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Abstract

As the depth of a neural network increases, the non-linearity and more parameters allow
it to learn more complex functions. While network deepening has been proven effective,
there is still an opportunity for efficient feature extraction within a layer that will
improve the overall performance for the complexity of the network. Widening networks
by adding more filters to each layer is the naive approach towards strengthening layer-
wise feature extraction. It is an inefficient scaling option, considering the number of
parameters being quadratic with the number of filters employed per layer. In contrast,
parallel extractors in each layer provide an efficient scaling option. However, without
context-dependent input allocation among these processes, such parallel computations
tend to learn similar features, collapsing to a single computation.

Thus, it is vital to study the parallel stacking of computations layer-wise and design
a routing method that allocates incoming feature maps to these computations. The
expected outcome is to group homogeneous feature maps in parallel layers and employ
exclusive filter sets to each of the groups (paths) so that the filter sets of each path can
specialize in extracting features exclusive to each group.

To allow the network input to be routed end-to-end over such parallel paths, we propose
data-dependent parallel resource allocation methods layer-wise. Given a layer of parallel
tensors, we first employ sub-networks that produce gating coefficients to weigh cross-
connections to the next layer of parallel tensors. Then, the next layer’s parallel tensors
are constructed by getting summations of the current layer’s tensors, each weighted
by the corresponding gating coefficient. We demonstrate that our multi-path networks
outperform previous widening and adaptive feature extraction, ensembles, and deeper
networks with comparable complexity using image recognition challenges.

To further regularize gating sub-networks, we think of a gating network’s path allocation
as a soft clustering of its input feature maps. Thus, we propose a neural mixture
model-based clustering objective to use as a regularization loss for the gating networks,
which We first study as a standalone neural network-based clustering approach. The
proposed clustering framework uses a neural network to learn cluster distributions
in mixture modeling instead of tuning human-defined distributions. We adopt the
Expectation-Maximization (EM) algorithm to train the network and perform batch-
wise EM iterations where the forward pass acts as the E-step and the backward pass
as the M-step. For image clustering, we use the mixture-based EM objective as the
clustering objective, along with consistency optimization. Our networks outperform
traditional and single-stage deep clustering methods that still depend on k-means.

Finally, we propose using this clustering objective to regulate gating networks to get
distributed gating activation patterns. We show that the skewed gating patterns can
be improved with such regularization loss as a local regularization. We further present
the need for a global regularization method that takes the end task performance into
account. We also suggest extending research towards sparse resource allocation, along
with gating networks to handle more diversity.

Keywords- Multi-Path Networks, Data-Dependent Routing, Deep Cluster-
ing, Neural Mixture Models
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