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ABSTRACT 

With the current global pandemic all countries around the globe are facing difficulties 

managing their healthcare services in a way that ensures the high availability of critical 

services while maintaining the safety of both the patient and the staff. According to 

Gartner’s top 10 strategic technology trends 2021 [1], it says “Rather than building a 

technology stack and then exploring the potential applications, organizations must 

consider the business and human context first.” where it highlights the need for human 

centric development while stating that it is the IT leaders that decides what combination  

of the trends to involve in driving the most innovation and strategy. 

 

A decade ago, simply having a website was enough to impress prospective customers and 

help them find their way to a service or information need and to establish a brand loyalty 

or identity. The growth of the technology is demanding more innovative strategies to 

adopted to every small to large industries that are at any stage of maturity of their 

roadmap to success. The increasing demands of the clients and the ability to keep a loyal 

customer base has highlighted the need of having a more natural way of handling a 

customer’s inquiry gives a competitive advantage for any business.  

 

The disappointment due to a customer getting added to a call waiting queues to reach a 

particular service is very critical and can even cause a loss of business opportunity. 

Understanding call intents can help a service provider to adapt the business engagement 

with the outside in a way that customers are positively satisfied which could in return 

increases the sales revenue. Not only that, but indirectly enables the ability for business to 

allocation agents or help-desk staff optimally thus avoid understaffing and overstaffing 

situation, which are indirect costs for any revenue-based figure. 

 

 

Automation is where the technology is used to automate tasks that once required humans. 

Here, the menu-based call center automations can be taken as a replacement to the legacy 

call center agent where the human tasks were replaced by automation. The concept of 

hyperautomation is where the businesses are rapidly adopting it’s revenue-based 

processes and IT process for automation. And the current state-of-the-art deals with lot of 

advanced technologies like Machine Learning (ML) and Artificial Intelligence (AI). 

Where AI and ML are used for extending the capabilities of automations.  
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The building of a speech recognition (ASR) systems for an open domain has been 

research for a lone time. Where the most of those are accomplished by collecting the 

voice corpus, convert them into text and performing a text classification on top of the 

converted text. However, this comes with lot of limitations, thus is not identified as the 

most feasible way of deriving intents of a speech query for a specific domain [2]. 

Therefore, in this research, that is focused on domain specific voice intent classification 

will be aligned with the healthcare domain for the English language based on a neural 

network with Bidirectional Long Short-term Memory (BLSTM).  
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