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ABSTRACT

There are numerous scenarios where similar acoustic events occur multiple times.

Acoustic monitoring of migratory birds is an ideal example. Birds make a type

of call known as flight calls during migration. A flight call can be considered

as an acoustic event because it is a short-term, intuitively distinct sound. It

is challenging to identify multiple occurrences of extremely short-range acoustic

events such as flight calls in real-world recordings using classification techniques

that require more computational power. It is mainly due to background noise

and complex acoustic environments. This research aims at developing a classi-

fication model that reduces the effect of background noise, extract ROIs from

continuous recordings, extract suitable features of flight calls and detect multiple

occurrences of flight calls. An improved algorithm that can extract features has

been developed in this research—by combining a well known Maximally Stable

Extremal Regions (MSER) technique with state of the art traditional techniques.

Namely Spectral and Temporal Features(SATF) and a combination of SATF and

Spectrogram-based Image Frequency Statistics(SIFS). We name this novel al-

gorithm as Spectrogram-based Maximally Stable Extremal Regions (SMSER).

Three distinct feature sets have formed such that Featureset-1 created using

SATF. Featureset-2 is a blend of SATF and SIFS. Featureset-3 is a combina-

tion of SATF, SIFS, and SMSER. The kNN, RF, SVM, and DNN classification

techniques evaluated a real-world dataset using the extracted feature sets. Re-

search carried out several tests to find out the best performing combination of

classification model and feature set. The results showed that the flight calls’ de-

tection accuracy increased when the number of features increased, although high

computational power requirement is a disadvantage. The performance of SMSER

feature set was the best among almost every classification technique above. It

should be because the SMSER Feature set has the highest number of features.

Classification of the SMSER feature set from the DNN classifier showed the high-

est accuracy of 87.67%.
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