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ABSTRACT

Our environment is a mixture of hundreds of sounds that are emitted by different sound

sources. These sounds are overlapped in both time and frequency domains in an unstruc-

tured manner composing a polyphonic environment. Identification of acoustic events

in a polyphonic environment has become an emerging topic with many applications

such as surveillance, context-aware computing, automatic audio indexing, health care

monitoring and bioacoustics monitoring.

Polyphonic acoustic event detection is a challenging task aimed at detecting the

presence of multiple sound events that are overlapped at a particular time instance and

labeling. It requires a large amount of training data with a complex machine learning

architecture thus making it a highly resource-consuming task. Hence, the accuracy of

this research area is still not at a satisfactory level.

This study presents a neural networks-based classifier architecture with data aug-

mentation and post-processing methods to improve accuracy. Two neural network ar-

chitectures as a multi-label and combined single label are implemented and compared

in the study. Previous literature reveals that Mel frequency cepstral coefficients and log

Mel-band energies are the widely used features in the state of the art research in the area.

Different data augmentation methods were used to ensure that the neural networks are

trained for even the slight variations of the environmental sounds. A novel binarization

method based on the signal energy is proposed to calculate the threshold value for bina-

rizing the source presence predictions. Finally, the median filter based post processing

was implemented to smoothen the detection results. The experimental results show

that the proposed binarizing method improved the detection accuracy and recorded a

maximum of 62.5% combined with the data augmentation and post-processing.

Keywords: Polyphonic Acoustic Event Detection, Dynamic Threshold Binarization,

Deep Neural Networks
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