DEVELOPMENT OF A MATHEMATICAL MODEL TO RELATE THE AGEING PARAMETERS TO HARDNESS AND TENSILE STRENGTH OF AL 6063 ALLOY

Selvarathinam Sivanujan

218010G

Master of Science (Major Component of Research)

Department of Materials Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > August 2023

DEVELOPMENT OF A MATHEMATICAL MODEL TO RELATE THE AGEING PARAMETERS TO HARDNESS AND TENSILE STRENGTH OF AL 6063 ALLOY

Selvarathinam Sivanujan

218010G

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science (Major Component of Research)

Department of Materials Science and Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > August 2023

DECLARATION

I declare that this is my own work and this Thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: • UOM Verified Signature

Date: 30/08/2023

The above candidate has carried out research for the Master of Science (Major Component of Research) Thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Dr. GIP De Silva

Signature of the Supervisor:

Date: 30/08/2023

UOM Verified Signature

ii

ACKNOWLEDGEMENT

This work is not achieved only by myself, there are support of individuals and groups, even though a word was a strength towards full filling my research objectives. I wish to acknowledge all of them who helped me in completing this work successfully. First and foremost, I would like to express my heartiest gratitude with respect to my supervisor Dr. G.I.P. De Silva. He provided me with a great opportunity to join with this research project and has given all the direction, encouragement and guidance to achieve the goal throughout the entire period to accomplish my objectives. His constructive feedback and advice from the start to end improved my research ability and professional skills.

I would like to express my deepest gratitude to Dr. (Mrs.) S.C. Mathugama from Institute of Technology University of Moratuwa for her guidance and support in the objective of development of mathematical model. Also, I would like to thank Prof. M. Narayana and Prof. A.S. Galhenage for their immense support and academic encouragements throughout the evaluation procedure. Next, I would like to thank SRC grant committee for the funding assistance and Alumex for providing Al 6063 samples for research works.

Further, I would like to thank Mr. V. Sivahar/ Head of Department, all academic and nonacademic staff of department of materials science and engineering, University of Moratuwa for supporting me to conduct my research works in a better academic environment. Also, I would like to thank all of my fellow research assistants who were always there with me providing me a friendly and smooth platform to carry out this research project in a successful manner. Lastly, I convey my love and gratitude to my parents for their constant support in the every moment of my life.

iv

ABSTRACT

Deformations, failures, and the wearing-off effect are common in Al 6063 structures due to their low strength and hardness, respectively. Industries have age-hardened Al 6063 alloy to improve its properties to a specified level depending on the components being produced. Industries do trials before production and check to see if the product has achieved its required levels of properties. This trial-and-error method is time-consuming, and further, it is not acceptable from an engineering perspective. For this reason, industries are looking for a model that will provide an accurate prediction of the hardness and tensile strength for the parameters associated with aging.

In this research, a mathematical model was developed to predict the most efficient combination of aging parameters to achieve the required tensile strength and hardness of Al 6063. The model was developed based on the experimental tensile strength and hardness values for the 25 combinations obtained by varying aging time and temperature at five levels. Tensile strength and hardness were measured using the universal tensile testing machine and the Vickers hardness tester, respectively. Further, the model was developed using the SPSS statistical software and validated with data sets obtained from the literature. For the purpose of finding the most efficient combination of tensile strength and hardness, the model was developed as a computer program based on the Python programming language.

In addition to the development of the model, the influence of precipitate size distribution on the tensile strength and hardness variation of Al 6063 alloy with aging temperature and time was investigated. Micro-structures were observed, and precipitate types were identified using a scanning electron microscope and an energy dispersive spectrometer (SEM/EDS). The precipitate size distribution was determined based on SEM images using MIPAR image analysis software. Beyond the peak age stage, a significant increase in the percentage of precipitates larger than 1.5 μ m and a decrease in the percentage of precipitates smaller than 0.75 μ m were accompanied by a decrease in tensile strength and hardness.

