COILING AND DEPLOYMENT MECHANICS OF TAPE-SPRINGS

H.H.N.D. Haggalla

208024T

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

December 2021

DECLARATION

I hereby witness that this thesis represents my original research work conducted after registration for the degree of MSc at Department of Civil Engineering, University of Moratuwa. It has not been submitted elsewhere or for any degree or diploma and the collaborative contributions and previous work related to current study have been stated and properly acknowledged.

Also, I hereby grant non-exclusive right to University of Moratuwa and its agents to archive and make accessible this dissertation, in whole or in part in print electronic or other medium. However, I (H.H.N.D. Haggalla) retain all the ownership to use this content in whole or part in publications (Article/ Book).

Signature: UOM Verified Signature

Date: 15/12/2021

The above candidate has carried out research for the Masters under my supervision

Name of the supervisor: Dr. H.M.Y.C. Mallikarachchi

Signature of the supervisor:

UOM Verified Signature

Date: 15/12/2021

ABSTRACT

Recent advances in space exploration call for smaller space structures that can be reconfigured to achieve large surfaces when in operation. Compact, lightweight structures that can be folded or coiled up for launch have been made possible thanks to self-deployable booms. These can then be self-deployed in orbit to support a variety of small spacecraft systems. However, prior understanding of deployment behaviour is important before launch. This study focuses on model reduction techniques in predicting the deployment behaviour of coiled long-narrow thin shells known as tape springs. Coiling, stowage, and deployment stages that demonstrate considerable crosssection deformation of the tape-spring are discussed. The developed numerical benchmarking model well agrees with the theoretical framework that has previously been established in terms of deployment time and stored strain energy. This numerical model has further been used in a stage-wise development of a beam-shell hybrid model. The effect of varying hub radius is introduced to the existing theoretical framework to predict the coiling and deployment behaviour more accurately.

DEDICATION

"When twilight drops her curtain down - And pins it with a star Remember that you have a friend - Though she may wander far."

- L.M. Montgomery

(1874-1942)

To my dearest friends,

Asitha, Kasun, Isuri, and Gayan,

Thank you.

I wouldn't have made it this far without you.

ACKNOWLEDGEMENT

My heartiest gratitude to Dr. H.M.Y.C. Mallikarachchi and Prof. W.P.S. Dias for the consistent supervision and resources that were given to me throughout this research and providing me the best exposure.

My heartiest thanks to Professor Simon Guest for the immense guidance and direction given to me on progressing through the research. Also, many thanks to all the other respective lecturers for assessing me during the research and for advising me on areas of improvement.

Special thanks to the Deployable structures research group for giving me motivation and guidance throughout the research.

Finally, I would like to convey my heartiest gratitude and respect to my dear parents who were always behind me giving me great strength and support and all my friends who have assisted me in many ways for the successful completion of this research.

H.H.N.D. Haggalla

Department of civil engineering

University of Moratuwa

TABLE OF CONTENTS

DECLAR	i i
ABSTRA	ii
DEDICA	TIONiii
ACKNOV	WLEDGEMENT iv
TABLE (OF CONTENTSv
LIST OF	FIGURES
LIST OF	TABLES xii
LIST OF	ABBREVIATIONS xiii
1. Intro	oduction1
1.1	General1
1.2	Cross-section deformations of booms
1.3	Thesis background4
1.4	Scope of the research
1.5	Aims and objectives
1.6	Methodology7
1.7	Outcomes and significance of the research7
1.8	Arrangement of the thesis
2. Liter	rature review

2.1	Introduction	9
2.1	.1.1 Folding mechanics of tape springs	9
2.1	.1.2 Coiling mechanics of tape springs	
2.1	.1.3 Change in curvature in tape springs during coiling	
2.1	.1.4 Stress distribution of tape springs during coiling	
2.1	.1.5 Experimental study of coiling with respect to tension force	
2.	.1.6 Numerical study of coiling with respect to tension force	
2.2	Theoretical framework for deployment $(\lambda_0=0)$	
2.3	Theoretical study ($\lambda_0 > 0$)	
2.4	Stored strain energy	
2.5	Numerical modelling techniques	
2.6	Summary of the chapter	
3. M	1ethodology	
3.1	Benchmarking model and simulation conditions	
3.2	Challenges in simulating coiling behaviour	
3.3	Ploy region	
3.3	.3.1 Locations and lengths of shell elements	
3.4	Beam-Shell hybrid model – Stage 01	
3.5	Flowchart for import analysis	
3.6	Beam-Shell hybrid model – Stage 02	45

3	3.7	Sur	nmary of the chapter	47
4.	Re	esults		48
۷	4.1	The	eoretical results	48
	4.	1.1	Variation of effective coiling radius	48
	4.	1.2	Variation of tension force	51
2	4.2	Nu	merical results (benchmarking model)	54
	4.2	2.1	Effect of varying coiling radius	55
	4.2	2.2	Effects from initial unspooled length	56
2	4.3	Va	riation of curvature	57
	4.3	3.1	Transverse curvature	57
	4.3	3.2	Longitudinal curvature	59
۷	1.4	Stre	ess distribution	60
	4.4	4.1	Transverse stress distribution	61
	4.4	4.2	Longitudinal stress distribution	62
2	4.5	Ene	ergy variation of the model	63
۷	4.6	Nu	merical results (Beam-shell hybrid model)	65
2	4.7	Co	mputational time of the analyses	66
2	4.8	Sur	nmary of the Chapter	68
5.	Co	onclu	sions and recommendation	69
6.	Re	eferen	ices	72

