
Data-dependent Resource

Allocation and Routing in

Multi-path Neural Networks for

Vision-based Learning

M H G Dumindu Tissera

(188013F)

Thesis submitted in partial fulfillment of the requirements for the degree Doctor

of Philosophy

Department Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

September 2023

DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-

out acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowl-

edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to repro-

duce and distribute my dissertation, in whole or in part in print, electronic or

other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the PhD thesis under my su-

pervision.

Signature of the Supervisor(s): Date:

Dr. Ranga Rodrigo

i

2023/09/10

10 September 2023

Abstract

As the depth of a neural network increases, the non-linearity and more parameters allow
it to learn more complex functions. While network deepening has been proven effective,
there is still an opportunity for efficient feature extraction within a layer that will
improve the overall performance for the complexity of the network. Widening networks
by adding more filters to each layer is the naive approach towards strengthening layer-
wise feature extraction. It is an inefficient scaling option, considering the number of
parameters being quadratic with the number of filters employed per layer. In contrast,
parallel extractors in each layer provide an efficient scaling option. However, without
context-dependent input allocation among these processes, such parallel computations
tend to learn similar features, collapsing to a single computation.

Thus, it is vital to study the parallel stacking of computations layer-wise and design
a routing method that allocates incoming feature maps to these computations. The
expected outcome is to group homogeneous feature maps in parallel layers and employ
exclusive filter sets to each of the groups (paths) so that the filter sets of each path can
specialize in extracting features exclusive to each group.

To allow the network input to be routed end-to-end over such parallel paths, we propose
data-dependent parallel resource allocation methods layer-wise. Given a layer of parallel
tensors, we first employ sub-networks that produce gating coefficients to weigh cross-
connections to the next layer of parallel tensors. Then, the next layer’s parallel tensors
are constructed by getting summations of the current layer’s tensors, each weighted
by the corresponding gating coefficient. We demonstrate that our multi-path networks
outperform previous widening and adaptive feature extraction, ensembles, and deeper
networks with comparable complexity using image recognition challenges.

To further regularize gating sub-networks, we think of a gating network’s path allocation
as a soft clustering of its input feature maps. Thus, we propose a neural mixture
model-based clustering objective to use as a regularization loss for the gating networks,
which We first study as a standalone neural network-based clustering approach. The
proposed clustering framework uses a neural network to learn cluster distributions
in mixture modeling instead of tuning human-defined distributions. We adopt the
Expectation-Maximization (EM) algorithm to train the network and perform batch-
wise EM iterations where the forward pass acts as the E-step and the backward pass
as the M-step. For image clustering, we use the mixture-based EM objective as the
clustering objective, along with consistency optimization. Our networks outperform
traditional and single-stage deep clustering methods that still depend on k-means.

Finally, we propose using this clustering objective to regulate gating networks to get
distributed gating activation patterns. We show that the skewed gating patterns can
be improved with such regularization loss as a local regularization. We further present
the need for a global regularization method that takes the end task performance into
account. We also suggest extending research towards sparse resource allocation, along
with gating networks to handle more diversity.

Keywords- Multi-Path Networks, Data-Dependent Routing, Deep Cluster-
ing, Neural Mixture Models

ii

DEDICATION

To the resilient people of Sri Lanka,

who have faced the challenges of the country’s financial crisis with unwavering

determination and faith,

who continue to endure and strive for a better future for the nation.

This dissertation is a tribute to your strength and commitment to a brighter

tomorrow.

iii

ACKNOWLEDGMENTS

I would like to express my deep appreciation and gratitude to the following

individuals for their invaluable contributions to the completion of my Ph.D. thesis.

First and foremost, I would like to thank my adviser, Dr. Ranga Rodrigo,

for his unwavering support, guidance, and encouragement throughout my Ph.D.

studies. His expertise, insight, and mentorship have been invaluable to my aca-

demic and personal growth.

I also extend my gratitude to Dr. Subha Fernando for her technical support,

which has contributed significantly to the success of this research. Additionally,

I am grateful to Prof. Sanath Jayasena and Dr. Jayathu Samarawickrama for

their constructive suggestions and insightful comments, which have helped refine

and improve this thesis’s technical content.

I would like to acknowledge the generous support of CodeGen International

(PVT) Ltd and its CEO Dr. Harsha Subashinghe, who provided funding for this

research. I am grateful for their support, which has allowed me to pursue my

academic goals.

I would also like to thank Prof. Dileeka Dias, Prof. Sanath Jayasena, Dr.

Ranga Rodrigo, Dr. Subha Fernando, Dr. Jayathu Samarawickrama, Dr. Har-

sha Subhasinsghe, and CodeGen International (PVT) Ltd for their role in the

establishment of QBITS Lab at the University of Moratuwa and the Ph.D. pro-

gram.

I extend my sincere appreciation to Prof. Ruwan Udayanga and Dr. Pratha-

iv

pasinghe Dharmawansha, the Research Coordinators, for coordinating the pro-

gram and providing feedback on technical content. I am also indebted to Dr.

Charith Chiththraranjan, the chair of the progress review panel, for reviewing

and providing valuable feedback on my work.

I thank my colleagues and collaborators, Rukshan Wijesinghe, Kasun Vithanage,

Alex Xavier, and Pubudu Ekanayake, for their outstanding technical contribu-

tions and unwavering support throughout this research.

Finally, I thank the thesis examiners Prof Salman Khan, Dr. Sadeep Jaya-

sumana and Dr. Shehan Perera, and PhD examination chair Prof. Gihan Dias

for providing valuable suggestions.

Thank you for your invaluable contributions, guidance, and support in making

this achievement possible.

v

TABLE OF CONTENTS

Declaration i

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents ix

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Towards Improving Layer-wise Feature Extraction 1

1.2 Usage of Parallel Stacks of Feature Maps (Paths) 2

1.3 Need for Layer-wise Routing Layers 3

1.4 Contributions . 5

1.5 Summary . 6

vi

2 Background 7

2.1 Neural Networks . 7

2.2 Deepening Neural Networks . 8

2.3 Enriching Layer-wise Feature Extraction—Widening 9

2.4 Multi-path Networks with Cross-connections 10

2.5 Adaptive Feature Extraction Methods 11

2.6 Mixture of Experts . 11

2.7 Summary . 12

3 Data-Dependent End-to-End Routing 13

3.1 Cross-Prediction Based Routing 13

3.2 Cross-Connection Based Routing 17

3.3 Backpropagation through a Cross-Connection Layer 20

3.4 Experiments . 23

3.4.1 Conventional Convolutional Neural Networks with Parallel

Paths . 23

3.4.2 Residual Networks with Parallel Paths 27

3.4.3 Multi-path ResNets on ILSVRC2012 30

3.5 Visualizations . 33

3.5.1 Routing Visualization . 34

3.5.2 Gate Maximization Patterns 35

vii

3.5.3 Class-Wise Gating Patterns 37

3.5.4 Parallel Computation Weights 38

3.6 Conclusion . 39

4 Neural Mixture Models for Clustering 41

4.1 Introduction . 41

4.2 Related Work . 44

4.3 EM Algorithm in Mixture Modeling 46

4.4 Formulating Mixture-EM on a Neural Network 48

4.4.1 Approximate Cluster Distributions 49

4.4.2 Deploying EM Batch-Wise 53

4.4.3 Image Clustering with Consistency Optimization 56

4.5 Experiments . 58

4.5.1 Two-Dimensional Space 58

4.5.2 Image Clustering . 61

4.5.3 Visualizations . 64

4.6 Conclusion . 67

5 Regularize Routing with Clustering Loss 68

5.1 Regularization of Cross-connection based Routing 68

5.2 Towards Global Regularization 69

viii

5.3 Towards Sparse Multi-path Networks 70

6 Conclusions 72

List of Publications 75

References 90

ix

LIST OF FIGURES

1.1 Need for routing throughout a network with parallel resources . . 4

3.1 Cross-prediction-based Routing layer of m inputs and n outputs. . 14

3.2 Insertion of cross-prediction-based routing layers to a two-path

CNN in image classification task. 16

3.3 Cross-connecting two layers that have two parallel tensors on each

layer. 18

3.4 CNN with two paths and adaptive cross-connections placed at spe-

cific locations. 19

3.5 Backpropagation through the simplified cross-connecting layer be-

tween two successive layers each containing two parallel tensors. . 21

3.6 ResNet variant performance (accuracy) in CIFAR with the number

of parameters (millions). 31

3.7 Route visualizations of VGG13-2-CC. 34

3.8 Features that maximize gates. 36

3.9 Gate activation histograms. 38

3.10 Parallel operations’ weight histograms. 39

4.1 Overview of mixture-EM formulation with a neural network. . . . 42

x

4.2 Sigmoid function and standard normal variable. 52

4.3 Deploying Mixture-EM method for end-to-end training of a neural

network for clustering. 54

4.4 2-Dimensional clustering space. 58

4.5 Effect of the relevance score normalization. 59

4.6 Learning curves in clustering STL10. 64

4.7 Two-dimensional mapping of clustering network response for STL10

subset. 65

4.8 Image cluster visualization. 66

4.9 Clustering network. Convolutional filter visualization 67

5.1 Regularization of gating with clustering loss. 70

xi

LIST OF TABLES

3.1 Notations and details of the compared convolutional neural networks. 24

3.2 CIFAR10 CNN ablation study. 26

3.3 Comparison of ResNet variants in CIFAR. 29

3.4 ILSVRC 2012 Dataset: Single-crop and 10-crop validation error (%). 33

4.1 Average cluster distribution outputs with a batch of 128 samples. 60

4.2 Network architectures used for clustering image datasets. 61

4.3 Clustering accuracy (%) comparison. 62

xii

Chapter 1

INTRODUCTION

1.1 Towards Improving Layer-wise Feature Extraction

The neural network performance in learning a particular task tends to increase

with its depth [1–5] as deeper neural networks are able to approximate rather

complex patterns. The ability to approximate such complex patterns arises from

the high number of layers and non-linear activations which separate them. While

depth has a validated impact on neural network performance, it is also intuitive

to search for possible improvements in feature extraction within neural layers.

However, there has been comparatively less exploration of efficient layer-wise

resource usage. A carefully engineered resource allocation within each neural

layer may improve the overall utility of the network., i.e., the performance with

respect to the total number of parameters.

One could increase the number of filters in a convolutional layer or the num-

ber of nodes in a dense layer to improve the layer-wise feature extraction [6].

However, such a design results in inefficient scaling as the number of parameters

is quadratic in terms of the number of filters per layer (or number of nodes per

layer). It is more efficient to have parallel paths or operations in a given layer [5,7]

instead, which results in an efficient scaling option where the number of parame-

ters is linear in terms of the number of stacks per layer. Model ensembling [4, 8]

feeds the same image to several neural networks and accumulates those network

responses to produce the final prediction. In addition, there have been efforts to

1

obtain different versions of the same image by different image processing meth-

ods and feed these versions to multiple independent networks [9, 10] to produce

the output. While all these works use parallel computations, they still lack an

efficient method to allocate the input among these parallel computations in a

context-dependent manner. Therefore, these parallel computations tend to learn

redundant information, which is an inefficient use of parallel resources.

1.2 Usage of Parallel Stacks of Feature Maps (Paths)

A conventional neural layer contains a single set of feature maps on which

a single family of learnable filters operates to produce the next layer feature

map set. In contrast, let’s consider a multi-path neural network that has several

parallel computations in each layer. In a layer of a multi-path network, there

are several parallel independent sets of feature maps (paths). Each set of feature

maps (tensor or path) has a dedicated family of learnable filters to operate on

them to produce the corresponding output set of feature maps, continuing that

particular path. Let’s assume that homogeneous feature maps which share similar

contextual details are already grouped to parallel paths in a given layer. Now,

each family of filters operating on its set of feature maps (path) can specialize to

extract features in the corresponding context. Therefore, we can expect efficient

use of parallel resources in a given layer which is dependent on the nature of the

incoming sets of feature maps.

Overall, we can expect efficient use of parallel paths of the multi-path network

which is dependent on the context of the input image. Such efficient usage of

layer-wise parallel resources can result in improved network performance with

respect to its capacity (number of parameters or complexity). A layer of multi-

ple paths and families of dedicated filters for each path’s context may perform

a richer combination of features in total than a single larger set of feature maps

(conventional widening), a layer with parallel paths but no such grouping of fea-

2

ture maps (existing parallel computations), and even a sequential stack of layers

in a single path (deeper networks). Such effective use of parallel computations

does not present in existing parallel architectures therefore those parallel compu-

tations tend to learn similar features.

1.3 Need for Layer-wise Routing Layers

How do we group homogeneous feature maps to parallel paths and allocate

incoming parallel tensors to those paths? To do that, we need an algorithm

that routes information between subsequent layers of parallel paths (tensors) in

a data-dependent manner. The algorithm should first facilitate cross-connections

between parallel tensors in adjacent layers. These connections must be further

weighted in a data-dependent way to allocate the incoming tensors in an adaptive

manner. The weighting of cross-connections in a particular layer would preferably

be based on the context of the incoming parallel tensors. With such a careful

design, the parallel paths would be able to allocate resources to incoming tensors

efficiently.

It is possible to allocate inputs to the parallel paths at the first layer and

then concatenate the outputs of those parallel paths at the end of the network.