Keywords: aluminum 6063, age hardening, hardness, tensile strength, precipitate size distribution, mathematical modeling

vi

TABLE OF CONTENTS

De	clarat	ion of th	e Candidate & Supervisor	i
Ac	know	ledgeme	ent	iii
At	stract			v
Ta	ble of	Content	S	vii
Lis	st of F	igures		xi
Lis	st of T	ables		XV
Lis	st of A	bbrevia	tions	XV
Lis	st of A	ppendic	ces	xix
1	Intro	duction		1
	1.1	Resear	ch problem	2
	1.2	Resear	ch Background	2
	1.3	Signifi	cance of Research	3
	1.4	Object	ives	3
	1.5	Scope	of the Thesis	4
2	Liter	ature Su	irvey	5
	2.1	Backgr	ound of age hardening	5
	2.2	Homog	genisation during the production	6
	2.3	Age ha	rdening	7
		2.3.1	Solution treatment	7
		2.3.2	Quenching	8
		2.3.3	Aging treatment	9
		2.3.4	Etching methods	10
		2.3.5	Effect of other treatment before the aging	11
		2.3.6	Precipitation during aging	11
		2.3.7	Strengthening during aging	12
	2.4	Effect	of aging parameters on micro-structure and mechanical properties	15
	2.5	Previou	as models related to age hardening	17

	2.6	Statist	ical methods for data analysis	20
	2.7	Summ	ary of literature survey	21
3	Metl	nodolog	У	23
	3.1	Chemi	ical Analysis	23
	3.2	Sampl	e Preparation	24
	3.3	Experi	imental Trail	25
	3.4	Heat T	Treatment – Solution Treatment, Quenching and Aging	27
	3.5	Measu	ring hardness and tensile strength for each sample	28
	3.6	Micro	-structure Analysis with SEM/EDS	29
	3.7	Precip	itate Size Distribution Analysis with MIPAR Software	31
	3.8	Mathe	matical Model: Aging Parameters and Mechanical Properties	32
4	Resi	ilts and	Discussion	35
	4.1	Experi	imental trail results	35
	4.2	Variati	ion of mechanical properties with aging parameters	37
	4.3	Micros	structural analysis and identification of precipitates	39
	4.4	Influer	nce of precipitate size distribution on the variation of mechanical	
		proper	ties	42
		4.4.1	Percentages of precipitates within specific ranges	42
		4.4.2	Mean precipitate size within specific ranges	45
	4.5	Develo	opment of a Mathematical Model	46
		4.5.1	Tests of assumptions	46
		4.5.2	One-factor ANOVA	48
		4.5.3	Two-factor ANOVA without and with interaction	49
		4.5.4	Correlation between hardness and tensile strength	50
		4.5.5	MANOVA, including the interaction effect	51
		4.5.6	Model 1: A mixed model for strength and hardness	54
		4.5.7	Model 2: A model by regression equation	55
	4.6	Valida	tion of mathematical model	57
		4.6.1	Validation of model based on the predictions for aging param-	
			eters	57
		4.6.2	Validation of model based on literature results	58

4.7	Implen	nentation and limitations of the model	59
	4.7.1	Implement the model for the application	59
	4.7.2	Limitations during the application	60
5 Conc	lusions	and Recommendations	61
Referenc	es		63
Appendi	x A Di	rawing of specimen used for the tensile testing	71
Appendi	x B Th	e variation of Precipitate Size Distribution and Mechanical Prop-	
erties	against	t Aging Parameters	73
Appendi	x C Re	esults of One factor ANOVA	75
Appendi	x D Re	esults of two factor ANOVA	77
Appendi	x E Tl	he results of "Tests of Between-Subjects Effects" from 'Two-	
way]	MANO	VA'	79
Appendix	x F Re	esults of fixed effects from mixed model	81

