ACOUSTIC EVENT DETECTION IN POLYPHONIC ENVIRONMENTS USING ARTIFICIAL NEURAL NETWORKS

Jayawardhana Pathiranage Manesh Mihiranga

(188016R)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

May 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/ dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis/ dissertation under my supervision.

Name of the Supervisor: Dr. Sulochana Sooriyaarachchi Signature of the Supervisor: Date:

ACKNOWLEDGEMENTS

It would never be possible to finish my dissertation without the encouragement, support, and supervision of various personalities, including my supervisor, family, friends and colleagues. At the end of this thesis, I would like to thank all those people who made this achievable and memorable experience for me.

First and foremost, I would like to thank my supervisor Dr. Sulochana Sooriyaarachchi for the continuous support and guidance I received in every aspect while completing this research.

I would also like to thank my progress review committee, Dr. Charith Chitraranjan and Dr. Ranga Rodrigo for their valuable insights and guidance. Their advice helped me to improve the state of my research work.

This work was funded by a Senate Research Committee (SRC) Grant of the University of Moratuwa. Further, I would like to thank for the committee for the financial support.

Finally, I would like to express my sincere gratitude to all of my friends and colleagues for motivating me all the time to do my best not limited to academic work. I thank my parents who have given me a fortunate life and always believing, trusting and supporting me.

ABSTRACT

Our environment is a mixture of hundreds of sounds that are emitted by different sound sources. These sounds are overlapped in both time and frequency domains in an unstructured manner composing a polyphonic environment. Identification of acoustic events in a polyphonic environment has become an emerging topic with many applications such as surveillance, context-aware computing, automatic audio indexing, health care monitoring and bioacoustics monitoring.

Polyphonic acoustic event detection is a challenging task aimed at detecting the presence of multiple sound events that are overlapped at a particular time instance and labeling. It requires a large amount of training data with a complex machine learning architecture thus making it a highly resource-consuming task. Hence, the accuracy of this research area is still not at a satisfactory level.

This study presents a neural networks-based classifier architecture with data augmentation and post-processing methods to improve accuracy. Two neural network architectures as a multi-label and combined single label are implemented and compared in the study. Previous literature reveals that Mel frequency cepstral coefficients and log Mel-band energies are the widely used features in the state of the art research in the area. Different data augmentation methods were used to ensure that the neural networks are trained for even the slight variations of the environmental sounds. A novel binarization method based on the signal energy is proposed to calculate the threshold value for binarizing the source presence predictions. Finally, the median filter based post processing was implemented to smoothen the detection results. The experimental results show that the proposed binarizing method improved the detection accuracy and recorded a maximum of 62.5% combined with the data augmentation and post-processing.

Keywords: Polyphonic Acoustic Event Detection, Dynamic Threshold Binarization, Deep Neural Networks

LIST OF FIGURES

Figure 1.1	Representation of acoustic events in a monophonic environment	3
Figure 1.2	Representation of acoustic events in a polyphonic environment	4
Figure 2.1	Mel scale	12
Figure 2.2	Triangular Mel-filterbank $w_{k,h}$	13
Figure 3.1	Overview of the methodology	31
Figure 3.2	Difference between ML-DNN and CSL-DNN	36
Figure 4.1	Experimental design	41
Figure 4.2	Waveforms of the original soundscape (top), stretch factor = 0.8	
	(middle) and stretch factor $= 1.2$ (bottom)	42
Figure 4.3	Spectrograms of the original soundscape (top), shift down by 2	
	semi-tones (middle) and shift up by 2 semi-tones (bottom)	44
Figure 4.4	Representation of MFCCs	46
Figure 4.5	Representation of log Mel-band energies	46
Figure 4.6	RMSE variation of a signal (top) and dynamic threshold value	
	calculated by the algorithm (bottom)	51
Figure 4.7	Sample representation of median filtering based post-processing	53
Figure 5.1	Comparison of the binarization methods	56
Figure 5.2	Comparison of F_1 score before and after the post-processing	57
Figure 5.3	Comparison of class-wise F_1 score	59

LIST OF TABLES

Table 5.1	Comparison of the binarization methods	55
Table 5.2	Comparison of the results before and after the post-processing	56
Table 5.3	Final hyperparameter values based on the grid search results	58

