil production	62
4.11	Base case normalisation	63
4.12	Life cycle sensitivity analysis results for NER and Rn	66
4.13	Life cycle sensitivity analysis results for GWP	66
4.14	Life cycle sensitivity analysis results for human toxicity	67
4.15	Life cycle sensitivity analysis results for marine ecotoxicity and	67
	freshwater ecotoxicity	

List of Tables

Table		Page
2.1	Lignocellulosic Composition of Different Biomass	8
2.2	Chemical composition of WH	9
2.3	Comparison of pretreatment methods for lignocellulosic feedstocks	13
2.4	Process conditions for different pretreatment methods for lignocellulosic feedstocks	14
2.5	Dilute acid pretreatment process conditions for WH	15
2.6	Alkaline pretreatment process conditions for WH and yeast strains for SSF	17
2.7	GHG reduction for gasohol from different biomass	20
3.1	Process conditions for pretreatment and conversion stages	31
3.2	Distillation column design specifications for the scenarios	32
3.3	Average heating values of fuel and efficiencies of the CHP unit	33
3.4	Key parameter variation range for process sensitivity analysis	34
3.5	Key parameter variations for life cycle sensitivity analysis	37
4.1	Bioethanol yield from other lignocellulosic biomasses	39
4.2	Raw material consumption for WH1 – WH4 scenarios	44
4.3	Energy consumption results for individual plant equipment for	47
	WH1 – WH4 scenarios	
4.4	Energy flow analysis results	50
4.5	Process sensitivity analysis results	52
4.6	Life cycle energy consumption	56
4.7	Top ten emissions to air	57
4.8	Top ten emissions to water	58
4.9	Base case impact assessment	60
4.10	Life cycle sensitivity analysis results	65

List of symbols/abbreviations

Symbols/Abbreviations	Terms
2G	Second Generation
BE	Bioethanol
CO_2	Carbon Dioxide
EtOH	Ethanol
EU	European Union
FU	Function Unit
G	Glucose
GHG	Green House Gas
GWP	Global Warming Potential
H ₂ O	Water
H_2SO_4	Sulphuric Acid
LCA	Life Cycle Assessment
LCB	Lignocellulosic Biomass
NaOH	Sodium Hydroxide
NER	Net Energy Ratio
NEV	Net Energy Value
NRnEV	Net Renewable Energy Value
O_2	Oxygen
рН	Potential of Hydrogen
Rn	Renewability factor
SHCF	Separate Hydrolysis and Co-Fermentation
SSF	Simultaneous Saccharification and Fermentation
WH	Water Hyacinth
Wt%	Weight Percentage
Х	Xylose