DEVELOPMENT OF A REAL-TIME GRASPING PATTERN CLASSIFICATION SYSTEM BY FUSING EMG-VISION FOR HAND PROSTHESES

Gamage Dulanjana Manoj Perera

(198115E)

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

August 2021

Development of a Real-time Grasping Pattern Classification System by Fusing EMG-Vision for Hand Prostheses

Gamage Dulanjana Manoj Perera

(198115E)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Mechanical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

August 2021

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis under our supervision.

Dr. H. K. G. PunchihewaHead/Senior Lecturer,Department of Mechanical Engineering,University of Moratuwa, Sri Lanka.

Late, Dr. D. G. K. Madusanka Lecturer, Department of Mechanical Engineering, University of Moratuwa, Sri Lanka.

Abstract

The Electromyography (EMG) based trans-radial prostheses have revolutionized the prosthetic industry due to their ability to control the robotic hand using human intention. Although recently developed EMG-based prosthetic hands can classify a significant number of wrist motions, classifying grasping patterns in real-time is challenging. However, the wrist motions alone cannot facilitate a prosthetic hand to grasp objects properly without performing appropriate grasping pattern. The collaboration of EMG and vision has addressed this problem to a certain extent. However they have not been able to achieve significant performance in real-time.

This study proposed a vision-EMG fusion method that can improve the real-time prediction accuracy of the EMG classification system by merging a probability matrix that represents the usage of the six grasping patterns for the targeted object. The You Only Look Once (YOLO) object detection algorithm was utilized to retrieve the probability matrix of the identified object, and it was used to correct the classification error in the EMG classification system by applying Bayesian fusion. Experiments were carried out to collect EMG data from six muscles of 15 subjects during the grasping action for classifier development. In addition, an online survey was conducted to collect data to calculate the respective conditional probability matrix for selected objects. Finally, the five optimized supervised learning EMG classifiers; Artificial Neural Network (ANN), K-nearest neighbor (KNN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), and Decision Tree (DT) were compared to select the best classifier for fusion.

The real-time experiment results revealed that the ANN outperformed other selected classifiers by achieving the highest mean True Positive Rate (mTPR) of M = 72.86% (SD = 17.89%) for all six grasping patterns. Furthermore, the feature set identified at the experiment (Age, Gender, and Handedness of the user) proved that their influence increases the mTPR of ANN by M = 16.05% (SD = 2.70%). The proposed system takes $M = 393.89 \ ms$ $(SD = 178.23 \ ms)$ to produce a prediction. Therefore, the user did not feel a delay between intention and execution. Furthermore, proposed system facilitated the user to use suitable multiple grasping patterns for a single object as in real life. In future research works, the functionalities of the system should be expanded to include wrist motions and evaluate the system on amputees.

Keywords -Surface Electromyography, Real-time Classification, vision feedback, Grasping Pattern, Sensor Fusion

DEDICATION

In memory of late Dr. Kanishka Madusanka and to my loving family who keeps lifting me and inspiring me

in every second of my life.

ACKNOWLEDGMENTS

I received invaluable support and guidance from many people to complete this research work successfully throughout this intense period. I would like to express my sincere gratitude towards all these people who were there for me during my ups and downs.

I am indebted to my thesis supervisor, Late Dr. Kanishka Madusanka, for the encouragement and insightful guidance that he gave me during this intensive period. He was a teacher and a supportive friend who was always there for me when I was down. He allowed this thesis to be my own work, but steered me in the right direction with valuable suggestions. Furthermore, I am incredibly grateful to my co-supervisor, Dr. Himan Punchihewa, for his precious support and suggestions rendered at a crucial stage of the research. I owe my deepest gratitude to him for agreeing to be my supervisor after Dr. Kanishka and spiritually uplifting me to complete the research.

I would like to express my sincere gratitude to Professor Ruwan Gopura for the insightful feedback and endless support he gave me during hard times. Without his administrative support, this thesis would not have been possible. I would also like to extend my gratitude towards Dr. Damith Chathuranga for providing supportive comments and suggestions at the progress reviews. His suggestions have made this thesis more professional and valuable.

I would be amiss if I did not mention Mr. Pubudu Ranaweera and my lab mates, Mr. Achintha Abayasiri, Mr. Sanka Chandrasiri, and Mr. Achintha Iroshan, who were always with me during my ups and downs. I am also thankful to all my fellow batchmates from the 14^{th} batch especially, Mr. Lakshitha De Silva, Mr. Charuka Lihini, and Mr. Rawisha Serasinghe, for their friendly and insightful feedback. A special token of appreciation is also extended towards Miss. Supipi Fernando who was there with me from the beginning and encouraged me to do my best. I greatly appreciate her caring support.