LIST OF FIGURES

Figure Description

Page

Figure 1.1	Significance of research	3
Figure 2.1	A pseudo-binary diagram of Al-Mg ₂ Si	8
Figure 2.2	Hardness after artificially aged against cooling rate	9
Figure 2.3	Image of equilibrium structure to solid solution to precipitates	10
Figure 2.4	HRTEM images of cryorolled Al 6063 after the aging	12
Figure 2.5	Net Aging Strength Curve	13
Figure 2.6	Dislocation cutting through the particle	14
Figure 2.7	Dislocation interacts with widely spaced particles	14
Figure 2.8	(a) A systematic graphic illustrating dislocation movement by shearing	
	or bypassing; (b) A correlation between the radius of the precipitate	
	and its strength to resist shearing or bypassing of dislocations	15
Figure 2.9	DSC plot of solution treated Al 6063 alloy samples at a heating rate of	
	20 °C/min	16
Figure 2.10	Comparison of the Deschamps and Brechet's model predicted (a) pre-	
	cipitate radius with Small Angle Scattering and TEM data, (b) yield	
	stress with micro-hardness data	18
Figure 2.11	Comparison between observed and Myhr et al.'s model predicted (a)	
	mean particle radius, (b) hardness of Al 6005 alloy	18
Figure 2.12	Prediction of yield strength by AMAP model for different aging tem-	
	peratures and alloy composition	20
Figure 3.1	Flow chart of the methodology	23
Figure 3.2	Initial cutting of disc shape with thickness of 14 mm and 10 mm from	
	the billet	24
Figure 3.3	VERTEX Precision Machine Tool's 7" cutting band saw	25
Figure 3.4	Dumbbell-shaped sample used for tensile testing	25
Figure 3.5	Heat treatment process of Treatment 4	26
Figure 3.6	Heat Treatment Process; T – Temperature for Solution Treatment (540	
	°C), T_x – Aging Temperature to be varied, t_s – Holding Time for Solu-	
	tion Treatment (90 mins) and t_x – aging time to be varied	27
Figure 3.7	A furnace used during Solution treatment	27
Figure 3.8	ISOMET Slow Speed Saw	29
Figure 3.9	OSK Vickers Hardness Testing Machine	29
Figure 3.10	Measuring hardness	30

Figure 3.11	User interface of universal testing machine with metallic material-	
	tensile testing while testing the specimen of combination 23 (Aging	
	Temperature 210 °C and Aging Time 360 minutes)	30
Figure 3.12	Stress-Strain Curve of Combination 23 (Aging Temperature 210 °C	
	and Aging Time 360 minutes)	31
Figure 3.13	A graphical representation of the equivalent and minimum diameters	32
Figure 3.14	Analytical methods	32
Figure 3.15	Interface of SPSS software with input data	33
Figure 3.16	Interface of Minitab software	33
Figure 4.1	SEM images with precipitate for the Experimental Trial	36
Figure 4.2	SEM images with etchants; (a) Etchant 1: A solution containing 25 ml	
	of methanol, 25 ml of HNO ₃ , 25 ml of HCl and one drop of HF (b)	
	Etchant 2: Keller's solution (1.0 ml HF, 1.5 ml HCl, 2.5 ml HNO ₃ , and	
	95.0 ml distilled water)	36
Figure 4.3	EDS Spot analysis on side by side Precipitates	37
Figure 4.4	(a) EDS Spot Analysis Inside and Outside of Precipitate and (b) EDS	
	Line Analysis though precipitate and matrix	37
Figure 4.5	Tensile strength against aging temperatures for different aging times	38
Figure 4.6	Hardness against aging temperatures for different aging times	39
Figure 4.7	SEM images for the aging times of (a) 225 minutes (before peak age),	
	(b) 360 minutes (after peak age) and (c) 315 minutes (peak age) at 210° C	40
Figure 4.8	SEM images of aging at (a) 190 (Near Peak Age) and (b) 230 (Peak	
	Age) for 315 minutes	41
Figure 4.9	SEM/EDS spot analysis (a) inside and (b) outside of formed precipitate	
	for the aging combination of (170°C, 270 minutes)	42
Figure 4.10	SEM/EDS spot analysis (a) inside and (b) outside of formed precipitate	
	for the aging combination of (210°C, 270 minutes)	42
Figure 4.11	Precipitate size percentages within specific ranges for different aging	
	temperatures for the aging times of (a) 180 min, (b) 225 min, (c) 270	
	min, (d) 315 min, and (e) 360 min)	43
Figure 4.12	The results from boxplots	46
Figure 4.13	Test of normality with Shapiro-Wilk	47
Figure 4.14	Box's M Test: aging (a) temperature and (b) time	47
Figure 4.15	Scatter plots for strength and hardness by aging (a) time and (b) tem-	
	perature	47
Figure 4.16	Collinearity statistics of (a) Hardness and (b) Tensile strength	48
Figure 4.17	The results of one-factor ANOVA for the effect of aging temperature	
	on tensile strength.	49
Figure 4.18	The results of one-factor ANOVA for the effect of aging time on tensile	
	strength.	49