In such scenarios, there are no intermediate connections between parallel paths,

which can route the feature maps before the final layer. Rather than using this

approach, it is important to have intermediate routing along the whole depth of a

multi-path network, preferably for each layer segment, because the image context

is captured throughout the depth of the neural network, where each successive

layer represents more abstract concepts than its predecessor layer. Hence, the

groups of homogeneous feature maps can be dissimilar from each other. In our

opinion, the context of an image is a cumulative detail that is not limited to

the corresponding class, and the real image context that governs the given task

may be different from the human interpretation [11]. In the lowest levels of a

3

neural network, overall color and structure of edges, etc. may be captured as

the context. On deeper levels, the contextual representations become much more

abstract and can be constituted of information like body pose or even the class.

(a) (b) (c)

Figure 1.1: Need for routing throughout a network with parallel resources: Three samples
from the 2012 [12] validation set of the ILSVRC. Two hummingbirds can be seen in the first
two images, and an electric ray can be seen in the third. While images a and b contain similar
abstract information like body stance, images b and c just share similar low-level attributes like
the dominating color. Therefore, processing image b and c feature maps together in the initial
layers of a multi-path network and image a and b feature maps together in the deeper levels
may result in improved overall performance.

Thus, when a multi-path network with context-wise path routing learns a given

task, the resource allocation patterns will vary along the depth of the network.

For example, consider the images shown in Figure 1.1. These images are selected

from the ILSVRC2012 [13] dataset. Where image 1.1a and image 1.1b depict

hummingbirds sitting on branches, image 1.1c represents an electric ray in the

water. The last two images share a blue background while the first two images

share the same class of the bird. If we consider details that are usually extracted

in shallow layers of a neural network (low-level details) like the overall color,

image 1.1b and 1.1c are similar in nature to each other, whereas image 1.1a is

different from the first two. However, if we consider more abstract details which

are expected to be extracted at deeper layers, such as body pattern, image 1.1a

and 1.1b are similar, and image 1.1c is different. Reflecting this phenomenon,

images 1.1b and 1.1c can get equivalent path allocations in the initial layers of a

multi-path network, while images 1.1a and 1.1b might get similar path allocations

4

in latter stages. Hence, we need routing mechanisms along the whole depth of a

network to facilitate this type of resource grouping according to the abstractness

of the features in each layer.

1.4 Contributions

We explore novel, data-dependent mechanisms that can intelligently route in-

formation in a parallel path network end-to-end. We introduce such routing

mechanisms layer-wise to allocate incoming parallel tensors (sets of feature maps)

to a routing layer, to its output parallel paths. A routing layer facilitates cross-

connections between the parallel tensors of adjacent layers and further weight

these connections. We refer to such weighting coefficients as gate coefficients.

The gate coefficients are produced from parametric functions which compute on

the incoming feature maps. We insert such routing layers throughout the depth

of the parallel path network to enable parallel resource allocation according to

the level of context representing at that depth and end-to-end adaptive routing.

To further regulate the layer-wise routing process, we introduce a novel loss

function which can cluster a sample space to a given number of categories with-

out labels. We follow mixture modelling for clustering and propose to use a

neural network to learn the cluster distributions and posterior assignments in

mixture modelling. We show that following our approach, a neural network can

successfully model complex cluster distributions which otherwise must be cap-

tured by hand-designed distributions with limited parameters. As a standalone

end-to-end clustering approach, our framework shows superior performance to

traditional clustering algorithms and deep clustering approaches which rely on

k-means as the basic clustering technique.

Finally we incorporate this clustering loss in each cross-connection based rout-

ing layer in our multi-path networks to investigate the possible improvements to

5

the regularization. We analyse the impact of such regularization on our multi-

path network and its gating mechanism. We show that the clustering objective

enables gates to be evenly activated minimizing skewed gate activations (e.g.,

only one gate mostly activating for all inputs). We further suggest the exten-

sion towards hard path allocation with gating networks and clustering objective

governing the input allocation.

1.5 Summary

We emphasize the need for carefully engineered layer-wise feature extraction

to achieve the overall utility of a network (performance in terms of the param-

eters/complexity employed). Exploiting this objective, we focus on employing

parallel sets of feature maps in each layer and the need for data-dependent input

allocation among these parallel paths. We also raise the need to include such allo-

cation methods throughout the depth of the networks. Following these insights,

we propose multi-path neural networks with data-dependent routing methods

that route the traffic in multi-path networks end-to-end. We also propose a neu-

ral mixture modeling-based clustering approach that uses a neural network to

learn cluster distributions and assignments concurrently. We validate the cluster-

ing objective in standard image clustering and further discuss the effect of such

an objective to regularize gating in multi-path networks.

The rest of the dissertation is organized as follows. In Chapter 2, we provide

the background and literature search on layer-wise feature extraction. Chapter

3, based on Tissera et al . 2019 [14], Tissera et al . 2020 [15] and Tissera et al .

2023 [16], describes the routing algorithms used and the performance evaluation

of the proposed multi-path networks. Chapter 4 bases on Tissera et al . 2022

[17] and introduces neural network-based mixture modeling as a standalone deep

clustering framework. In Chapter 5 we illustrate one use case of our clustering

objective in regularizing the gating networks in our multi-path networks. Finally,

in Chapter 6, we discuss the utilities, limitations and future directions.

6

Chapter 2

BACKGROUND

2.1 Neural Networks

Neural networks are parametric models that consist of multiple layers sepa-

rated by non-linear activation functions. Given an adequate amount of hidden

nodes, learning, and loss function, there is no theoretical limit to the approxima-

tion capability of a multi-layer perceptron [18]. A multi-layer perceptron [19,20]

employs several layers of neurons. One layer connects its input nodes to its out-

put nodes via weights. The first layer’s input nodes represent the input to the

network, and the final layer’s output nodes are the network’s output. The in-

termediary layers carry hidden nodes. The weights are generally updated with

backpropagation [21, 22], where the computed loss function during the forward

pass is optimized by updating weights in the backward pass.

Neural network architectures have evolved, marking several significant mile-

stones. Convolutional neural networks (CNNs) [4, 8, 22] are specifically designed

to extract spatial features from images while reducing the complexity of em-

ploying a multi-layer perceptron. Instead of connecting all nodes in subsequent

layers, CNNs maintain the 2D structure of the tensors and convolute them with

a matrix of weights called filters to produce output feature maps of the layer.

Recurrent neural networks (RNNs) [21, 23–25] are designed to capture the pat-

terns distributed over data sequences. RNNs function similarly to a feed-forward

network for each step of a sequence while also accommodating a memory com-

7

ponent from previous steps. Transformers [26] parallelize the RNNs’ sequential

operations, which require less training time, and introduce multi-head attention,

which is much more sophisticated in paying attention to the parts of the sequence

than sequential memory in RNNs.

Neural Networks, with their immense capability of approximating complex

functions and handling high dimensional data, have successfully marked the state-

of-the-art in many domains including visual recognition [27–29], speech and audio

processing [30, 31], time series prediction [32, 33], natural language processing

[34,35] and generative modeling [36–38]

2.2 Deepening Neural Networks

Neural networks perform better with more layers in the stack due to their

ability to approximate rather complex patterns with more layers along the depth

separated by non-linear activations. [4,39,40]. Besides, having more layers along

the depth [4,5,8] has already shown better performance compared to shallow neu-

ral networks [20, 22]. However, Neural network deepening has its disadvantages,

such as gradient vanishing/exploding [41], increased training time [6], perfor-

mance degradation [1], and overfitting to training set [42].

Numerous solutions have been proposed to tackle such challenges of network

deepening. Methods such as input normalization [22], intermediate tensor batch-

normalization [43], and weight initialization [44, 45] help overcome gradient van-

ishing/exploding problems. In addition, shortcut connections that connect non-

adjacent layers along depth [1,2] enable stacking many layers without subjecting

them to performance degradation. Furthermore, regularization methods [46, 47]

prevent deep networks from overfitting to training data, and advanced optimiz-

ers [48, 49] also help mitigate issues with deep network training.

Overall, deepening neural networks is well explored and popular in application.

8

However, an optimum depth exists for a given task, beyond which merely adding

layers might be inefficient regarding the performance gain due to the added com-

plexity and training time [6]. Therefore, it is also intuitive to explore strengthen-

ing layer-wise feature extraction, which may lead to improved performance with

respect to the employed complexity [50].

2.3 Enriching Layer-wise Feature Extraction—Widening

One way to enrich layer-wise feature extraction is to have more resources in

each layer. Conventionally, this is achieved by increasing the filters/nodes in each

layer [6]. Such naive widening is inefficient because the network parameters are

quadratic in terms of the number of filters or nodes per layer. It is more intuitive

to stack independent parallel operations in each layer [5,7,51,52], which leads to

an efficient scaling option where the number of network parameters is linear in

terms of the number of stacks per layer. Still, without a mechanism to adaptively

allocate incoming feature maps among such parallel computations in each layer,

these parallel paths tend to learn redundant features and collapse to a single

path [53].

In addition, there have been efforts to employ multi-path neural networks

where each path learns in isolation. While model ensembles [4, 8] accumulate

independently trained network responses for the same input to predict final out-

put during inference, there are efforts to feed different versions of the same input

(e.g., pre-processed with different techniques) to parallel paths of multi-path net-

works during training [9, 10]. However, these parallel paths do not connect with

each other and learn in isolation until the final layer. Hence, there is no adaptive

allocation of parallel resources distributed layer-wise. In addition, these meth-

ods are also subjected to the aforementioned feature redundancy among parallel

paths [53].

9

To summarize, existing widening techniques are either inefficient in terms of

added complexity, do not facilitate layer-wise connections among parallel paths

and/or do not allocate inputs intelligently among parallel paths.

2.4 Multi-path Networks with Cross-connections

Enabling a multi-path network to allocate its parallel resources throughout

the depth requires parallel paths to facilitate connections among them, prefer-

ably per a segment of layers. Multi-path networks with such cross-connections

between parallel paths are widely used in the multi-task learning domain [54–56],

where the model learns to perform multiple tasks on a single input (e.g., semantic

segmentation and surface normal estimation).

In particular, Cross-Stitch Networks [57] first introduced cross-connections

between parallel paths in a multi-path network. These cross-connections are

weighted by additional coefficients, which are independently learned as regular

weights. Therefore, those weighting coefficients are fixed during inference. There

have been subsequent attempts to improve the intuition of such resource shar-

ing [58,59]. Such weighting intends to enable the multi-path network to learn the

optimum mix of task-specific and shared parallel resources per layer segment to

perform all given tasks.

However, we intend to route an input end-to-end in a multi-path network,

where per each layer segment, an adaptive routing process shall take place to

delegate incoming parallel tenors to next layer parallel tensors according to the

nature of the incoming tensors. For such purpose, having the cross-connection

weighting independently learned is insufficient; those weighting coefficients should

be produced in a dynamic, input-dependent manner.

10

2.5 Adaptive Feature Extraction Methods

The idea of context-dependent resource allocation is inspired by existing adap-

tive feature extraction methods, which use additional mechanisms to make the

primary feature extraction process dynamic and responsive to the input-context

during inference. Such mechanisms are either parametric or non-parametric and

usually compute on the input to the network [60] or input to a layer [61–73].

Hypernetworks [60] use a sub-network to predict the main network weights.

Squeeze-and-excitation network (SENet) [63] re-calibrates each convolutional chan-

nel after a usual convolution using a parametric function computed on the con-

volutional output. This is commonly referred to as channel-wise attention, which

has been subsequently adopted to improve existing networks via channel re-

calibration [71,72].

Highway Networks [68, 74] regulates the information flow along the depth of

a network using a gating mechanism. Sharing a similar motivation to regulate

information along the depth of a network, ConvNet-AIG [66], BlockDrop [67], and

SkipNet [70] selectively use residual blocks in ResNets [1] to adjust the effective

depth of the network according to the context of the input. Inspired by such

adaptive mechanisms, we explore the adaptive allocation of parallel resources in a

multi-path network layer-wise. In contrast to using a common single path, we use

parallel paths and additional mechanisms to route among these paths per segment

of layers so that the input is effectively routed end-to-end through the multi-path

networks with a context-dependent soft combination of path activations.

2.6 Mixture of Experts

Our work and intuition is closely related with the Mixture of Experts domain.

A mixture of experts [75,76] partitions the input space into sub-spaces and picks

11

experts to extract features in each sub-space. Initially, only complete models were

employed as experts, but the following work introduced mixtures of experts layer-

wise [77, 78]. Sparsely gated mixtures [53, 79] have achieved significant progress

in fields such as natural language processing [78,80,81] and vision [82,83]. How-

ever, sparse mixtures of experts require enormous amounts of data and a heavy

reliance on network engineering among parallel devices during training. In con-

trast, we utilize soft allocation of parallel resources, which allows for single-device

backpropagation.

2.7 Summary

We identify that despite the remarkable success of deepening neural networks,

there is still room for layer-wise solid feature extraction. Exploiting this direction,

we acknowledge existing widening methods and identify that stacking parallel

operations is more efficient than conventional widening. However, we also note

the need for an efficient input-dependent parallel resource allocation method.

We also explore existing multipath networks in the multi-tasking domain where

the coefficients weighting cross-connections are independently learned. To this

end, we borrow from existing adaptive feature extraction methods that employ

additional parametric functions to support the main task, leading to dynamic

input-sensitive resource allocation. We thus move towards employing parallel

stacks of feature maps in each layer and additional parametric functions to govern

the cross-allocation of parallel layer resources.