LIST OF FIGURES

Figure 1.1: Main and subclasses of booms
Figure 1.2: Geometry of tape springs
Figure 1.3: Three main regions of cross-section deformation of tape springs during coiling
Figure 1.4: Idealized beam-shell hybrid model5
Figure 1.5: Flowchart for the proposed methodology7
Figure 2.1: (a) Opposite and (b) equal sense bending9
Figure 2.2: Moment-rotation relationship of folding of tape springs (Seffen, 1999)9
Figure 2.3: Three main regions in coiling of tape springs with respect to coiling ratio (Wilson, 2017)
Figure 2.4: The curvature changes in a tape spring due to equal and opposite moments M applied. The (+) sign convention for T , r , u is shown (Wilson et al., 2020)11
Figure 2.5: (a) A tape spring coiled around a spool (b) when partially uncoiled, creates localized folds stabilized by a (c) tension force or (d) radial springs (Wilson, 2017)13
Figure 2.6: (a) Undeformed; (b) longitudinal bending and flattening; (c) transverse load application of the section (Wilson et al., 2020)14
Figure 2.7: Experimental setup where the tape spring is enclosed around a cylinder (Wilson et al., 2020)
Figure 2.8: Photographs of the experiment (a-f) where a steel tape spring is enclosed
around a steel cylinder and its corresponding averaged force profile vs. extension plot
(over three repeated experiments) (Wilson et al., 2020)17

Figure 2.9: (a) By introducing the displacements $u_{x,fold}$, $u_{y,fold}$ two folds are created wi	ith
the use of temporary cylinders which are later removed for cases (b) for $r c / R > 3$ and ((c)
for $r_c/R < 3$. Later a displacement of u_x is applied (Wilson et al., 2020)	18

Figure 2.10: The graph of force against extension obtained from coiling simulation and its corresponding photographs of the simulation at points (a)–(f) (Wilson et al., 2020).....19

Figure 3.2: Mesh details and part geometry defined in the tape spring......33

Figure 3.5: Assembly of the hybrid model for stage 0140
Figure 3.6: Different methods available in Abaqus to define beam sections
Figure 3.7: Different techniques available to ensure moment transfer between shell-beam interface
Figure 3.8: MPC beam constraint used at the shell-beam transition
Figure 3.9: Flow chart for the import analysis
Figure 3.10: Assembly of the hybrid model for stage 0245
Figure 3.11: Constraint conditions used in the hybrid model – Stage 0246
Figure 4.1: λ vs. deployment time when the effective coiling radius is equal to the (a) hub radius (12.7 mm), (b) final coiling radius (13.27 mm) and, (c) effective coiling radius calculated using the modified equation
Figure 4.2: Variation of effective hub radius with respect to time
Figure 4.3: λ vs. tension force in the bending dominated-region
Figure 4.4: λ vs. tension force in the tension dominated-region
Figure 4.5: Coiling of tape-spring during the time steps, $t = (a) 2 s$, $(b) 7 s$, $(c) 10 s$, $(d)14 s$, $(e) 17 s$, and $(f) 20 s$
Figure 4.6: Deployment of tape-spring during the first 0.12 seconds
Figure 4.7: Variation of unspooled length with respect to deployment time obtained for FE simulation and the theoretical equation (Seffen, 1999)
Figure 4.8: Variation of unspooled length with respect to deployment time obtained for FE simulation and the modified equation
Figure 4.9: Variation of unspooled length with respect to deployment time when an initial unspooled length is present for modified equation and FE results

Figure 4.10: Variation of transverse curvature obtained from Abaqus
Figure 4.11: Transverse curvature vs. non-dimensional transverse coordinate (z measured in the transversal direction)
Figure 4.12: Variation of longitudinal curvature obtained from Abaqus
Figure 4.13: Longitudinal curvature vs. true distance measured along the centerline of the tape spring in the longitudinal direction
Figure 4.14: Transverse (σ_{11}) and Longitudinal stress (σ_{22}) directions of the tape spring
Figure 4.15: Transverse stress (σ_{11}) of the bottom surface obtained from the numerical model vs. non-dimensional transverse coordinate (z measured in the transversal direction)
Figure 4.16: Transverse stress (σ_{22}) of the bottom surface obtained from the numerical model vs. non-dimensional transverse coordinate (z measured in the transversal direction)
Figure 4.17: Longitudinal stress (σ_{22}) of the bottom surface obtained from the numerical model vs. true length along the centreline in the longitudinal direction
Figure 4.18: Variation of Kinetic energy Strain energy and Total energy (energy balance) in the explicit simulation
Figure 4.19: Resultant coiling simulation of the hybrid model – Stage 0165
Figure 4.20: Resultant coiling simulation of the hybrid model – Stage 0265

LIST OF TABLES

Table 3.1: Parameters used in the numerical model (Seffen, 1999)	32
Table 3.2: Loads and boundary conditions activated in the model	33
Table 3.3: Loads and boundary conditions activated in stage 01 of the hybrid model	44
Table 3.4: Loads and boundary conditions activated in stage 02 of the hybrid model	47
Table 4.1: Summary of information on computational efficiency of the analyses	56
Table 4.2: Comparison of stable time increments in the beam-shell hybrid model	67

LIST OF ABBREVIATIONS

- STEM Storable Tubular Extendible Member booms
- CTM Collapsible Tubular Masts
- TRAC Tubular Rollable, and Coilable booms
- STACER Spiral Tube and Actuator for Controlled Extension and Retraction

SIMPLE - Self-contained Linear Meter-class deployable

- 1D One dimensional
- 2D Two dimensional
- MATLAB MATrix LABoratory
- MPC Model Predictive Control
- CAE Complete Abaqus Environment
- FE Finite Element
- FEM Finite Element Method
- BeCu Beryllium Copper

S4R - 4 node general-purpose shell, reduced integration with hourglass control, finite membrane strains

B31 - 2 node linear generalized beam