Investigation of Effect of Human Robot Interaction with Lower Limb Exoskeletons

Marukku Devage Sanka Dileepa Chandrasiri

(178035N)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Biomedical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

November 2021

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the MSc thesis under my supervision.

Signature of the Supervisor(s):

Date:

Prof. R.A.R.C GopuraProfessor,Department of Mechanical Engineering,University of Moratuwa, Sri Lanka.

Abstract

Continuous development of exoskeletons (wearable robots) is essential to enhance the user experiences and performances of the wearable device. Therefore, it is necessary to determine human ergonomics and the comfort levels of wearable robots. These aspects can be analyzed by determining human-robot interaction (HRI). HRI is classified in cognitive- HRI (cHRI) and physical-HRI (pHRI) in the literature. cHRI involves the identification of complex human expression and physiological aspects. These pieces of information can be observed using a human-robot cognitive interface. Electroencephalogram (EEG) and electromyography (EMG) are mainly used sensing methods in cHRI. EEG is used to identify electrical activities of brain, while EMG is used to identify electrical activities of brain, while EMG is used to identify physical quantities such as position, force, and pressure between humans and robots. In order to identify pHRI with wearable robotic interfaces, a novel surface muscle pressure (SMP) sensory system was developed. The SMP sensor was calibrated and evaluated using surface electromyography (sEMG) data for two separates experimental scenarios. Hence the system was proposed to determine the pHRI of wearable robotics.

In order to determine HRI, a dummy lower limb exoskeleton was designed and manufactured in compliance with human ergonomics and biomechanics. The exoskeleton consists of 8 degrees of freedom (DoF) motions with variable limbs and weight attachment locations. Furthermore, sEMG, motion analysis, and SMP sensory systems were used to carry out the experiments. Moreover, a human lower limb model simulation with ground force reaction prediction was developed to determine the inverse dynamics. The experiments were carried out without exoskeleton, with the exoskeleton, and with exoskeleton weight attachments with six healthy subjects for the walking motion. A qualitative, comfortable level analysis was carried out simultaneously for each experiment. Captured SMP, sEMG, inverse dynamics and qualitative results were processed and feature extracted to evaluate HRI for different weight distributions and attachment locations. The relationship between exoskeleton attachments and locations was observed. The experiment results have provided an improved understanding of HRI for developing practical and ergonomically comfortable lower limb exoskeleton devices.

Keywords-Lower-limb Exoskeletons, Human-Robot Interaction, Electromyography, Inverse Dynamics

DEDICATION

To my parents, Chandra Chandrasiri and Sudharma Chandrasiri Thanks for your great support and continuous care. Without you none of my success would be possible.

ACKNOWLEDGMENTS

After immense ups and downs, I am writing this thanking note in remembrance of the great assistance provided by everyone who were there with myself for the successful completion of this research work. It has been a great run for me and it is time for myself to pay my sincere gratitude towards all these great people.

The long list of the people who have my unending homage, should be started with my thesis supervisor Prof. R. A. R. C. Gopura. For me choosing the path of higher studies was challenging and life changing. I am eternally grateful to him for accepting myself as his research student and for the continuous support given to reach great milestones which I would not have even imagined. Over the entire period of my research, his humane qualities left an example for me to look up to and I am honoured to be a student of him.

I wish to extend my gratitude to Eng.Pubudu Ranaweera for providing his valuable insights for the successful completion of this research work. Doing a research alone can be tiresome and restless at most of the time. However, it is the people around you who make that feeling disappear. I am very grateful to all the members of Bionics Laboratory, Department of Mechanical Engineering, University of Moratuwa, who had my back in each step of the way. Among them I would like to appreciate the support Dr. Kanishka Madusanka in shaping my Master's Degree work. Moreover, I would like to recall the motivational advices of Mr. Achitha Mihiran, Mr. Achintha Iroshan Mr. Dinesh Kumara and Mr. Dulanjana Perera.

I take this opportunity to express my gratitude towards the Senate Research Council of University of Moratuwa for the financial support granted to me under the grant no. SRC/ST/2019/56 to conduct my studies.

Moreover, enormous thanks to CSSM laboratory members for providing materials and support for development of sensory interfaces: Dr. Damith Chathuranga, Mr. Asitha Kulasekara, Mr. Rancimal Arumathanthri and Mr. Chanaka Prasad. guided me throughout the study.

support, love and motivation provided by my loving family. I would pay my sincere homage to them, with heavy heart for being the reason to keep moving forward when the things get hard.

Sanka Dileepa Chandrasiri msankachandrasiri@gmail.com

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgments	iv
appendix	v
Table of Contents	ix
List of Figures	xiii
List of Tables	xiv
List of Abbreviations	xv
A Introduction	1
A.1 Motivation	. 2
A.2 Contribution of the Thesis	. 3

	A.3	Thesis	Overview	3
В	Lite	rature	Review	6
	B.1	Biome	chanics and Kinematics of Lower Limb	6
	B.2	Lower	limb Exoskeletons	12
		B.2.1	Trunk-Hip-Knee-Ankle-Foot (THKAF) exoskeletons	13
		B.2.2	Hip-Knee-Ankle-Foot (HKAF) exoskeletons	17
		B.2.3	Trunk-Hip-Knee (THK) exoskeletons	19
		B.2.4	Hip-Knee (HK) exoskeletons	19
		B.2.5	Knee-Ankle-Foot (KAF) exoskeletons	21
		B.2.6	Single joint exoskeletons	23
	B.3	Huma	n-Robot Interaction	26
		B.3.1	Cognitive Human-Robot Interaction	26
		B.3.2	Physical Human-Robot Interaction	27
С	C Development of Surface Muscle Pressure Monitoring System 28			28
	C.1	Force	Sensitive Resistors Based Sensory System	28
		C.1.1	Design Concept	29
		C.1.2	Experiment Setup and Protocols	30
		C.1.3	Experimental Results and Discussion	33
	C.2	Pneum	natic Surface Muscle Pressure Sensory System	37