12

Chapter 3

DATA-DEPENDENT END-TO-END ROUTING

We enable end-to-end routing in a multi-path network by introducing layer-

wise routing algorithms. Such algorithms construct a set of parallel tensors (next

layer) from a given set of parallel tensors (current layer) while accommodating all

possible cross flows of information between the parallel paths of the two layers.

An additional set of parametric functions take the incoming tensors as input and

produces gating coefficients that weight these cross flows adaptively.

3.1 Cross-Prediction Based Routing

In the cross-prediction based routing algorithm, given a layer of parallel ten-

sors, each tensor first predicts all parallel tensors in the next layers via indepen-

dent convolutional or dense operations. In addition, each tensor also predicts a

set of probabilities (coupling coefficients/ gates) each denoting the probability

of routing to each tensor in the next layer. Given these predictions and gates,

each tensor in the next layer is constructed by summing all corresponding gate-

weighted predictions made by previous layer tensors to that particular tensor.

Figure 3.1 depicts routing between two layers having m and n tensors. There,

Figure 3.1a depicts one tensor in the first layer predicting second-layer tensors

and coupling probabilities to them. Figure 3.1b depicts the construction of the

second layer using the predictions and gates computed by previous layer tensors.

Let [Xi=1,...,m] be m parallel tensors in a given layer (say inputs to the routing

13

 n
Predictions

Ui2

Uin

Ui1

Conv

HxWxC

G
lo

ba
l a

ve
ra

ge
 p

oo
lin

g

n Gates

Z i
1x1xC

hidden
layer

n
nodes

Gi

Xi

softmax

(a)

m Inputs

X1 X2 Xm

g11 g21 gm1U11 U21 Um1

g12 g22 gm2U12 U22 Um2

g1n g2n gmnU1n U2n Umn

Y1

Y2

Yn

 n Outputs

(b)

Figure 3.1: Routing layer of m inputs and n outputs. a) Input Xi predicting n outputs and
associated gates. b) Constructing n outputs Yj=1,...,n using the predictions and gates computed
by m inputs Xi=1,...,m. See Eq. 3.6.

layer) and [Yj=1,...,n] be the n tensors which the routing algorithm constructs as

the next layer (say outputs of the routing layer). Each input Xi first predicts

each output tensor via a linear parametric computation. Uij, the prediction made

from Xi to Yj is,

Uij = WijXi + bij. (3.1)

Wij and bij are weights and biases of the linear transformation. This corresponds

to a convolutional operation in case where X and Y are 3-dimensional. Xi also

predicts n gating coefficients stacked as an n-dimensional vector Gi,

Gi = [gi1, . . . , gin]. (3.2)

These n coefficients are the soft probabilities of routing Xi to each of the next

layer tensors. gij is the probability of Xi getting routed to Yj, i.e., the soft gate

value in the connection between Xi and Yj.

A non-linear parametric calculation on Xi, preferably two dense operations

separated by ReLU activation, can be used to determine Gi. However, if Xi

14

is three-dimensional (H × W × C, where H, W and C correspond to height,

width and number of channels in the tensor), a large number of parameters are

occupied. Therefore, in this case, we first feed Xi through a global average pooling

operation to obtain the latent channel descriptor Zi of size 1 × 1 × C [63, 66].

Global average pooling produces a compressed descriptor that still contains the

information about the presence of each feature since each channel in a set of

convolutional feature maps reflects a distinct feature of the input that is sought

by a particular filter. The cth channel value (zi)c of the channel descriptor Zi is,

(zi)c =
1

H ×W

H∑
a=1

W∑
b=1

(xi)a,b,c, (3.3)

where (xi)a,b,c stands for the pixel of location (a, b, c) in tensor Xi. Then, Zi is

sent into a non-linear computation that has two fully connected layers (weights

W1 and W2) which are separated by ReLU activation. This process produces n

latent relevance scores Ai ([ai1, . . . , ain]).

Ai = W2(ReLU(W1Zi)) (3.4)

We finally use softmax activation on n relevance scores Ai to determine the gate

probabilities Gi.

Gi = softmax(Ai), i.e., gij =
eaij∑n
k=1 eaik

. (3.5)

The resultung n scores represent the probabilities of Xi being routed to each out-

put Yj=1,...,n. Figure 3.1a depicts the processes a 3-dimensional tensor performs

at a routing layer’s input during the prediction stage.

With cross-predictions Uij and gates Gi calculated, we then derive the routing

layer outputs. To construct jth output Yj, predictions made for Yj (Uij, i =

1, . . . ,m) are weighted by corresponding gate values (gij, i = 1, . . . ,m) and added

15

together. We further use ReLU activation on the constructed tensor.

Yj = ReLU

(
m∑
i=1

(gij ×Uij)

)
(3.6)

This adaptive re-calibration of the input tensors’ predictions that are used to

build the output tensors bears a similar idea of attention to that presented in

SENets [63]. Our aim, though, is soft-routing information in diverse directions.

Algorithm 1 illustrates the routing between two layers in further detail.

CP-C32 C32 CP-C64 C64 CP-C128 C128 Flatten F32 CP-F32 F10 Average

3

Figure 3.2: Insertion of cross-prediction-based routing layers to a two-path CNN in image
classification task. CP-Cn stands for a routing layer of n-filter convolutional cross-predictions,
whereas CP-Fn stands for a routing layer of n-node dense cross-predictions. Cn represents a
forward layer with parallel n-filter convolutions, and Fn represents a forward layer with parallel
n-node dense layers.

Algorithm 1 Cross-Prediction based routing between two layers.

Input: X {[Xi for i = 1, 2, . . . ,m]}
Predictions from current layer:

for i = 1 to m do
for j = 1 to n do

Uij ←WijXi + bij
end for
Gate Computation on Xi:
Zi ← global average pooling(Xi)
Ai = [ai1, . . . , ain]←Wi

2(ReLU(Wi
1Zi))

Gi = [gi1, . . . , gin]← softmax(Ai)
end for

Construction of outputs:
for j = 1 to n do
Yj ← ReLU(

∑m
i=1(gij ×Uij))

end for
Output: Y {[Yj for j = 1, 2, . . . , n]}

We place these routing layers between a few different layers in multipath net-

works (Figure 3.2), allowing other layers to have their parallel independent paths

16

to learn in isolation. Figure 3.2 depicts a two-path convolutional neural network

with our routing inserted at specific spots referred to later as BaseCNN-2-CP. Due

to the convolutional or dense nature of the cross-predictions, adding one routing

layer raises the network’s effective depth by one layer. Before feeding the parallel

tensors to the subsequent feed-forward computation, we impose non-linear ReLU

activation because the output layer tensors are mixtures of linear operations. Fi-

nally, the parallel feature maps are averaged to create a single output in the final

layer.

The number of parameters used for the cross-predictions in the routing process

between two layers is susceptible to a quadratic increase with the number of

parallel paths because each tensor in a given layer predicts each tensor in the

next layer in terms of convolution or dense operation. We, therefore, introduce

cross-connection-based routing to reduce the routing layer to gate computation

and directly weighting inputs with the gates to construct outputs. Such design

will be much efficient for scaling in terms of the number of parameters.

3.2 Cross-Connection Based Routing

Cross-connection-based routing directly weighs the current layer tensors to

create the next layer tensors rather than weighting the convolutional or dense

cross-predictions. By doing this, the quadratic parameters addition by the cross-

predictions in terms of the number of paths can be eliminated. Instead of cross-

predictions contributing to the effective stack of the network, forward layers with

parallel convolutional or dense operations solely focus on learning the main task.

A routing layer is now only a cross-connecting layer and no longer carries weights

that aid in learning the primary objective. Therefore, adding cross-connections

between layers enables soft routing without deepening the network. The compu-

tations for the non-linear gates have contributed just a tiny number of parameters

to the routing overhead.

17

We now explain how given a layer of m tensors [Xi=1,...,m], cross-connecting-

based routing produces the next layer of n tensors [Yj=1,...,n]. Each Xi computes

the gate vector Gi ([gi1, . . . , gin]) as in cross-prediction-based routing (Eq. 3.3,

Eq. 3.4 and Eq. 3.5). The algorithm next computes each next layer tensor Yj by

summing the previous layer tensors [Xi=1,...,m] each weighted by the corresponding

gate gij,i=1,...,m:

Yj =
m∑
i=1

(gij ×Xi). (3.7)

The output tensor dimensions of a cross-connection-based routing layer are the

same as its input tensors since the routing directly connects its inputs to create

its outputs. In Figure 3.3, we present the cross-connecting procedure between two

layers carrying two parallel tensors and the adaptive cross-connecting procedure

by Algorithm 2. In Figure 3.4, we show the insertion of such routing layers at

selected locations in a two-path CNN which is referred as BaseCNN-2-CC later.

X1

Global average
pooling so

ftm
ax

hidden layer

2 Nodes

so
ftm

ax

2 Nodes

hidden layer

G1

G2g22

g21

g12

g11

Y1

Y2X2

Global average
pooling

Figure 3.3: Cross-connecting two layers that have two parallel tensors on each layer. Learnable
parametric computations use the input tensors to compute the gates that weigh the connections.

We also illustrate the pixel-wise operations of the cross-connecting process in

matrix form. Consider a set of 3-dimensional input tensors [Xi=1,...,m] to the

routing layer and its output tensors [Yj=1,...,n]. Lets denote the pixel value at the

location (a, b, c) of Xi as (xi)a,b,c, and Yj as (yj)a,b,c,. The set of output pixels at

18

CC C32 C32 CC C64 C64 CC C128 C128 CC Flatten F32 CC F32 F10 Average

3

Figure 3.4: CNN with two paths and adaptive cross-connections placed at specific locations.
CC stands for a cross-connecting layer, whose gates, connections, and outputs are represented
by blue circles, blue edges and red boxes. Cn and Fn are forward convolutional and dense
layers, respectively. Yellow boxes are used to represent the outputs of these forward layers.
Adding cross-connecting layers does not increase the network’s effective depth because the
cross-connections are merely weighted connections.

Algorithm 2 Cross-connection-based routing between two adjacent layers with
m and n sets of feature maps respectively.

Input:
X: inputs {[Xi for i = 1, . . . ,m]}

Calculating gate values:
for i = 1 to m do
Zi ← global average pooling(Xi)
Ai = [ai1, . . . , ain]←Wi

2(ReLU(Wi
1Zi))

Gi = [gi1, . . . , gin]← softmax(Ai)
end for

Construction of outputs:
for j = 1 to n do
Yj ←

∑m
i=1(gij ×Xi)

end for
Return:

Y: outputs {[Yj for j = 1, . . . , n]}

(a, b, c) are therefore,

(y1)a,b,c

...

(yn)a,b,c

 =

g11 · · · gm1

...
. . .

...

g1n · · · gmn

(x1)a,b,c
...

(xm)a,b,c

 . (3.8)

This formulation is similar to Cross-Stitch Networks [57]. The coupling coef-

ficients of Cross-Stitch networks gij, however, are trained independently. Such

independently trained coefficients only enable learning the mix of shared and

task-specific resource allocation to execute many tasks on a single input. Such a

learned mix is fixed during inference. Our approach uses the channel-wise atten-

19

tion mechanism [63] to construct gijs through a parametric computation on the

inputs Xi. Such adaptive gate computation enables dynamic switching between

context-specific and shared representations based on the nature of the various

inputs.

3.3 Backpropagation through a Cross-Connection Layer

In Section 3.2, we presented how cross-connection enables soft routing in a

context-specific way. Backpropagation of gradients through cross-connections is

necessary for network training. However, a cross-connecting layer’s backpropa-

gation is not as simple as in Cross-Stitch networks where the coupling coefficient

matrix comprises independently learned weights. In our instance, the routing

inputs X are used to create the elements of the gating matrix G. As a result, in

addition to the direct gradient weighted by the gate element, the gradients flown

to each routing input Xi include another component from the gate computation.

Also, the weights that produce the gates are optimized rather than the actual

gates.

For clarity, let us assume that the tensors X and Y are k-dimensional vectors

and that the gate computation uses a straightforward fully-connected layer rather

than Eq. 3.3 and Eq. 3.4. This simplified cross-connecting technique for two-

parallel paths is shown in Figure 3.5. Calculating the relevance scores Ai from

each Xi now reduces to,

Ai = WiXi, (3.9)

where Wi is a n× k matrix of weights. Gi is computed by taking softmax of

these logits as in Eq. 3.5 and next layer tensors Yj (j=1...n) are constructed as in

Eq. 3.7. We calculate the gradients w.r.t each Xi (i=1...m) and Wi
(i=1...m), given the

gradients of loss w.r.t. each output Yj (j=1...n). I.e., given ∂L
∂Yj j=1...n

, we compute

∂L
∂Wi i=1...m

and ∂L
∂Xi i=1...m

. Figure 3.5 shows the flow of gradients to W1 and X1

20

G1=softmax(A1)
g12

g11
A1=W1X1

W1
(2xk)

X1
Y1

Y2

(kx1)
(kx1)

(kx1)

 X2
(kx1)

G2=softmax(A2)
g22

g21A2=W2X2

W2
(2xk)

Figure 3.5: Backpropagation through the simplified cross-connecting layer between two suc-
cessive layers each containing two parallel tensors. Gradient flows to the input layer’s top tensor
X1 and its gate computation weight matrix W 1 are shown.

from Yj(j=1,2) in a two-path cross-connecting layer that aids understanding the

detailed gradient flow as explained below.