Figure 4.19	Ageing time, temperature, and the effect of their interaction on (a) ten-	
	sile strength and (b) hardness were studied using a two-factor ANOVA	50
Figure 4.20	Correlation between "hardness" and "tensile strength"	51
Figure 4.21	The results of "Multivariate Tests" from 'Two-way MANOVA'	51
Figure 4.22	Scatter plots for the model: Intercept + Aging Temperature + Aging	
	Time + Aging Temperature * Aging Time	53
Figure 4.23	Analysis of variance for the regression equation of (a) hardness and (b)	
	tensile strength	56
Figure 4.24	Comparing the actual values from experimental and predicted values	
	from the mixed model (1) and categorical predictor model (2) for (a)	
	tensile strength and (b) hardness	57
Figure 4.25	Comparing the predicted values from the both Models with the data sets	
	obtained from the literature	59
Figure 4.26	Finding the best combination with Python based model	60

xiv

LIST OF TABLES

Table Description Page 1 Table 1.1 Aluminum alloy series, their major alloying elements and hardenability Table 2.1 Summary of solution treatment and quenching prior to age hardening 7 used by previous researchers. Table 3.1 Chemical composition of Al 6063 alloy obtained from the local indus-23 try and in accordance with standard Table 3.2 28 Varying combinations of aging parameters 34 Table 3.3 Assumption for ANOVA and MANOVA and their testing methods Table 4.1 Results obtained during the experimental trial 35 Table 4.2 Percentages of precipitates based on sizes for aging times of 225, 315, 39 and 360 min at 210 °C Table 4.3 Element weight ratio of Fe- Si- rich precipitate 41 41 Table 4.4 Element weight ratio of Fe- Si- Mg- rich precipitate Table 4.5 Mean precipitate size (MPS) and percentage of precipitates (PP) within 45 R1 (< 0.75 μ m), R2 (0.75 to 1.5 μ m), and R3 (> 1.5 μ m) Table 4.6 Summary of results based on Two-way MANOVA's "Tests of Between-52 Subjects Effects" Table 4.7 Coefficients for combination (170 °C, 180 minutes) from 'parameter 53 estimates' of two-way MANOVA Table 4.8 Coefficients for combination (190 °C, 180 minutes) from 'parameter 54 estimates' of two-way MANOVA Coefficients of 2^{nd} order polynomial equations Table 4.9 54 Table 4.10 Regression equation terms and their coefficients for hardness and ten-55 sile strength Table 4.11 Aging combinations given in numbers in Figure 4.25 and data sets 58

xvi

LIST OF ABBREVIATIONS

Abbreviation Description

Analysis of Variance
Backscattered Electron Detectors
Differential Scanning Calorimetry
Energy Dispersive Spectroscopy
Finite Element Analysis
Neural Network
Response Surface Methodology
Scanning Electron Microscopy

LIST OF APPENDICES

Appendix	Description	Page
Appendix -A	Drawing of specimen used for the tensile testing	71
Appendix -B	The variation of Precipitate Size Distribution and Mechanical	
Properties ag	gainst Aging Parameters	73
Appendix -C	Results of One factor ANOVA	75
Appendix -D	Results of two factor ANOVA	77
Appendix -E	The results of "Tests of Between-Subjects Effects" from 'Two-	
way MANO	VA'	79
Appendix -F	Results of fixed effects from mixed model	81