	C.2.1	Design Concept	37
	C.2.2	Fabrication Process	40
	C.2.3	Data Acquisition Tools and Protocols	41
	C.2.4	Experimental Results and Evaluation	43
D Exp	perime	nts and Results	48
D.1	Develo	opment of Dummy Exoskeleton	48
	D.1.1	Mechanical Design	49
	D.1.2	Fabrication Process	50
D.2	Simula	ation Model	51
	D.2.1	Lower Limb Motion Analysis Model	52
	D.2.2	Ground Reaction Force Prediction	52
D.3	Exper	iment Setup	54
D.4	Exper	imental Protocol	55
D.5	Result	ts	60
	D.5.1	Guideline for design of lower limb exoskeletons	70
E Coi	nclusio	n and Future Directions	72
List of	Publi	cations	74
Refere	ences		82

Appendix

A	Any	body Musculoskeletal Model	83
	A.1	Body Mass Scaling Factors	83
	A.2	Fat Percentage	84
	A.3	Ground Reaction Force Prediction Foot Plate Conditions	84
в	sEM	IC signal feature extraction	86
D	5111		00
	B.1	Main Program	86
	B.2	Signal Noise Reduction	87
	B.3	FFT Transformation	88
	B.4	Butterworth Bandpass Filter	89
	B.5	Notch Filter	89
	B.6	Noise Peak Filteration	90
\mathbf{C}	Eng	ineering drawings of dummy lower-limb exoskeleton	92

LIST OF FIGURES

A.1	Summary of research work	4
B.1	The anterior view of the human lower limb	7
B.2	Motions of the hip	8
B.3	Motions of the knee and ankle	8
B.4	Simplified human lower limb kinematic model of the lower limb $% \left({{{\bf{n}}_{\rm{B}}}} \right)$.	10
B.5	Definition of D-H parameters. [1]	11
B.6	Classification of lower limb exoskeletons based on the area of application.	12
B.7	Classification of lower limb exoskeletons based on wearer's attach- ment locations	14
B.8	Trunk-Hip-Knee-Ankle-Foot (THKAF) exoskeletons	18
B.9	Hip-Knee-Ankle-Foot (HKAF) and Trunk-Hip-Knee (THK) ex- oskeletons	20
B.10) Hip-Knee (HK) and Knee-Ankle-Foot (KAF) exoskeletons $\ . \ . \ .$	22
B.11	Hip, knee and ankle-foot exoskeletons	24
C.1	SMP sensory system	29

C.2	Experimental setup	30
C.3	SMP sensory system sEMG acquisition system attachments	31
C.4	Angular deflection of knee using cartesian coordinates of hip, knee and ankle joints	33
C.5	sEMG, SMP and Knee Angle for seven squatting cycles	34
C.6	sEMG analysis data for 10 subjects	35
C.7	Units of SMP monitoring system	38
C.8	Silicone pressurized air pouch (PAP)	39
C.9	Fabrication process of PAP	40
C.10	Developed SMP monitoring system (PAP, PC, pneumatic pressure sensor and micro-controller	41
C.11	Experimental setup	42
C.12	2 Assembly of SMP monitoring system	43
C.13	B Deformation of PAP for different internal pressures	44
C.14	Deformation of PAP for different internal pressures	44
C.15	SMP and sEMG variation graphs	46
D.1	Dummy exoskeleton	49
D.2	The dummy exoskeleton segments	50
D.3	The test subject we aring the dummy exoskeleton $\ . \ . \ . \ .$.	51
D.4	AnyBody human model	53

53
54
55
56
56
57
58
59
61
62
64
65

D.18 Kinematic data (a) Ankle angle, (b) Knee angle	67
D.19 Force and SMP data for 0.5 m/s speed (a) Ground force prediction	
(b) Surface muscle pressure	68
D.20 Qualitative analysis for lower limb attachment locations and weights	
(a) Borg's scale result for 1.25kg attachment, (b) Reference Borg's	
scale for discomfort levels	69
D.21 Lower limb weight attachment locations	71
C.1 Dummy exoskeleton, (a) lateral view of the exoskeleton, (b) hip	
mechanism, and (c) knee mechanism.	92

B.1	ROM of the human hip complex	9
B.2	ROM of the human knee complex and ankle \ldots	9
B.3	DH Parameters of human Lower Limb	12
B.4	Classification of multi-joint exoskeletons	23
C.1	Physical properties of air pouch	40
C.2	Statistical Data of Deformation Curve Fits	45
D.1	Sample size analysis data	55
D.2	Weight attachments	58
D.3	Comfort level matrix	71
C.1	Description of the components of the dummy exoskeleton	92

LIST OF ABBREVIATIONS

cHRI	Cognitive Human Robot Interaction
DAQ	Data Acquisition
DC	Direct Current
DH	Denavit Hartenberg
DLS	Damped Least Squares
DoF	Degrees of Freedom
EEG	Electroencephalography
EMG	Electromyography
FSR	Force Sensitive Resisters
HRI	Human Robot Interaction
НК	Hip Knee
HKAF	Hip Knee Ankle Foot
KAF	Knee Ankle Foot
pHRI	Physical Human Robot Interaction
SMP	Surface Muscle Pressure
THKF	Trunk Hip Knee Foot
ТНК	Trunk Hip Knee