The incoming gradient must first be propagated to each gij. When creating

Yj; the scalar gij multiplies each component of Xi (Eq. 3.7). Consequently,

the partial derivative of loss relative to gij is the sum of the element-by-element

multiplication between the gradient vector and Xi,

∂L

∂gij
=
∑
k

∂L

∂Yj

�Xi. (3.10)

With all such ∂L
∂gij (j=1,...,n)

, we form ∂L
∂Gi

as an n-dimensional column vector,

∂L

∂Gi

=
[
∂L
∂gi1

· · · ∂L
∂gin

]T
. (3.11)

21

By multiplying the gradients with respect to Gi by the partial derivative of

gate values with respect to the relevance scores ∂Gi

∂Ai
, gradient is propagated to

the relevance scores Ai;

∂L

∂Ai

=
∂Gi

∂Ai

T ∂L

∂Gi

=
(
JGi
Ai

)T ∂L

∂Gi

. (3.12)

Here, JGi
Ai

stands for the Jacobian matrix of the derivative of softmax,

∂Gi

∂Ai

= JGi
Ai

=

gi1(1− gi1) · · · −gi1gin

...
. . .

...

−gingi1 · · · gin(1− gin)

 . (3.13)

By propagating the gradient w.r.t. Ai through Equation 3.9, it is now possible

to determine the gradients of loss w.r.t. Wi. Therefore,

∂L

∂Wi
=

∂L

∂Ai

XT
i =

(
JGi
Ai

)T ∂L

∂Gi

XT
i . (3.14)

It is also important to calculate the gradient of loss w.r.t Xi since it is propagated

to the previous layer.

∂L

∂Xi

=
n∑
j=1

gij
∂L

∂Yj

+ (Wi)T
∂L

∂Ai

=
n∑
j=1

gij
∂L

∂Yj

+
(
Wi
)T (

JGi
Ai

)T ∂L

∂Gi

(3.15)

Here, the first term is the direct gradient flow from the multiplication between

gij and Xi, to Xi. The second term is the portion of the gradient propagated to

gij from that particular multiplication flowing back to Xi. This residual gradient

flow results from the attention-like production of gij from Xi.

22

3.4 Experiments

We conduct various image recognition experiments to demonstrate the efficacy

of parallel paths with data-dependent resource allocation. First, we study the

effects of transforming regular convolutional neural networks into their equivalent

multi-path variants, followed by experimenting with custom Residual Networks

(ResNets) [1] with parallel paths that apply our routing algorithms. In each

scenario, we assess how well our architectures perform compared to existing, more

complex networks, adaptive feature extraction techniques, and deeper networks

with comparable parametric complexity. Whenever we cannot discover existing

approaches’ variants that roughly match our models’ complexity, we create new

variants whose parametric complexity roughly resembles our models.

3.4.1 Conventional Convolutional Neural Networks with Parallel Paths

This section compares parallel-path convolutional neural networks with tradi-

tional network widening, network deepening, and other related networks. Table

3.1 illustrates the specifics of the networks we employ. As the baseline, we select

BaseCNN, a 9-layer convolutional neural network with six convolutional layers

and three dense layers. We expand BaseCNN by stacking parallel paths with

routing layers to construct its multi-path networks.

BaseCNN-X-CP stands for an X-path network with cross-prediction-based

routing, where each path is similar to a BaseCNN. The BaseCNN-2-CP design,

which employs two parallel paths, is shown in Figure 3.2. Here, cross-prediction-

based routing layers are used in place of the first, third, and fifth convolutional

layers, as well as the second dense layer. Cross-predictions are convolutional or

dense operations; therefore, one routing layer increases the network’s effective

depth by one layer. Therefore, to preserve the same depth as BaseCNN, we sub-

stitute the chosen layers in the parallel-path BaseCNN with the routing layers.

23

Table 3.1: Notations and details of the compared convolutional neural networks: Cn stands
for a n-filter convolutional layer. Fn stands for a n-node fully connected layer.

Network Structure

BaseCNN C32 C32 C64 C64 C128 C128 F32 F32 F10
WideCNN C64 C64 C128 C128 C256 C256 F32 F32 F10
DeepCNN C32 C32 C64 C64 C128 C128 C128 C256 C256 C256 F32 F32 F10
BaseCNN-X BaseCNN–X paths. No routing.
Base Ensemble Ensemble of 3 BaseCNNs
All Ensemble Ensemble of BaseCNN, WideCNN and DeepCNN
SEBaseCNN SENet ([63]) on BaseCNN
SEDeepCNN SENet ([63]) on DeepCNN
Cr-Stitch2 Cross-stitch network ([57]) with 2 parallel BaseCNNs

BaseCNN-X-CP BaseCNN–X paths–cross-prediction based routing
BaseCNN-X-CC BaseCNN–X paths–cross-connections

The final prediction is created by averaging the final layer parallel outputs.

BaseCNN-X-CC stands for an X-path network with adaptive cross-connections.

The BaseCNN-2-CC design, which has two parallel routes, is shown in Figure 3.4.

After the second, fourth, and sixth convolutions, as well as after the first dense

layer, we add cross-connections. We also add a one-to-many connector to expand

the input image to parallel routes at the beginning of the network (One-to-many

connector is a cross-connecting layer but with one tensor in the input layer and

the required number of tensors in the output layer). The effective depth of the

network is not increased by adding a cross-connection-based routing layer because

it only contains cross-connections and weighing coefficients. As a result, we can

add such layers to the BaseCNN multi-path network without substituting any

forward layers.

Next, we build comparable architectures representing conventional widening,

deepening and adaptive feature extractors. We widen the BaseCNN convention-

ally and create WideCNN by doubling the filter size in each convolution. The

DeepCNN architecture is created by deepening the BaseCNN with additional

convolutional layers. We construct BaseCNN-X, an identical multi-path network

24

to BaseCNN-X-CC but without intermediary routing. Here, X is the number

of parallel BaseCNNs sharing the same input and output (averaging). We em-

ploy an ensemble of three individually trained BaseCNNs to compare with model

ensembles (Base Ensemble). The individual BaseCNN outputs are averaged at

inference to provide the Base Ensemble’s output. We also create All Ensemble,

an ensemble of BaseCNN, WideCNN, and DeepCNN. We incorporate SE oper-

ations [63] into the convolutional layers of BaseCNN and DeepCNN to produce

SEBaseCNN and SEDeepCNN, respectively, to compare our multi-path networks

with corresponding SENets. To create an equal two-path Cross-Stitch Network,

Cr-Stitch2, we add cross-stitching procedures in place of BaseCNN-2-CC’s adap-

tive cross-connections.

We first train these models for 200 epochs with a 128-batch size on the CI-

FAR10 dataset [84]. We employ stochastic gradient descent (SGD) with a mo-

mentum of 0.9 and an initial learning rate of 0.1, which decays by a factor of

10 after 80 and 150 epochs. To augment images, we add random horizontal flip-

ping and pixel shifts in both directions, up to a maximum shift of 4 pixels. We

display the results of this investigation in Table 3.2, where we present the best

performance out of three trials for each model.

Our routing techniques enhance BaseCNN’s performance when added with

parallel paths to outperform traditional widening. In this scenario, the BaseCNN

with two paths and routing (BaseCNN-2-CP/CC) outperforms the WideCNN,

which has two times filters in each layer. WideCNN carries four times as many

parameters as BaseCNN because of the quadratic increment of parameters in

traditional widening, whereas adding two parallel routes doubles the number of

parameters. Even with the additional routing overhead, BaseCNN-2-CP still

has fewer parameters than WideCNN. BaseCNN-2-CC carries nearly the same

number of parameters as two BaseCNNs due to the very minimal additional

routing overhead added by cross-connection-based routing.

BaseCNN-3-CP/CC outperforms BaseCNN-3 (no routing) by a significant

25

Table 3.2: CIFAR10 CNN ablation study: Classification errors (%) BaseCNNs with parallel
paths and routing outperform conventional widening, model ensembles, SENets, Cross-stitch
networks, and even conventional deepening at equivalent or lower complexity. All networks are
trained for 200 epochs. We also report multi-path networks’ performance after training for 350
epochs to set the benchmark. * indicates performance reported in the relevant paper.

Network Params (M) Error% (200 epochs) Error% (350 epochs)

BaseCNN 0.55 9.26
WideCNN 1.67 8.96
DeepCNN 2.0 8.49
BaseCNN-3 1.5 9.41
BaseCNN Ensemble 1.66 7.87
All Ensemble 4.27 6.9
SEBaseCNN 0.58 8.99
SEDeepCNN 2.06 8.15
Cr-Stitch2 1.11 7.89
VGG16 [4] 14.9 6.98
Capsule Nets* [64] 8.2 10.6
Highway* [68,74] 2.3 7.54

BaseCNN-2-CP 1.3 7.24 6.48
BaseCNN-3-CP 2.23 6.63 6.04
BaseCNN-4-CP 3.34 6.45 5.91
BaseCNN-2-CC 1.11 7.03 6.53
BaseCNN-3-CC 1.67 6.51 6.09
BaseCNN-4-CC 2.22 6.55 6.26

margin. Moreover, BaseCNN-3-CP/CC outperforms the ensemble of 3 BaseC-

NNs as well as the ensemble of BaseCNN, WideCNN, and DeepCNN. This implies

that our routing methods improve the performance of stacked parallel paths due

to the data-dependent resource allocation. Furthermore, the DeepCNN, whose

total number of parameters is more than three times that of the BaseCNN, is

outperformed in this trial by BaseCNN-2-CP/CC. Our multi-path networks even

outperform the VGG16 [4], which uses many parameters along with depth and

width.

BaseCNN-2-CP/CC outperforms the cross-stitch network (Cr-Stitch2) with

two paths, demonstrating that adaptive cross-routing is preferable to indepen-

dently learned cross-stitching coefficients for learning a task while handling diver-

sity. BaseCNN-2-CP/CC outperforms SE Nets created using the WideCNN and

26

DeepCNN, demonstrating the superiority of using parallel paths to re-calibrating

a single path. Our method outperforms Highway networks [68] and Capsule Net-

works [64] among rich layer-wise feature extraction or adaptive feature extraction

at a similar or lower complexity.

CIFAR10 studies show that BaseCNN-2-CP/CC, which adds a parallel path

to BaseCNN, performs significantly better. However, the third parallel path

(BaseCNN-3-CP/CC) addition yields less performance gain than the addition of

the second path. Adding the fourth path, BaseCNN-4-CP/CC, provides little

to no improvement. To acquire the optimum performance for the number of

parameters used, it is crucial to carefully construct the number of parallel path-

ways according to the dataset. However, all deepening [1, 2] and widening [6, 7]

procedures exhibit this phenomenon.

With more parallel paths, the multi-path networks with cross-connections

(BaseCNN-X-CC) employ much fewer parameters than with cross-prediction-

based routing (BaseCNN-X-CP). This is because adaptive cross-connections sig-

nificantly reduce routing overhead by excluding cross-convolutional or cross-dense

operations from cross-prediction-based routing. Furthermore, cross-connection-

based routing yields similar performance as cross-prediction-based routing for less

complexity, hence giving better performance with regard to model complexity.

We further set the benchmark for CNN-based multi-path networks: Our multi-

path nets are retrained using the same parameters as before, but for 350 epochs,

with the learning rate decay after 150 and 250 epochs. The last column of Table

3.2 displays the benchmark values.

3.4.2 Residual Networks with Parallel Paths

Next, we add parallel paths and our routing strategies to the residual networks

(ResNets) [1]. First, we add parallel routes to the ResNet variations intended

to learn from small-scale datasets (ResNet20, ResNet32, etc.). Following a first

27

convolution, these models employ three successive stacks, each including multiple

residual blocks (in ResNet20, three residual blocks). Each stack begins with a

strided residual block, producing feature maps that have been down-sampled.

Finally, a global average pooling layer and the last dense layer, which produces

the class probabilities, mark the network’s termination.

Extending ResNets with parallel paths and cross-prediction-based routing (ResNet-

X-CP) is as follows. First, we replace the initial convolutional layer with a con-

volutional one-to-many routing layer. Then we add two additional routing layers

before the second and third stacks. The final output is created by averaging the

parallel dense layer outputs. This design increases the effective depth of the net-

work by two extra levels. To create parallel-path ResNets with cross-connection-

based routing (ResNet-X-CC), after the first convolution, we add a one-to-many

router and three more cross-connection-based routers after the first, second, and

third stacks. This architecture keeps the network’s original depth because these

cross-connections do not contain convolutions.

We employ a setup identical to the prior study to train our models on the

CIFAR10 and CIFAR100 [84] datasets. We train our models for 350 epochs using

a batch size of 64, with the learning rate decaying after 150 and 250 epochs. We

run three trials for each model, and the best result is reported. The recorded

classification errors of our models are displayed in Table 3.3, together with the

classification errors of traditional ResNets and ResNet-based adaptive feature

extractors.