I would also like to thank Dr. Nalaka Samaraweera for the administrative guidance and support he gave me during final stages of the thesis work.

Last but not least, I am very grateful to my parents and my brother Mr. Kanushka Perera for their continuous support and encouragement.

Dulanjana Perera, dulanjana.perera@ieee.org

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	ii
Acknowledgments	iv
Table of Contents	v
ist of Figures	xi
ist of Tables x	vi
ist of Abbreviations x	xi
INTRODUCTION	1
1.1 Motivation	5
1.2 Aim and objectives of the research	6
1.3 Contribution to knowledge	6
1.4 Thesis overview	7

2 LITERATURE REVIEW

	2.1	Histor	y of the prosthetic devices	10
		2.1.1	Cosmetic prosthetic devices	10
		2.1.2	Body-powered prosthetic devices	11
		2.1.3	Externally-powered prosthetic devices	12
	2.2	State-	of-the-art electric prosthetic control systems	15
		2.2.1	EMG and vision sensory inputs for prosthetic control	16
	2.3	EMG-	based prosthetic hand control systems	17
		2.3.1	EMG acquisition	17
		2.3.2	Pre-processing of EMG signal	21
		2.3.3	Segmentation of EMG data	22
		2.3.4	Feature extraction	23
		2.3.5	Classification methods	27
		2.3.6	Post-processing for final prediction	31
	2.4	Vision	-based prosthetic hand control systems	33
3	PRI	ELIMI	NARY STUDY ON CLASSIFIER DEVELOPMENT	38
	3.1	EMG	and onset distance data collection	38
		3.1.1	Muscle selection	40
		3.1.2	Sample size selection	41

9

		3.1.3	Experimental setup	43
		3.1.4	Experimental protocol	45
		3.1.5	EMG and distance data pre-processing	47
	3.2	Statis	tical analysis	48
		3.2.1	RMS study of EMG data	49
		3.2.2	Normalized onset distance study	51
	3.3	Summ	nary	53
4	DE	VELO	PMENT OF GRASPING PATTERN CLASSIFICA-	
	TIC	ON SY	STEMS	56
	4.1	Develo	opment of EMG classification system	56
		4.1.1	Preprocessing of EMG data	57
		4.1.2	Feature selection	63
		4.1.3	Development protocol of classifiers	67
		4.1.4	Optimization of classifiers	73
	4.2	Develo	opment of vision-based classification system	86
		4.2.1	Proposed probability matrix	87
		4.2.2	Vision algorithm	89
	4.3	Summ	nary	91
5	$\mathbf{E}\mathbf{M}$	G-VIS	SION HYBRID SYSTEM	92

	5.1	Data fusion using Bayes theorem	93
	5.2	Post-processing of fused data using majority vote and Bayesian fusion	95
	5.3	Algorithm of the proposed hybrid system	96
6	RE	AL-TIME VALIDATION OF HYBRID SYSTEM	98
	6.1	Grasping pattern simulation	99
	6.2	Validation of the EMG system	101
	6.3	Validation of the vision system	104
	6.4	Validation of proposed hybrid system	105
	6.5	Discussion	106
7	CO	NCLUSION AND FUTURE DIRECTION	108
7	CO2 7.1	NCLUSION AND FUTURE DIRECTION Conclusion	
7			108
	7.1 7.2	Conclusion	108
Li	7.1 7.2	Conclusion	108 109
Li	7.1 7.2 st of	Conclusion	108 109 110
Li Re Aj	7.1 7.2 st of efere	Conclusion	108 109 110 110

	B.1 Distance Data	132
	B.2 RMS Data	133
С	ANOVA GLM results of the RMS study	134
D	ANOVA GLM results of the Onset study	135
E	Filter parameters	136
\mathbf{F}	Survey Questionnaire	137
G	Signal Filtering	138
н	Grid search Optimization	139
	H.1 Neural network parameters and hyperparameters	139
	H.2 Trend Analysis of the hidden layers	140
Ι	Bayesian Optimization Results	141
	I.1 Optimized results of the conventional classifiers $\ldots \ldots \ldots$	141
J	YOLO Algorithm	142