LIST OF ABBREVIATIONS

ACF	Autocorrelation Function
AED	Acoustic Event Detection
ANN	Artificial Neural Networks
BER	Band Energy Ratio
CNN	Convolutional Neural Network
CSL	Combined Single Label
DCT	Discrete Cosine Transform
DFT	Discrete Fourier Transformation
DNN	Deep Neural Network
DTB	Dynamic Threshold Binarization
DWTC	Discrete Wavelet Transform Coefficients
FFT	Fast Fourier Transformation
FTB	Fixed Threshold Binarization
GMM	Gaussian Mixture Models
GPU	Graphics Processing Unit
HMM	Hidden Markov Models
k-NN	k-Nearest Neighbor
LPC	Linear Prediction Coefficients
LPCC	Linear Prediction Cepstral Coefficients
MFCC	Mel Frequency Cepstral Coefficients
ML	Multi Label
NMF	Non-negative Matrix Factorization
PC	Personal Computer
PLP	Perceptual Linear Prediction
RMSE	Root Mean Square Energy
RNN	Recurrent Neural Network
SED	Sound Event Detection

- SOM Self Organizing Maps
- STE Short-Time Energy
- SVM Support Vector Machine
- ZCR Zero-Crossing Rate

TABLE OF CONTENTS

De	eclara	tion		i
Ac	know	ledgem	lent	ii
Abstract			iii	
Li	st of I	Figures		iv
Li	st of '	Tables		V
Li	st of .	Abbrev	iations	vi
Ta	ble o	f Conte	ents	viii
1	Introduction			1
	1.1	Acoustic Event Detection and Analysis		1
		1.1.1	Monophonic acoustic event detection and analysis	2
		1.1.2	Polyphonic acoustic event detection and analysis	2
	1.2	Motivation		4
	1.3	Problem		5
	1.4	Research Objectives		5
	1.5	Thesis Outline		
2	Literature Review			7
	2.1	2.1 Feature Extraction		
		2.1.1	Temporal Features	8
		2.1.2	Spectral Features	9
		2.1.3	Time-frequency-based Features	10
		2.1.4	Cepstrum-based Features	11
		2.1.5	Energy-based Features	14
		2.1.6	Biologically/ Perceptually Driven Features	15
		2.1.7	Usage of the Features	17
	2.2	Detec	tion and Classification	20
		2.2.1	Generative Classifiers	20
		2.2.2	Discriminative Classifiers	21
		2.2.3	Hybrid Classifiers	21

		2.2.4	Usage of the Different Classifiers	22	
	2.3	Datasets		26	
		2.3.1	TUT-SED Synthetic 2016	26	
		2.3.2	UrbanSound8k	27	
		2.3.3	The URBAN-SED	27	
		2.3.4	CHiME-Home	28	
	2.4	Summ	nary	29	
3	Methodology			30	
	3.1	Baseli	30		
	3.2	Formation of the Methodology		32	
	3.3	Select	ing the Dataset	32	
	3.4	4 Data Augmentation		33	
	3.5	Featur	re Extraction	34	
	3.6	Classification		36	
	3.7	'Binarization		37	
	3.8	Post-processing			
	3.9	Summary			
4	System and Experimental Design		40		
	4.1	Data .	Augmentation	40	
		4.1.1	Time Stretching	40	
		4.1.2	Pitch Shifting	43	
	4.2	Featu	re Extraction	43	
		4.2.1	MFCCs Extraction	45	
		4.2.2	Log Mel-band Energies Extraction	46	
		4.2.3	Context Window	46	
	4.3	Classification		47	
		4.3.1	Classifiers	47	
	4.4	Binari	ization	50	
		4.4.1	Fixed Threshold Binarization	50	
		4.4.2	Dynamic Threshold Binarization	50	
	4.5	Post-p	processing	52	

		4.5.1 Median Filter Based Post Processing	52	
	4.6	Summary	53	
5	Results and Discussion			
	5.1	Evaluation Metrics		
	5.2	Results	55	
	5.3	Discussion	57	
	5.4	Summary	60	
	Conclusion and Future Work		62	
	6.1	Conclusion	62	
	6.2	Future Work	63	
References		65		