WideResNet40-2 (WRN-40-2) has a depth of 40 layers and uses two filters

in each convolutional layer. Despite using a smaller number of parameters, the

Hyper Network [60] developed on top of WRN-40-2 (Hyper-WRN-40-2) performs

worse than WRN-40-2. ResNet20 with three paths and routing (ResNet20-3-

CP/CC) outperforms WRN-40-2. ResNet20 with two paths outperforms ResNet110

in CIFAR10, and ResNet20 with three paths outperforms ResNet110 in CI-

FAR100. This is remarkable because ResNet20 is much shallower than ResNet110,

28

Table 3.3: Comparison of ResNet variants. ResNet20-3 performs better than ResNet110.
ResNet20-3/4 and ResNet32-3/4 perform as well as or better than existing adaptive designs,
most of which are based on ResNet110.

Network Params (M) CIFAR10 CIFAR100

ResNet20 [1] 0.27 8.75 -
ResNet110 1.7 6.61 26.88
ResNet164 2.5 5.93 25.16
WRN-40-2 [6] 2.2 5.33 26.04
Hyper-WRN-40-2 [85] 0.15 7.23 -
SEResNet110 [63] 1.7 5.21 23.85
BlockDrop [67] 1.7 6.4 26.3
ConvNet-AIG [66] 1.78 5.76 -
ConvNet-AIG all [66] 1.78 5.14 -

ResNet20-2-CP 0.59 5.86 27.7
ResNet20-3-CP 0.92 4.99 25.13
ResNet20-4-CP 1.29 4.81 23.82

ResNet20-2-CC 0.55 5.5 27.36
ResNet20-3-CC 0.82 5.18 25.76
ResNet20-4-CC 1.1 4.96 24.81
ResNet32-2-CC 0.94 5.14 25.96
ResNet32-3-CC 1.41 4.96 24.51
ResNet32-4-CC 1.88 4.59 23.52

and even after parallel paths (2/3/4) are added, the total number of parameters

is still lower than ResNet110.

Multi-path networks based on ResNet also outperform ResNet110-based adap-

tive feature extraction techniques. The ResNet110-based BlockDrop network

[67] performs worse than all of our multi-path networks with CIFAR10 and

just slightly better than ResNet20-2-CP/CC with CIFAR100. Compared to

ConvNet-AIG [66], which bases on ResNet110, ResNet20-3/4-CP, ResNet20-4-

CC, and ResNet32-3/4-CC perform better. With CIFAR10, except for ResNet20-

2-CC/CP, all of our multi-path networks outperform the SENet [63] which builds

on ResNet110 with identity mappings [2]. ResNet20-4-CP performs similarly

to SEResNet110 in CIFAR100, whereas ResNet32-4-CC outperforms it. Other

than ResNet32-4-CC, all of our multi-path networks have fewer parameters than

29

ResNet110-based networks.

It is important to note the effect of the depth in these experiments. While

all the networks we compared ours with have at least 110 layers, our networks

maximally contain 32 layers. The deeper networks we compared with generally

performed better in CIFAR100 than in CIFAR10. This phenomenon is particu-

larly evident in SEResNet110 as it performs inferior to all our networks except

ResNet20-2-CC/CP with CIFAR10 but shows competent performance with our

networks with CIFAR100. This observation adds that an optimum depth and

non-linearity are suitable to approximate the solution for a given task at a given

complexity. In this case, CIFAR100, being a more complex dataset than CI-

FAR10, can benefit from more layers in the stack than CIFAR10. Thus, it is

essential to attribute the suitable depth for each task while strengthening layer-

wise feature extraction with the chosen depth.

The CIFAR accuracy comparisons, along with the number of parameters in

each network, are shown in Figure 3.6. These charts reveal that our multi-path

networks exhibit the highest network utility for the chosen set of parameters.

For a given depth, Multi-path ResNets gives the best performance with cross-

prediction-based routing. However, we favor cross-connection-based multi-path

ResNets because they have a more straightforward routing method that signifi-

cantly reduces the widening’s routing overhead.

3.4.3 Multi-path ResNets on ILSVRC2012

We further evaluate multi-path ResNets in the ILSVRC 2012 [12,13], a 1000-

class image dataset containing 1.3M training images and 50k validation images.

We extend the residual networks [1] that are originally designed to learn in

ILSVRC 2012 with parallel paths and routing. Similar conditions exist for each

of these networks and the thin residual networks created for CIFAR learning.

The ILSVRC ResNets begin with a 7×7 convolution with a stride of 2, then a

30

ResNet20

ResNet32

ResNet44
ResNet56 ResNet110

ResNet164

WRN-40-2SEResNet110

BlokDrop

ConvNet-AIG

ResNet20-2-CC

ResNet20-3-CC
ResNet32-2-CC

ResNet20-4-CC
ResNet32-3-CC

ResNet32-4-CC

ResNet20-2-CP

ResNet20-3-CP
ResNet20-4-CP

Paramerets (M)

A
cc

ur
ac

y
(%

)

91

92

93

94

95

0.5 1.0 1.5 2.0 2.5

ResNets ResNet-X-CC ResNet-X-CP

(a) CIFAR10

ResNet110

ResNet164

WRN-40-2

SEResNet110

BlockDrop

ResNet20-2-CC

ResNet20-3-CC

ResNet20-4-CC

ResNet32-2-CC

ResNet32-3-CC

ResNet32-4-CC

ResNet20-2-CP

ResNet20-3-CP

ResNet20-4-CP

Paramerets (M)

A
cc

ur
ac

y
(%

)

71.5

73.5

75.5

77.5

0.5 1.0 1.5 2.0 2.5

ResNet ResNet-X-CC ResNet-X-CP

(b) CIFAR100

Figure 3.6: ResNet variant performance (accuracy) in CIFAR with the number of parame-
ters (millions). Blue circles show conventional ResNets and ResNet-based adaptive networks.
Green circles show multi-path ResNets with cross-prediction-based routing, while red circles
correspond to multi-path ResNets with cross-connection-based routing. Our networks flocking
to the top-left of the charts prove they show the best performance w.r.t the network complexity.

max-pooling operation. Then, four sequential stacks of residual blocks are used,

each stack containing a certain number of residual blocks with the same feature

map size. The first residual block of each stack begins with a stridden convolution

that downsamples the feature maps by a factor of two. The response from the

final residual block is input into a global average pooling block, followed by the

final fully connected layer to output the class response.

We exclusively employ cross-connection-based routing when extending these

models to parallel paths since it is less complex, consumes very little overhead, and

still produces reasonably comparable results to cross-prediction-based routing.

After the first convolution and max-pooling layer, we add a one-to-many adaptive

router, which broadens the network to parallel pathways. We then add cross-

connection-based routing layers following each stack of residual blocks with the

same feature map size. The next step is to average the dense predictions from

the final layer.

As explained above, we extend ResNet18 with two parallel paths and cross-

connection-based routing, resulting in ResNet18-2-CC. We train ResNet18-2-CC

in ILSVRC 2012 for 120 epochs with a batch size of 256. We employ an SGD

31

optimizer with a momentum of 0.9. The initial learning rate of 0.1 decays by a

factor of 10 every 30 epochs. We employ common data augmentation for ILSVRC

2012, rescaling the data to 256×256, selecting arbitrary 224×224 crop sizes, and

randomly inverting the horizontal axis. We use a portion of the ILSVRC 2012

dataset that only includes the first 100 classes to further assess deeper models

with parallel paths. There are 130k training images and 5k validation images in

this subset. Finally, we extend ResNet50 with two paths and cross-connection-

based routing and train with this subset (ResNet50-2-CC). Except for training the

models for 90 epochs, our training setup is the same as it is for the full dataset.

We also train ResNet50, WideResNet50-2, ResNeXt50-2-64, and ResNet101 to

compare with ResNet50-2-CC. WideResNet50-2 contains two times filters in each

layer, and ResNeXt50-2-64 contains two parallel operations in each layer.

In Table 3.4, we show the results of ILSVRC 2012 experiments. ResNet18-2-

CC easily outperforms ResNet18 and shows on-par performance with ResNet34.

It also surpasses WRN-18-1.5, the WideResNet18 with 1.5 times convolutional

filters in each layer that still has more parameters. In the 100-class subset,

ResNet50-2-CC outperforms its single path baseline (ResNet50), as well as WideResNet50-

2 and ResNeXt50-2-64, demonstrating the superiority of our method over other

widening at comparable complexity. ResNet50-2-CC even displays marginally

superior results to ResNet101, which is twice as deep.

Overall, these tests confirm that our multi-path networks and adaptive rout-

ing algorithms effectively use the resources in each layer. Thus, our multi-path

networks outperform conventional widening, other methods for rich layer-wise

feature extraction, and even conventional deepening at an equivalent or lower

complexity.

32

Table 3.4: ILSVRC 2012 Dataset: Single-crop and 10-crop validation error (%). ResNet18-
2-CC comfortably outperforms ResNet18 and show on-par performance to ResNet34. It
also surpasses WRN-18-1.5, which has 1.5 times filters. In the 100-class subset of
ILSVRC2012, ResNet50-2-CC outperforms WideResNet, ResNext counterparts, and even twice
deep ResNet101. * denotes reproduced results

Network Params Single-Crop 10-Crop
Top-1 Top-5 Top-1 Top-5

Full Dataset

ResNet18 [6, 86] 11.7M 30.4 10.93 28.22 9.42
ResNet34 [1, 6] 21.8M 26.77 8.77 24.52 7.46
WRN-18-1.5 [6] 25.9M 27.06 9.0
ResNet18-2-CC 23.4M 26.48 8.6 24.5 7.34

Subset of first 100 classes

ResNet50* 23.71M 20.46 4.96 19.26 4.72
ResNet101* 42.7M 19.16 4.58 17.78 4.44
WideResNet50-2* [6] 62.0M 19.82 5.02 18.62 4.76
ResNeXt50-2-64* [7] 47.5M 20.26 5.06 19.0 4.84
ResNet50-2-CC 47.5M 18.64 4.34 17.62 4.0

3.5 Visualizations

In this section, we analyze the cross-connection-based routing scheme’s gating

patterns using a variety of visualizations. We employ a VGG13 [4] network with

256 nodes per dense layer and half as many convolutional filters (32, 64, 128,

256) in each layer. As with the multi-path networks in Section 3.2, we connect

two of these networks using cross-connections, adding the routing layers after

each pooling operation and the first dense layer. We train this network with the

100-class ILSVRC 2012 subset.

We begin by displaying the variations of routing patterns of the trained network

at different depths. We further analyze the context of input which maximizes each

gate. We present the images from the validation datasets that activate specific

gating neurons the most. We also synthesize randomly initialized images that

maximize those neurons. To comprehend the class-wise gate activation, we plot

33

the gate activations of a few chosen classes. Finally, we show that each parallel

path can learn different information by plots of weight histograms of the two

parallel paths at selected layers.

3.5.1 Routing Visualization

G2
2= [g2

21 g2
22] G6

2= [g6
21 g6

22]

Figure 3.7: Route visualizations of VGG13-2-CC for the three images in Figure 1.1. The rout-
ing diagrams, top to bottom, correspond to Image 1.1a (Hummingbird in green background),
Image 1.1b (Hummingbird in blue background), and Image 1.1c (Electric ray in water), respec-
tively. In each routing layer, the gate strengths are indicated in connection thicknesses and
blue intensities, and the relative strengths of the input and output tensors are displayed in
red intensities. The gating vector G2

2, in shallow layers, displays identical gating patterns for
images 1.1b and 1.1c although they belong to two different classes. In contrast, gating vector
G6

2 that lies in deeper layers, displays similar gating patterns for the same class images 1.1a
and 1.1b. The routing layers situated in different network depths allocate their inputs based
on the level of the context (features) represented at that depth.

To comprehend the gating patterns, we display the routing flow through cross-

connections of the trained 2-path network. Figure 3.7 displays such routing flows

for the three images in Figure 1.1. Each routing layer has two parallel inputs,

two parallel outputs, and gates that weigh the cross-connections. We show each

routing layer’s input and output tensors’ relative activation and gate strengths. A

tensor’s relative activation strength is its average activation value normalized by

all such values of the parallel tensors in that layer. We color each box representing

a specific tensor with red intensities corresponding to these relative activation

strengths. Each input’s computed softmax gate values are directly transferred

to blue intensities and thickness values, then used to color the edges and circles

34

representing each gate, respectively. We use plain-colored boxes to represent the

stacks of traditional forward layers. They do not do cross-computations but do

contain sequential convolutions or dense operations that occur in parallel.

Let Gl
i ([gli1, gli2]) be the gating vector calculated from the lth cross-connecting

layer’s ith input tensor. We focus on the gating vectors G2
2 ([g2

21, g2
22]) and G6

2

([g6
21, g6

22]) in these routing diagrams. Although they are from distinct classes,

images 1.1b and 1.1c share comparable gating patterns with gating vector G2
2

(maximized g2
21), located in the network’s first layers. Even though both images

1.1a and 1.1b are of hummingbirds, G2
2 displays different gating patterns for them.

However, gating vector G6
2, which lies within a deeper layer, shows similar gating

patterns to the two hummingbird images (maximized g6
21) and noticeably different

gating pattern for the electric eel. This behavior illustrates that the gating in a

routing layer at a particular network depth is sensitive to the context/features

represented at that depth. Also, it highlights the importance of having routing

layers throughout the depth of the network since, at different depths, different

mixes of parallel resource allocation are suitable. We further investigate which

features maximize each gate next to comprehend the underlying causes of this

behavior better.