LIST OF FIGURES

1.1	Basic categorization of hand prostheses	2
1.2	(a) Cosmetic leg developed by Ottobock [1].(b) Body-powered upper limb developed by Ottobock [1].(c) i-Limb developed by Ossure [2]	3
1.3	Adaptation of visuomotor system of a human to the EMG-based prosthetic hand	5
2.1	(a) First known prosthetic toe [3]. (b) Roman leg [3]. (c) Artificial iron arm [3]	11
2.2	(a) First EMG-controlled hand by Reinhold Reiter [4]. (b) First electric hand [5].	14
2.3	Pattern recognition (PR) control scheme for EMG-based prosthetic hand	17
2.4	 (a) iEMG crosstalk among 6 electrodes. (b) sEMG Crosstalk among 16 electrodes. (c) Classification results of Linear Discriminant Analysis (LDA) and Multilayer perceptron for iEMG (Type 1) and sEMG (Type 2). AR- Autoregressive coefficient; TD- Time Domain features; TDAR- Time Domain Autoregressive coefficients 	10
	6	19

2.5	Optimum number of electrodes for symmetrical arrangement and	
	optimum place arrangement [6]	20
2.6	Optimum number of electrodes for symmetrical arrangement and	
	optimum place arrangement [6]	21
2.7	Classification error of MLP and LDA with respect to different fea-	
	ture set [7]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	27
2.8	Classification result of different classifiers for AR feature $[6]$	29
2.9	Effect of majority vote of classification results $[6]$	31
2.10	Comparison of classification error rates of KNN and SVM when	
	MV and BF are used for post-processing [8] $\ldots \ldots \ldots \ldots$	32
2.11	The propose Eye-in-Hand method for vision-based grasping pat-	
	tern classification system by Joseph <i>et al.</i> [9]	35
3.1	Overview of hand onset experiment during the RTG motion	39
3.2	Anatomy of the selected muscle at forearm. FDS - Flexor Digi-	
	torum Superficialis; PL- Palmaris Longus; ECU - Extensor Carpi	
	Ulnaris; EDM - Extensor Digiti minimi; ED - Extensor Digitorum;	
	ECRL - Extensor Carpi Radialis Longus. (image is adapted from	
	BioDigital.com)	40
3.3	The flex sensor with glove is marked with green color and the	
	object (cylindrical, lateral power grasp) is marked with blue color	
	for the distance calculation. d_i is the initial distance and d_2 is the	
	hand onset distance.	43
3.4	Schematic diagram of the experiment setup	44

3.5	Three flex sensors were connected to the Arduino Uno micro- controller. The green color mark is identified by the distance cal-	
	culation python program	45
3.6	The selected grasping patterns and corresponding object used for the experiment	46
3.7	The finger motion variation and the hand distance $(d_i$ in the Figure 3.3) variation. TC- Top camera and SC- Side camera. (Key Grasp-Participant 9)	48
3.8	The interval plot of mean RMS of each grasping pattern. Orange dot indicate the median whereas the blue line indicates the 95% CI.	50
3.9	The summary of the ANOVA GLM of RMS study. The main effects illustrates how different factors affect the RMS of the signal.	51
3.10	Interaction analysis of grasping pattern, gender, age and handed- ness on RMS of the signal	52
3.11	The interval plot of mean/median normalized onset distance of each grasping pattern. Orange dot indicate the median whereas the blue line indicates the 95% CI.	52
3.12	The summary of the ANOVA GLM of Onset study. The main effects illustrates how different factors affect the normalized onset distance of the signal	52
3.13	distance of the signal	53 54
4.1	Overview of a classifier. The grasping pattern with highest likelihood (probability) is considered as predicted user intention	57

4.2	Saturated raw signal of Extensor Digitorum muscle of Subject 2, power grasp - trial 2. Subject is weighted 92Kg. Red ellipses	
	indicate the saturated signal regions (4th and 5th attempts)	58
4.3	Illustration of positive and negative DC offset of the EMG channels.	59
4.4	Illustration of initial stage of spikes detection and DC offset. DC offset is represented by the 0 Hz frequency and it is denoted by black dot on the graph	60
4.5	Overview of the algorithm of the filtering system.	62
4.6	The erratic (surrounding) frequencies. This is due to the fluctua- tion of utility frequency.	62
4.7	TD features have strong positive influence to the PC1 which has approximately 30% variation of the signal in all channels. AR features have both positive and negative influence to the PC2	66
4.8	Development procedure of the classification models	67
4.9	Variation of model performances (mTRP) when the training pro- cess is iterated ten times	68
4.10	Illustration of sub-windowing of the main window	70
4.11	Illustration of sub-window of 50ms length	71
4.12	Training analysis of the sub-windows. mTPR is presented in the y-axis. This figure shows the training accuracy of each model	72
4.13	mTPR comparison of three networks with different learning rates	75
4.14	mTPR comparison of different feature groups (without the demo- graphic features) and different hidden layer neurons	76

