
DEVELOPMENT OF CONDUCTIVE POLYMER

BASED TACTILE SENSORS FOR WEARABLE

BIO-MEDICAL DEVICES

W.H.P. Sampath

168073T

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

March 2021



DEVELOPMENT OF CONDUCTIVE POLYMER

BASED TACTILE SENSORS FOR WEARABLE

BIO-MEDICAL DEVICES

Walgama Hewage Peshan Sampath

168073T

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

March 2021



DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

The above candidate has carried out research for the MSc thesis under my supervision.

Signature of the Supervisor(s): Date:

Prof. Y.W.R. Amarasinghe

Prof. D.V. Dao

Prof. A. Mitani

i



Abstract

Tactile sensors are devices which acquire data from the physical world through sense of touch.
These acquired data may be related to either, surface roughness, texture, force, or any other
tactile parameter. Even though, tactile sensor systems are identified as a feasible method to
acquire force feedback in robotics and automation systems, due to the requirement of physical
interaction between the sensor and application, development of tactile sensors does not come
to the spotlight during the past decades. Rather, researchers were more focused on developing
non-contact sensors for various sensing modalities when comparing with the tactile sensors.
Currently, importance of tactile sensors has come to the spotlight, as development of robotics,
automation and biomedical applications are limited due to lack of tactile feedback. Also, many
application areas are identified, where tactile sensors can be incorporated such as robotics,
industrial automation, biomedical imaging, biomedical robotics, etc.

With the recent advancements of the medical industry, wearable devices are used to support
in controlling long-term or repetitive diseases or a disease that comes with time (i.e. chronic
diseases) such as heart related diseases, diabetes and asthma by providing information on vital
signs. Those vital signs can be heart rate, blood pressure, temperature in the body, blood oxygen
level, etc. Other than that wearable biomedical devices are capable of producing smart and
intelligent patient monitoring required for several diseases that capable of providing real-time
feedback and assist in clinical based decision making. Tactile sensors are useful in measuring
and monitoring point based and an area based force/pressure values in biomedical industry.

Under this research, a novel tactile sensor has been developed using a conductive polymer-based
sensing element. The incorporated sensing element is manufactured by polymer compression
moulding, where the compound is based on silicone rubber and has enhancements by silica and
carbon black, with Silane-69 as the coupling agent. Characteristics of the sensing element have
been observed using its sensitivity and range.

For the force scaling purpose and point based force/pressure measuring, a novel 3D printed
cylindrical arch spring structure was developed for this highly customizable tactile sensor by
adopting commonly available ABSplus material in 3D printing technology. By considering
critical dimensions of the structure, finite element analysis was carried out to achieve nearly
optimized results. A special electrical routing arrangement was also designed to reduce the
routing complexities. A microcontroller based signal conditioning circuit was introduced to the
system for the purpose of acquiring data. The concept was further improved to use as a tactile
sensor array and hence a 3-DoF tactile sensor with a 3D printed square type spring system was
also developed in this research.

Under this research, a flexible conductive polymer based sensor that consists of a flexible
electrodes sewn on a garment using conductive yarns, also developed. The flexible tactile sensor
has been incorporated into a knee brace and tested for its performances of monitoring forces
generated at the patella of the knee. The developed sensor attached knee brace is capable of
differentiating human activities and posses.

Keywords- wearables, conductive polymer, tactile sensor, spring structures, 3D printing,
knee brace
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