3.5.2 Gate Maximization Patterns

We show the images in the validation set that maximize and minimize each

gating neuron to comprehend the features (context) that maximize each gate

and, consequently, to describe the gating patterns mentioned above. We also

synthesize the network input while freezing the trained network to maximize

the specific gating neuron (prior to softmax activation). This is similar to the

gradient ascent method that [87] introduced. For this visualization, we use four

gating vectors, G2
2, G6

1, G6
2 and G7

1, where G2
2 and G6

2 are the gate vectors described

in the previous visualization. Due to the softmax activation, one of a pair of

gating neurons is inversely connected to the other; thus, increasing one gate has

35

(a) g221

(b) g611

(c) g621

(d) g711

Figure 3.8: Features that maximize gates. Each sub-figure corresponds to a specific gate
and shows the ten images that maximally activated the gate at the top, the ten images that
minimally activated the gate at the bottom, and the synthesized image that maximizes the gate
at the right. g221, in shallow layers, maximizes for blue. Other gates which lie in deeper layers
maximize for more abstract attributes: g611 for snake body patterns, g621 for bird patterns, and
g711 for raised upper body patterns.

the opposite effect as reducing the other. Therefore, from each pair of gating

neurons, we select just one for visualization—correspondingly, gating neurons

g2
21, g6

11, g6
21 and g7

11 from each gating vector.

The results of this visualization are shown in Figure 3.8. The top left of each

subfigure shows the 10 photos that produce the highest gate activation, while the

bottom left shows the 10 images that give the lowest activation. The synthesized

image that maximizes the gate neuron is presented to the right. Gate g2
21 (Fig

3.8a), which lies within the initial layers, maximizes for the blue color, which is

36

a low-level detail. However, all other gates in the figure that lie within deeper

layers maximize for complex patterns. For example, gate g6
11 maximizes for snake

patterns, gate g6
21 maximizes for bird patterns, and gate g7

11 maximizes for animal

poses with raised thorax. Each synthesized image displays patterns that maximize

the related gate, and they both agree on the top 10 active images.

We interpret the gating patterns in Section 3.5.1 Based on the maximization

patterns of g2
21 and g6

21. Since the gate g2
21 maximizes for the blue color, it shows

high activation for 1.1b and image 1.1c, which consist of backgrounds highly

composed of blue. Meanwhile, it shows a lower activation to image 1.1a despite

being in the same class as image 1.1b. Gate g6
21, which lies deeper, maximizes for

bird patterns. The two hummingbird images (image 1.1a and image 1.1b) highly

activates this gate, whereas the gate shows a lower activation for the electric eel

(image 1.1c). This behavior demonstrates how the task-related visual context is

dispersed along with the trained network’s depth. It is crucial to have routing

layers within the network for each segment of layers because resource allocation

in different stages of depth differs from one another depending on the level of

context represented in that depth.

3.5.3 Class-Wise Gating Patterns

Our multi-path networks’ resource distribution in each layer is based on the

type of feature maps present at that depth. We plot the gate response of a few

chosen classes for gates g2
21 and g6

21 to look into any potential influences of the class

on gating patterns. For this, we select four classes in the ILSVRC 2012: scorpion,

hummingbird, sea snake, and white shark. We record the gate responses for each

class’s images and summarize the gate activation histograms for the four classes

Figure 3.5.3.

The class white sharks exhibits overall high g2
21 activation, with blue sea water

being the predominant detail in most instances. However, the distribution of g2
21

37

(a) g221 (b) g621

Figure 3.9: ILSVRC 2012 validation set gate activation histograms for four selected classes.
While other classes are similarly distributed, the white shark, with primarily blue seawater as
the background, has a high activation for g221 overall. While other classes, which agree less with
bird patterns, exhibit less g621 activation, hummingbird images often show a high activation.
A class’s members receive similar gating in that layer if the triggering pattern of any gate is
frequently observed in that class.

is evenly distributed among the other classes since those classes contain instances

that may or may not contain dominating blue. Furthermore, class hummingbird,

which exhibits bird poses and patterns, exhibits overall high activation for g6
21,

which activates for bird patterns. However, since they rarely agree on bird pat-

terns, the other classes exhibit low g6
21 activations. The context of features, which

is vital for the resource allocation in each layer, is a complicated detail that goes

beyond merely the class. However, because of the distinctiveness of some classes,

the majority of their members could have identical gating patterns in specific lay-

ers. This occurs when the class members make up most of the gate’s triggering

pattern.

3.5.4 Parallel Computation Weights

Grouping homogeneous feature maps into parallel paths and allowing the par-

allel filter sets of the same layer to learn various informational subsets is one of

the goals of routing in multi-path networks. We present the weights histograms

of the VGG13-2 selected layers with two parallel convolutions or dense operations

on the two separate sets of feature maps to see whether our strategy was success-

38

(a) layer 4 (b) layer 6 (c) layer 8 (d) layer 11

Figure 3.10: Parallel operations’ weight histograms at particular layers. The two weight
histograms in each sub-figure correspond to the two parallel paths at the particular layer.
Histogram variations within the same layer demonstrate that distinct information is learned
along parallel paths.

ful. The weight histograms for the two parallel processes at layers 4, 6, 8, and

11 are displayed in Figure 3.10. While the other layers are convolutional, layer ll

is dense. The parallel pathways’ discrete histograms demonstrate that they have

acquired distinct information.

3.6 Conclusion

In this chapter, we introduced techniques for combining multiple parallel paths

into a single network and intelligently routing data that depend on the input. Our

approach consistently achieved better classification accuracy than existing widen-

ing methods with similar complexity. Our networks also outperformed existing

adaptive learning strategies and even performed slightly better than thinner,

deeper networks with a similar number of parameters. Through experimenta-

tion, we demonstrated the effectiveness of our routing mechanisms in handling

input dependency and extracting unique features from parallel paths. Our multi-

path networks can be viewed as a single adaptive model that smoothly switches

between different sub-modules depending on the input.

Towards regularizing gating:

Our multi-path networks, including the sub-gating networks, learn from the

end objective; in our experiments, classification. In the current design, the L2

39

regularization of weights and the global average pooling of input tensor function

as the regularization methods for the gating network. However, there may be

instances where a particular gating network learns to mostly activate one gate

and leave other gates deactivated for all samples. E.g., a two-gate sub-gating

network may learn to activate only one gate most of the time, leaving the other

gate less activated for all samples.

The gate activations are conditioned on the input feature map set. A particular

gating network takes one tensor among the parallel as input and computes the

probabilities of that tensor being routed to each of the next layer parallel tensors.

The decision of which path to forward the current tensor is based on the features

of the current tensor. Thus, it is worthwhile to emphasize motivating the gating

network to learn clustering probabilities in addition to learning from the end

objective. Therefore, we explore gating regularization as a clustering objective.

In the following section, we introduce neural mixture models, in which a neural

network output nodes are trained to cluster its input into a number of clusters

equal to the number of output nodes.

40

Chapter 4

NEURAL MIXTURE MODELS FOR CLUSTERING

4.1 Introduction

The gating networks introduced in the previous section govern resource al-

location between parallel processes in a multi-path layer. While those gating

sub-networks learn from the end objective, we focus on further regularizing them

as there may be some gating vectors that mostly activate in a specific direc-

tion. To this end, we focus on using a clustering objective directly on the gating

neurons, which enforces soft-cluster input feature maps and activates gates ac-

cordingly. We propose neural-based mixture modeling, which enforces a neural

network to learn cluster distributions and posterior cluster assignments concur-

rently. This chapter proposes and evaluates our neural-based mixture modeling

as a standalone clustering task.

Clustering groups together the data points with similar characteristics. Since

the labels are absent, clustering algorithms must learn both cluster representa-

tions and member assignment. One way to accomplish this dual-objective learn-

ing is by iteratively switching between the two phases, following the Expectation-

Maximization (EM) [88] algorithm: 1) assigning samples to clusters according to

the degree of match to the cluster representations and 2) updating the current

cluster representations based on the member assignments.

Mixture-model-based clustering follows this iterative optimization. They use

distributions such as Gaussian and Bernoulli with pre-defined parameters (a prob-

41

Relevance
Scores

Input

Cluster
Likelihoods

Neural Network/Cluster Parameters

Forward Pass - Calculate memberships from

Backward Pass - Upgrade from memberships

Posterior
Assignment

Transform

Figure 4.1: Overview of mixture-EM formulation with a neural network : The cluster parame-
ters are represented by θ, the network parameters. When the network produces cluster relevance
scores during the forward pass, they are converted to cluster distribution outputs (likelihoods).
The posterior membership probabilities are then computed using these distribution outputs.
The computed memberships are used in the backward pass to update the parameters, θ.

ability, or mean and covariance) as cluster representations. The observed data

points are fitted with a mixture of these distributions such that the total likelihood

is maximized. The distribution parameters and posterior member assignments

are iteratively updated, retaining one fixed at a time, following the EM algorithm.

We follow mixture modeling with EM and use a neural network to model

cluster distributions and posterior member assignments. The parameter updates

follow the EM algorithm batch-wise via backpropagation. Since a neural network

can approximate complex functions [18], we can approximate complex cluster

representations better than limited-parameter hand-designed distributions in the

EM framework. Moreover, the network-learned distributions are not pre-selected

and are adaptive to the data space. Also, such a mixture-EM objective can easily

be plugged into a gating sub-network within a main network as a regularization

loss.

First, each cluster distribution is approximated by a parametric function which

is the neural network from its first layer to the respective final layer neuron, fol-

lowed by an extra transformation. This additional transformation ensures that

the altered final layer neuron behaves as a probability density function of the

input, thus, preventing one cluster distribution from dominating other distribu-

42

tions to capture all datapoints. This transformation uses sigmoid activation on

the final layer neurons that are normalized over the batch and further normalized

by a constant (a temperature parameter) so that they have a batch mean of zero

and fall within the most linear region of the sigmoid function. As demonstrated

later, restricting the final-layer neurons to have a batch mean of zero and to fall

within the most linear portion of the sigmoid causes all cluster distributions to

possess the same integral over the sample space. Consequently, the approximated

distributions serve as probability density functions of input, avoiding trivial so-

lutions.

Second, we present a batch-based EM optimization for end-to-end network

training. Using the estimated cluster likelihoods, we compute the posterior prob-

abilities of cluster assignments. These posteriors are estimated by taking softmax

of normalized final-layer outputs. Using the estimated posteriors and cluster like-

lihoods, we derive the EM loss for backpropagation. The optimization of the net-

work consists of online batch-wise EM iterations. For each iteration, we input the

network a batch of data. The forward pass corresponds to the E-step, which cal-

culates the cluster likelihoods and posterior probabilities for the given batch from

the network output, and derives the EM loss. The backward pass of the network

corresponds to the M-step, which performs a gradient step toward optimizing the

EM loss. Figure 4.1 depicts an overview of the suggested neural network-based

mixture-EM optimization.

Finally, for image clustering, we combine EM optimization with consistency

optimization between the original and transformed versions of data. It is vi-

tal to force the neural network to acquire generic semantically significant features

and prevent itself from overfitting to the low-level features in images. Thus,

we combine learning to generate a consistent response to the original and its

augmented versions [89–91] with the mixture-EM optimization. Our consistency

optimization minimizes the Kullback–Leibler (KL) divergence [92] between the

responses of the model to the original images and the augmented images. This

43

optimization is incorporated into the EM procedure, resulting in a two-step op-

timization. We demonstrate that this dual-optimization yields a more rapid and

better convergence than only consistency optimization.

The proposed optimization conducts EM iterations in batches online, thereby

eliminating the requirement to iterate over the whole data space for a single

EM update. A neural network allows complicated cluster representations to be

learned instead of limiting to manually-selected distributions. The transition of

the last layer neurons to regulate the modeled cluster distributions as probability

density functions avoids the model from falling to trivial solutions, hence removing

the need for extra losses to offset this tendency. The implementation is simple,

and the loss function may be effortlessly plugged in as a regularization loss for

sub-gating networks.

4.2 Related Work

Clustering a data set typically involves learning cluster representations, which

are the basis for grouping the data points into those clusters. Classes of tech-

niques to discover cluster representations include centroid-based [93], connectivity-

based [94], distribution-based [95], subspace-based [96], and density modeling-

based [97] methods. Mixture modeling is a distribution-based clustering model

in which a statistical distribution describes each cluster. GMM [98] models each

cluster by a Gaussian distribution and iteratively improves the cluster distribu-

tions and assignments using the EM algorithm [88]. K-means [93] can be viewed as

a specific instance of GMM in which the clusters are modeled as untilted spheres.

In addition, there have been efforts to model sophisticated clusters using neural

networks, as traditional clustering techniques’ cluster representability is limited

to a few hand-designed parameters [90, 99–103].

Notably, numerours deep image clustering algorithms still use k-means [100,

44

104–107]. These works either employ k-means in a learned latent space (abstract

embedding space with lower number of dimensions than the inputs, but can

represent the inputs meaningfully) [100, 104, 106] or synthesize k-means using

neural networks [105]. The mapping from input space to latent space is learned

via a self-supervised representation learning [100, 104, 106]. k-means is applied

to either cluster the latent space [104] or to produce pseudo-labels for network

training [100].