4.15	mTPR comparison of different feature groups with demographic	
	features and different hidden layer neurons \hdots	77
4.16	Performance improvement of different feature groups and different	
	neuron configurations.	77
4.17	The trend analysis of the TD group. The regression equation is noted at the top of the figure. Other necessary statistical informa-	
	tion are mentioned within the figure.	78
4.18	Double HL analysis of TD features	79
4.19	The surrogate function of two variables (LR and MC). The algo-	
	rithm is searching for the minimum point on the surrogate mean	0.0
	surface (red surface)	82
4.20	Optimized neural network architecture	83
4.21	The feature groups performances on the conventional classifiers.	
	The demographic features are not considered	84
4.22	The performance of the feature groups with demographic features	
	on the conventional classifiers	84
4.23	The mTPR increment due to the demographic features	85
4.24	The real-time object detection. The respective confidence score is	
	also presented	86
5.1	Hybrid system overview.	92
6.1	(a) Eye-in-hand camera setup for real-time experiments. (b) Nor-	
	mal or the rest position of the simulated hand	99
6.2	Simulated grasping pattern.	100

6.3	V-rep simulates the lateral grasp. (a)v-rep simulation with the camera feedback (left window). (b) The isometric view of the ex-
	periment. (c) Plan view of the experiment
6.4	Examples of the prediction errors of Lateral grasp when no fusion was utilized. The object used was the cup
6.5	Model computation time for different hidden layer configurations . 103
6.6	Model computation time for different hidden layer configurations [10]104
6.7	Examples of the prediction errors of lateral grasp when no fusion was utilized. The object used was the cup
G.1	(a) Second stage filter. (b) Bandpass filtering
H.1	Trend analysis of HL-2 neuron configuration
J.1	 (a) The model architecture of YOLO (b) The model architecture of ResNet (featurized image pyramid). (image is adapted from, <i>Lil'Log</i> [11])
J.2	The overview of the YOLO algorithm. It devide the image into grids and predict the object presence in each grid simultaneously while detecting the locations [10]

2.1	Merits of three major feature domains $[12]$	26
2.22.3	Summary of offline and real-time grasping pattern classification. Here only mention the highest performed classifiers only. [HG- Hand Gesture; HC-Hand Close; HO-Hand Open; R-rest; IFP- Index Finger Pinch; MFP-Middle Finger Pinch; KG-Key Grip; CG-Chuck Grip; LG-Lateral Grip; PG-Power Grip; PH-Point; PD- Precision Disk; P2F- Prismatic-2 Finger; P4F- Prismatic-4 Fin- ger, UP-ulnar Pinch] [ECOC–Error Correcting Output Codes; NB- Naive Bayes; ESN-Echo state network]	30
0.1		
3.1	Selected Muscle for sEMG Extraction	41
3.2	Details of the participants	42
4.1	Feature groups selected for the investigation	63
4.2	Sub-window Analysis	71

4.3	Parameter sets of the ANN structure for the Grid search method.	
	HL- Hidden Layer	74
4.4	Hyperparameter of the Learning rate for the Grid search method .	74
4.5	Number of Neurons in each hidden layer	78
4.6	summary of the trend analysis	79
4.7	The parameters of the Bayesian optimizer	81
4.8	Optimized hidden layer neuron count. The bold numbers repre-	
	sents the optimized variable	81
4.9	Optimized hyperparameters	82
4.10	Optimized hyperparameters of the TD feature-models without de- mographic features. TD-model without demographic features pro-	
	duced the highest mTPR	83
4.11	Optimized hyperparameters for the conventional classifiers	83
4.12	Optimized hyperparameters of the TD feature-models with demo-	
	graphic features. TD-model with demographic features produced	
	the highest mTPR	85
4.13	5-point Likert scale parameters	88
4.14	Optimum testing results of ANN, LDA, Knn, NB and DT for each grasping pattern. The best feature group was TD with demo-	
	graphic factors	91
6.1	Online performance of EMG classification without the fusion sys-	
	tem . The mean of the six trials were tabulated with respective	102
	standard deviations.	102