Although synthesizing k-means with a neural network has been explored [105],

implementing mixture modeling with a neural network has been studied only

infrequently, to the best of our knowledge. Neural Expectation-Maximization

(N-EM) [108] presents differentiable EM-based clustering. The goal of N-EM is

to learn the perceptual grouping of a given input by distinguishing the various

conceptual entities in the input. N-EM employs a neural network to estimate the

statistical parameters of a defined cluster distribution given object vectors (e.g., a

probability if Bernoulli, mean, and variance if Gaussian). The cluster distribution

outputs are computed using these statistical parameters. Then, the network

parameters and the object vector are updated via backpropagation. Instead

of using a neural network to predict the parameters of a human-defined cluster

distribution, we use a neural network to estimate the cluster distribution function

along with its parameters for different clusters.

A successful deep image clustering approach should acquire generic semantic

information necessary for identifying abstract groups. Thus, allowing a neural

network to extract rich semantic features while learning the clustering is essential.

Typically, a self-supervised representation learning task is used to acquire a robust

semantic representation of images that serves as a solid foundation for clustering

[90,91,99,101–104,106,107,109,110]. The feature representation is either learned

prior to clustering and clustering is performed in the learned latent space [91,

104, 106, 107, 109, 110], or is simultaneously learned alongside clustering [90, 99,

101, 102]. In our case, we use consistency optimization as our feature learning

45

task for image clustering and fuse it with mixture-EM clustering optimization to

optimize both the objectives side-by-side.

The proposed mixture modeling employs a neural network as the cluster dis-

tribution estimator and its parameters as cluster distribution parameters. The

neural mixture-EM optimization is a superior alternative to k-means and other

conventional clustering algorithms. In addition, our clustering objective can be

used in conjunction with other feature learning techniques, such as consistency

optimization and pre-text task learning, and self-labeling fine-tuning approaches,

to construct quite sophisticated end-to-end multi-stage clustering solutions. How-

ever, we only uncover the combination of consistency and mixture-EM optimiza-

tion for image clustering, resulting in a two-fold single-stage training procedure.

4.3 EM Algorithm in Mixture Modeling

Expectation-Maximization (EM) [88] is an iterative algorithm often used where

direct objective functions are difficult to optimize. Most commonly, EM is used to

approximate solutions to the maximum likelihood estimate (MLE) and maximum

a posterior estimation (MAP). Mixture modeling fits a collection of distributions

to the sample space by maximizing the total likelihood of the composite distribu-

tion. Due to the difficulty of maximizing this likelihood, EM is commonly utilized

to maximize an alternate lower bound. This section briefly discusses how EM can

approximate MLE when fitting a mixture of distributions to a given dataset.

Let x represent an observation of the continuous random variable X in space D,

and let D represent a set comprising N such observations that are sampled from

D (D ⊂ D). Let θ denote the cluster-defining parameters. The space D must

be clustered into K clusters. We create a discrete latent variable Z that can be

viewed as the cluster assignment (z ∈ [1, . . . , K]). The purpose of MLE is to

46

discover θ such that the total likelihood marginalized over Z is maximized:

L(θ;D) =
∏
x∈D

∑
z∈[1,...,K]

f(x, z | θ). (4.1)

f(x, z | θ) is the joint probability density of x and z for the parameters θ. It

represents the likelihood of θ for the observed x and z: l(θ;x, z), in the likelihood

function. Note that f stands for a continuous probability density while p stands

for a discrete probability.

MLE finds optimum θ which maximizes this likelihood. Due to the difficul-

ties in optimizing this product, the logarithm is often taken, leading to the log-

likelihood;

logL(θ;D) =
∑
x∈D

log
∑

z∈[1...K]

f(x, z | θ). (4.2)

However, due to the logarithm of the summation, which arrives from the marginal-

ization over Z, it is difficult to optimize this objective function. Therefore, the

EM procedure optimizes a lower bound instead;

Q(θ) =
∑
x∈D

∑
z∈[1...K]

p(z | x, θ) log[f(x, z | θ)]. (4.3)

Here, p(z | x, θ) is the posterior probability of Z = z given x.

The EM Algorithm switches between the E-step and the M-step while opti-

mizing Equation 4.3. At the E-step in the tth iteration, it derives the posteriors

for the current parameters θt: p(z | x, θt) and computes the EM objective.

Q(θ | θt) =
∑
x∈D

∑
z∈[1...K]

p(z | x, θt) log[f(x, z | θ)], (4.4)

The M-step optimizes this objective w.r.t. θ,

θt+1 = arg max
θ

Q(θ | θt). (4.5)

47

4.4 Formulating Mixture-EM on a Neural Network

This section realizes the mixture modeling with the EM algorithm on a neural

network to cluster a dataset end-to-end. Rather than maintaining a set of dis-

tributions from a hand-designed function (e.g., Gaussian) and optimizing their

statistical parameters (e.g., means and covariances of each cluster Gaussian), we

let the neural network freely model the cluster distributions along with their pa-

rameters for each cluster. The neural network parameters in all layers but the

final layer of the network decide the shared representations of the clusters (e.g.,

abstract shape), while the parameters in the final fully connected layer learn the

cluster-specific representations (e.g., dimensions of each cluster).

It is vital for all cluster distributions to act as probability density functions

(PDFs) of the input. The distribution outputs should be continuous, positive,

and share the same integral throughout the sample space. If all distributions

do not share the same integral, a single cluster distribution could rapidly grow

to contain all datapoints and dominate the other distributions. This results in

the trivial allocation of all datapoints to a single cluster. We ensure the PDF

behavior of the modeled distributions by normalizing the last layer neurons (each

neuron corresponds to a single cluster) over the batch and constraining their

sigmoid outputs to the most linear portion of the sigmoid. We show that such

transformation enables the approximated cluster distributions to act as PDFs.

The posterior class assignments are calculated using the softmax of the normalized

final layer neurons. We then use the posteriors and the distribution outputs to

calculate the EM objective in Eq. 4.4.

We carry out online EM optimization using batch-wise backpropagation. At

one iteration, we feed the neural network a batch of observations (samples from

input space) and conduct one EM iteration, corresponding to calculating and

backpropagating the EM-based loss. In contrast to conventional EM, where the

current EM loss is fully optimized in the M-step (Eq. 4.5), we take a single

48

gradient descent step in optimizing the EM loss for the current batch. We feed

the next batch of observations at the next iteration and repeat EM. These batch-

wise online EM iterations avoid the inefficient collection of all observations for a

single EM iteration.

Let x denote a sample in the continuous space X (an observation). Our task

is to cluster this space to K number of clusters. We use K output nodes of

the neural network to estimate K cluster distributions. Let g be a parametric

function, a neural network that learns the cluster representations and member

assignments. Then, the cluster parameters θ are reflected by the neural network

parameters. The network’s final layer’s K nodes represents the relevance of input

to the respective clusters. Given a batch of n observations xi,i=1,...,n, the network’s

final layer outputs K relevance scores ai for each xi:

ai = [ai1, . . . , aiK] = gθ(xi) (4.6)

Here, aij stands for the relevance of observation xi to cluster j (j = 1,. . . ,k). aij

increases with the degree of membership of xi to cluster j. We illustrate this

relevance as the output of two composite functions gθs and gθej :

aij = gθs,θej (xi) = gθej (gθs(xi)). (4.7)

Say, the neural network has L layers. gθs represents the portion of the network

from input to layer L−1. All clusters share the parameters of this network portion

θs. The mapping from layer L − 1 to the final layer neuron j is represented by

gθej . The parameters θej here are exclusive for the jth cluster.

4.4.1 Approximate Cluster Distributions

Here, we show how to estimate each cluster’s distribution function hθ, i.e., the

probability density of a certain observation x given the cluster assignment z and

49

its parameters θ: f(x | z, θ). If hθs,θej (x) is the cluster j distribution function,

f(x | Z = j, θ) = hθs,θej (x). (4.8)

hθs,θej (x) is fundamentally a PDF of x and we intend to transform each batch’s

relevance score gθs,θej (x) to obtain hθs,θej (x). Thus, we first describe the necessary

characteristics of hθs,θej (x):

1. hθs,θej (x) must be a continuous function x.

2. hθs,θej (x) must be positive for all x.

3. the integral of hθs,θej over the space D should be 1.

Nonetheless, the integral of hθs,θej being a constant shared by all clusters instead of

being 1 still yields their behavior as PDFs because such a constant is irrelevant in

the optimization process. This restriction of integral controls the cluster shapes

and avoids only a few clusters dominating others (trivial solutions).

Although the output of the last layer jth neuron: aij = gθs,θej (xi) is linked to the

degree of xi’s membership in cluster j, it is not yet suitable for approximating the

cluster j distribution. Consequently, we turn this relevance into a form capable

of representing the cluster distribution via a second transformation, H:

hθs,θej (x) = H(gθs,θej (x)). (4.9)

This transformation is derived step-by-step to satisfy the criteria above. Initially,

gθs,θej (xi) (or aij) is a continuous function of xi. However, it is the output of a final

layer neuron prior to any activation; therefore, it can be negative. Simply taking

the exponential of aij will transform it into a positive value. However, due to the

exponentially growing nature of this function and having no fixed upper bound,

50

we use a normalized form of the exponential, the sigmoid activation instead,

sigmoid(aij) =
1

1 + exp(−aij)
. (4.10)

The final requirement is not yet met, as the integral of sigmoid(aij) over x ∈ D

is not a constant value shared by all clusters. We enable this attribute by setting

a constraint on the integrals of all cluster distributions in space D. First, we

normalize the sigmoid’s input, which is the relevance score aij, across all such

scores to cluster j in the batch.

a∗ij =
aij − µj
σj

, where µj =
1

n

n∑
i=1

aij and σ2
j =

1

n

n∑
i=1

(aij − µj)2. (4.11)

a∗ij denotes the normalized relevance of xi to the jth cluster. µj and σj are the

batch’s mean and standard deviation of aij. We again divide a∗ij by an additional

constant γ (γ > 1), that plays the role of a temperature parameter. Therefore,

the cluster j distribution function that meets all the criteria is,

hθs,θej (xi) = sigmoid(g∗θs,θej (xi)/γ) = sigmoid(a∗ij/γ). (4.12)

The rationale for normalizing aij and dividing by γ are as follows. According

to Figure 4.2, if we assume that the sigmoid’s input is a standard normal vari-

able (mean 0, variance 1), the sigmoid input is constrained to a small interval

around zero, and distant values are rare (99.9% confidence interval of standard

normal variable is [−3.29, 3.29]). Even in the absence of this assumption, when

we normalize a set of n points by their own sample statistics, the attainable up-

per bound for the maximum Z score is proven to be (n−1)√
n

by Shiffler 1988 [111].

Consequently, (n−1)√
n

be the upper bound for the most deviated Z score. Simi-

larly, the Z score cannot go beyond − (n−1)√
n

(This bound is derived from the edge

case of n − 1 samples being the same value and the nth sample being distinct).

Thus, we can conclude that the normalized points are bounded to the interval

51

−11.23 −5 5 11.23

0.5

1

a∗

sigmoid(a∗)

sigmoid(a∗/5)

1√
2π
e−

1
2
x2

Figure 4.2: A standard normal variable is constrained to a narrow interval around 0 with high
certainty. Moreover, the sigmoid function input a∗ is bound to [-11.23,11.23] (green vertical
lines) as a∗ is normalized with a batch size of 128. We divide a∗ by γ = 5 to maintain the sigmoid
output for this interval in sigmoid’s predominantly linear region. With sigmoid activation’s zero
mean linear region input, the overall function from input x to sigmoid output behaves as a PDF
of x.[
−(n−1)√

n
, (n−1)√

n

]
. For instance, if we normalize aij over 128 observations, the nor-

malized a∗ij is bounded to interval [−11.23, 11.23]. Moreover, we divide a∗ij by γ

(γ > 1) to maintain the sigmoid output within its predominantly linear zone for

all bounded a∗ijs. γ is linked to the batch size. For batch size 128, γ being 5

sufficiently ensures that the sigmoid output is predominantly linear for all a∗ij, as

shown in Figure 4.2.

Normalizing aij across the batch and subsequent division by γ imposes two sig-

nificant constraints on the cluster distribution hθs,θej (xi), as outlined below:

1. sigmoid activations’s input: a∗ij/γ or g∗θs,θej (xi)/γ, is zero on average over

the batch:
1

n

n∑
i=1

a∗ij/γ = 0. (4.13)

2. For any xi, sigmoid(a∗ij/γ) restricts to sigmoid’s predominantly linear re-

gion.

Due to these two conditions, we can estimate the batch average of sigmoid(a∗ij/γ)

by 0.5:
1

n

n∑
i=1

hθs,θej (xi) =
1

n

n∑
i=1

sigmoid(a∗ij/γ) = 0.5. (4.14)

Using Monte Carlo integral estimate [112], we can verify that the jth clus-

52

ter distribution integral over x ∈ D is a fixed value shared by all clusters. Let’s

define Ij as the jth cluster distribution integral over the space D:

Ij =

∫
D
hθs,θej (x) dx. (4.15)

Here, x is an m-dimensional observation from space D (D ⊂ Rm). We approx-

imate the integral Ij by uniformly sampling n observations xi|i=1,...,n from space

D and using the Monte Carlo approach:

Ij ≈ V
1

n

n∑
i=1

hθs,θej (xi). (4.16)

V denotes the volume of m-dimensional space D: V =
∫
D dx. According to

Eq. 4.14, the mean distribution output across n samples is 0.5. Consequently,

the Monte Carlo estimate for the jth cluster distribution integral across space D

is,

Ij ≈ 0.5V. (4.17)

All cluster distributions hθs,θej (x)|j=1,...,K share the same integral approximation

as cluster j (0.5V). Thus, all distributions behave as PDFs with the same integral

over space D. This integral regularization avoids certain clusters from dominating

other clusters.