6.2	Complete fusion system online performances. The mean of the 6	
	trials were tabulated with respective standard deviations	105
A.1	Eigen analysis of the principal components	131
A.2	Eigenvector correspond to the each muscle in each principal com- ponent	131
B.1	Normalized onset distance data of 5-participants (pilot test)	132
B.2	Pooled SD (every grasping pair) of normalized onset distance data of 5-participants (pilot test)	132
B.3	Absolute difference (every mean grasping pairs) of normalized on- set distance data of 5-participants (pilot test)	132
B.4	RMS data of 5-participants (pilot test)	133
B.5	Pooled SD (every grasping pair) of RMS data of 5-participants (pilot test).	133
B.6	Absolute difference (every mean grasping pair) of RMS data of 5-participants (pilot test).	133
C.1	ANOVA GLM table of the RMS study. The <i>gender</i> effect has no significant relashionship with the RMS. Hence the a error was produced at the analysis	134
D.1	ANOVA GLM table of the onset study	135
E.1	IIR single notch filter parameters	136
E.2	IIR Butterworth bandpass filter parameters	136

F.1	Pilot test results of 6 participants. Sample size was calculated for	
	given Margin of Error (MOE) and Standard Deviation (StDev)	137
F.2	Derived conditional probability matrix	137
H.1	Parameters and the hyperparameters of selected neural networks .	139
I.1	Optimized results of the conventional classifiers. Feature groups	
	with the demographic features	141
I.2	Optimized results of the conventional classifiers. Feature groups	
	without demographic features	141

ABBREVIATIONS

\mathbf{AC}	Alternative Current
ADL	Activities of Daily Living
ANN	Artificial Neural Network
\mathbf{AR}	Autoregressive Coefficient
BDE	Binary Differential Evolution
BF	Bayesian Fusion
BPSO	Binary Particle Swarm Optimization
CART	Classification and Regression Trees
CNN	Convolutional Neural Network
COG	Center Of Gravity
\mathbf{CVS}	Cognitive Vision System
DNN	Deep Neural Network
DSOD	Deeply Supervised Object Detectors
DSSD	Deconvolutional Single Shot Detector
DT	Decision Tree
DV	Dependent Variables
ECG	Electroencephalography
EEG	Electroencephalography
EMG	Electromyography
FCNN	Fuzzy Clustering Neural Network
\mathbf{FD}	Frequency Domain
F-RCNN	Faster Region-based Convolutional Neural Networks
GLM	General Linear Model
HD-EMG	High Density Electromyography
HL	Hidden Layer

HMM	Hidden Markov Model		
\mathbf{HSV}	Hue Saturation Value		
iEMG	intramuscular Electromyography		
IV	Independent Variables		
IMU	Inertia Measurement Unit		
KNN	K-Nearest Neighbor		
LDA	Linear Discriminant Analysis		
\mathbf{LR}	Learning Rate		
\mathbf{mAP}	mean Average Precision		
MAV	Mean Absolute Value		
MBTGA	Modified Binary Tree Growth Algorithm		
\mathbf{MC}	Metacarpals		
\mathbf{MC}	Momentum Constant		
MLP	Multi-layer Perceptron		
MMG	Mechanomyography		
mTPR	mean True Positive Rate		
\mathbf{MV}	Majority Vote		
NB	Naive Bayes		
NCS	Nerve Conduction Study		
NOD	Normalized Onset Distance		
non-PR	non-Pattern Recognition		
PBPSO	Personal Best Guide Binary Particle Swarm Optimization		
PCA	Principle Component Analysis		
\mathbf{PR}	Pattern Recognition		
PSO	Particle Swarm Optimization		
RGB	Red Green Blue		
\mathbf{RMS}	Root Mean Square		
ROI	Region Of Interest		
RTG	Reach-To-Grasp		
\mathbf{SD}	Standard Deviation		
\mathbf{SFS}	Sequential Forward Selection		
SOM	Self-Organizing Map		

\mathbf{SSC}	Sign Slope Change
\mathbf{SVM}	Support Vector Machine
TD	Time Domain
TDAR	Time Domain Autoregressive Coefficients
TD-AR	Time Domain-Autoregression
\mathbf{TFD}	Time-Frequency Domain
WAMP	Willison Amplitude
\mathbf{WL}	Waveform length
YOLO	You Only Look Once
\mathbf{ZC}	Zero Crossing