4.4.2 Deploying EM Batch-Wise

Having defined the cluster distributions, we proceed to the batch-wise EM it-

erations. Consider the tth iteration forward pass with a batch xi,i=1,...,n. We first

derive the posterior probabilities p(z | x, θt) of cluster assignments. The proba-

bility that xi is allocated to cluster j for current parameters θ is,

p(Z = j | xi, θ) =
p(Z = j | θ)f(xi | Z = j, θ)∑K
k=1 p(Z = k | θ)f(xi | Z = k, θ)

. (4.18)

53

Parameters

Shared Specific to jth Cluster

Likelihoods

Posteriors

Neural Network

Normalization

Loss To Backpropagate

EM Objective

Figure 4.3: Deploying Mixture-EM method for end-to-end training of a neural network for
clustering. Normalized final layer relevance scores are used to determine cluster likelihoods and
posteriors. Then, the EM-based objective is derived and backpropagated using the likelihoods
and posteriors.

p(z | θ) denotes the priors of cluster allocation, which are derived from the previ-

ous step’s posteriors. We set the prior for each cluster to 1/K as the datasets we

use in this paper are uniformly distributed among K classes. Thus, the posterior

for cluster j simplifies to the normalized cluster j distribution:

p(Z = j | xi, θ) =
hθs,θej (xi)∑K
k=1 hθs,θk(xi)

. (4.19)

In consideration of the simplicity of numerical optimization, we reduce this ratio

between sigmoids to the ratio between unnormalized exponentials, resulting in

the softmax activation. Thus, the posterior p(Z = j | xi, θt) is approximated by

the softmax-activated a∗ij. (Denoted by pij later):

p(Z = j | xi, θt) ≈
ea
∗
ij∑K

k=1 e
a∗ik

= pij. (4.20)

Then, we estimate the likelihood of parameters θ given observation x and

cluster assignment z: l(θ;x, z), which is computed by taking the joint probability

density of x and z for the current θ: f(x, z | θ). This likelihood is expandable to

54

p(z | θ)f(x | z, θ). As we have specified the prior of cluster assignment p(z | θ) to

be constant 1/K, we can ignore it during optimization. Consequently, the joint

density is represented by the conditional density f(x | z, θ), hence the cluster

distribution:

f(x, z | θ) = hθs,θej (xi) = sigmoid(a∗ij/γ). (4.21)

Once the posteriors and likelihoods of θ are estimated, we compute the loss for

the current batch corresponding to the EM objective in Eq. 4.4:

Lθ|θt = − 1

n

n∑
i=1

K∑
j=1

pij log[sigmoid(a∗ij/γ)]. (4.22)

To improve the total likelihood for current posterior probabilities, we backprop-

agate this loss and update network parameters θ while holding pijs constant.

Figure 4.3 shows the overall mixture-EM formulation with a neural network.

Batch-normalization of the relevance scores and division by γ is essential to

constrain them to the predominantly linear region of the sigmoid with zero mean,

enabling the sigmoid outputs’ PDF behavior. γ is a hyperparameter that de-

pends on the batch size. Since we use a batch size of 128, the normalized

relevance scores are considerably dispersed around zero and bounded between

[-11.23, 11.23]. γ to 5, ensuring that the sigmoid of these scores falls within the

sigmoid linear region. Moreover, because our framework executes EM steps in

batches, the optimizer sees a batch of data that reflects the whole sample space

in each iteration. The higher the batch size, the more accurately it can reflect

the sample space for every EM iteration. In the meantime, the smaller the batch

size, the higher the addition of noise to the sample space approximation, which

assists in regulating the optimization process.

55

4.4.3 Image Clustering with Consistency Optimization

Training a network with a clustering objective solely on the original data is

insufficient for image clustering, as the network could overfit to irrelevant low-

level features. We transform images during the learning process to enable the

network to extract semantically meaningful features from images in conjunction

with mixture-EM optimization. T transforms an original image xi into its altered

version xtri : xtri = T (xi). It comprises common data augmentations such as

random cropping, shifting, rotating, and scaling, as well as random adjustments

to image brightness, contrast, hue, and saturation. As before, we calculate

relevance scores for the augmented images: atri = gθ(x
tr
i). We add an additional

term to the loss in Eq. 4.22, the log-likelihood of the augmented image weighted

by the original image’s posterior. Therefore, the loss is,

Lθ|θt = − 1

n

n∑
i=1

K∑
j=1

pij
[
log[σ(a∗ij/γ)] + log[σ(atr∗ij /γ)]

]
. (4.23)

Optimization of the log-likelihoods of original and augmented images both in

favor of the original image’s posterior (pij) enables the neural network to preserve

similar network outputs for both images. In continuation of this purpose, we

utilize a similar approach to consistency regularization [89] to urge the network

to produce similar outputs for the original and augmented images. We compute

qi, the posterior probabilities for the augmented input xtri : qi = softmax(g∗θ(x
tr
i)),

and minimize the KL divergence between pi and qi:

DKL(pi || qi) =
K∑
j=1

pijlog
pij
qij
. (4.24)

When minimizing the KL divergence, we hold the original image’s posteriors pi

constant, thereby creating temporary soft labels for the altered image response

qi. We fuse the consistency optimization (Eq. 4.24) with the EM optimization

(Eq. 4.23). For each batch, gradient steps in optimizing the two objectives are

56

Algorithm 3 Two-fold optimization for batch [xi,i=1...n] and transformed batch
[xtri,i=1,...,n] with the network parameterized by θ

EM Optimization
Calculate cluster relevances scores
ai = [ai1, . . . , aik] = gθ(xi). Similarly atri = gθ(x

tr
i)

Normalize relevance scores
a∗ij =

aij−µj
σj

. Similarly atr∗ij .

Calculate posterior probabilities
pi = softmax(a∗i).
Get clustering loss: Lθ|θt ,

− 1
n

∑n
i=1

∑K
j=1 pij

[
log[σ(a∗ij/γ)] + log[σ(atr∗ij /γ)]

]
(Eq. 4.23)

Backpropagate loss and update parameters θ
θt → θt+1

Consistency Optimization for Augmented Images
Calculate posteriors pi with updated θ
pi = softmax(g∗θ(xi))
Calculate posteriors for augmented images
qi = softmax(g∗θ(x

tr
i))

Step in optimize the KL Divergence (pij constant)

DKL(pi || qi) =
∑K

j=1 pijlog
pij
qij

(Eq. 4.24)

performed sequentially using different optimizers. This results in a two-step op-

timization procedure, as seen in Algorithm 3.

After one gradient step of EM optimization, the network parameters are mod-

ified in favor of an original image’s current posteriors pi, resulting in an improved

posterior. The consistency objective encourages the network to keep its response

to the altered image qi close to the original response pi. It is inefficient to opti-

mize these two goals simultaneously. Because while the original image’s posteri-

ors pi update to more accurate values, the consistency goal requires the altered

image’s posteriors qi to remain closer to the old pi. Therefore, we alternately

optimize these two objectives. After one step of EM optimization, we recalculate

the original image posteriors to optimize the consistency objective because the

network has been updated.

57

4.5 Experiments

4.5.1 Two-Dimensional Space

We first perform a small-scale clustering study with a 2-d MNIST [113] dataset-

generated space to investigate cluster assignments and the learned cluster distri-

butions. We supervise train a CNN with the MNIST dataset to generate 2-

dimensional data. The network comprises a bottleneck layer of two nodes pre-

ceding the final layer of ten nodes. Once the network has been trained, we

retrieve the bottleneck layer output for all images, resulting in set D of two-

dimensional points (See Figure 4.4a). This supervised setup for dimensionality

reduction allows 2-d samples to disperse into observable clusters more effectively

than unsupervised methods [114–116].

(a) Input Space (b) Categorized Space

Figure 4.4: The 2-dimensional sample space produced from the MNIST dataset and the
clustered set following training with our approach. Our approach successfully captures the ob-
servable clusters.

We employ a three-layer perceptron that has two hidden layers with 32 nodes

in each and a final layer with ten nodes (for ten clusters) to cluster this set. We

employ the mixture-EM optimization (Eq. 4.22), which utilizes only the original

data. We apply a batch size of 128, a γ value of 5, and the Adam optimizer [48]

with a learning rate (LR) of 0.001 to train the network. Figure 4.4b depicts the

58

clustered space after training for ten epochs, in which the network successfully

captures the observable clusters. We use a running mean and a running standard

deviation for normalizing relevance scores rather than using only each batch’s

statistics. Using running statistics smoothes the optimization and allows inference

with varying batch sizes.

cluster 4 cluster 6 cluster 10

(a) Without normalizing relevance scores

cluster 4 cluster 6 cluster 10

(b) With normalized relevance scores

Figure 4.5: Effect of the relevance score normalization: Cluster distribution plots of selected
clusters after training. (a) Without relevance score normalization, certain clusters dominate
others by acquiring all data points (Here, cluster 6). (b) With relevance score normalization,
cluster distributions behave as PDFs of observation with a shared integral across the input
space. Each distribution shows a high likelihood for each observable group.

Figure 4.5 shows the cluster distribution (f(x | Z = j, θ) or hθs,θej (x)) contour

plots with input x. We select three clusters out of the ten that correspond to the

final layer’s fourth, sixth, and tenth nodes. Figure 4.5a depicts the selected cluster

distributions after training with unnormalized relevance scores aij, in which the

distributions do not adequately describe potential clusters. In addition, their

space integrals do not appear to share the same value. The distribution of cluster

6 maximizes likelihood for all samples, but the distribution of cluster 10 is quite

low for all samples. In this instance, the model falls to a trivial solution because

59

all samples are assigned to cluster 6. The distributions in Figure 4.5b are from the

same clusters but when trained using normalized relevance scores a∗ij. The contour

plots demonstrate that each distribution covers a visible cluster by displaying

high likelihoods for those locations. Since all distributions empirically show a

common integral over the observation space, they behave similarly to PDFs. The

normalization of relevance scores is thus vital for clustering.

Table 4.1: Average cluster distribution outputs with a batch of 128 samples for the clusters
shown in Figure 4.5. The average outputs reach arbitrary values without relevance score nor-
malization. The average distribution output is closest to 1 for Cluster 6. All average distribution
outputs reach 0.5 with relevance score normalization.

Cluster index j 4 6 10

1
n

∑n
i=1 hθs,θej (xi) with aijs (un-normalized) 0.736 0.999 0.108

1
n

∑n
i=1 hθs,θej (xi) with a∗ijs (normalized) 0.498 0.507 0.504

To validate the PDF behavior, we experimentally estimate the integrals of

the cluster distributions for these three clusters. As indicated by Eq. 4.16,

the cluster distribution h integral across space D is proportional to the mean

of h in n uniform samples. We further showed that because of the relevance

score normalization and further restriction to the linear region of sigmoid, the

average cluster distribution output of n samples reaches 0.5 (Eq. 4.14). To show

this phenomenon empirically, we estimate the mean cluster distribution outputs

1
n

∑n
i=1 hθs,θej (xi) for the three clusters across 128 samples and show the results

in Table 4.1. Without relevance score normalization, the batch’s average cluster

distribution outputs have varying values, with dominant cluster 6 showing an

average approaching 1. When relevance score normalization is used, the average

distribution output of all three clusters is close to 0.5 for the batch. We can

conclude that they behave as PDFs of x since they share a common integral of

0.5V over the space D (V : the volume of D according to Eq. 4.16).

60

4.5.2 Image Clustering

We test our algorithm on the four image datasets, MNIST [113], CIFAR10,

CIFAR100 [84] and STL10 [117]. CIFAR100 comprises 100 classes that are fur-

ther abstracted into 20 superclasses (Each superclass contains five classes). We

cluster CIFAR100 into its superclasses, whereas other datasets are into their usual

number of classes. STL10 has 13k labeled samples and 100k unlabeled sam-

ples. We only use the labeled set for clustering omitting their labels during

training.

For the STL10 dataset, we employ a 9-layer CNN; for CIFAR10/100, a 7-

layer CNN; and for MNIST, a 5-layer CNN (Table 4.2 outlines these network

architectures). Before sending RGB images to the network, they are converted

to grayscale with a single channel. Then, we apply horizontal and vertical Sobel

filters to the single-channel images. Therefore, the input to the network is a stack

of two planes of horizontal and vertical edges which share the same height and

width as the original (2×H×W). This preprocessing prevents the network from

overfitting to color and helps the network to learn broad features.

Table 4.2: Network architectures used. Cn stands for a convolution that carry n filters, M
denotes Max-pooling, and Fn stands for a dense layer that has n output nodes.

Dataset Architecture Params

MNIST C64 M C128 M C256 F32 F10 0.8M
CIFAR C64 C64 M C128 C128 M C256 C256 Fn 1.3M
STL10 C64 C64 M C128 C128 M C256 C256 2.7M

M C256 C256 F10

We employ our two-fold optimization (Section 4.4.3 and Algorithm 3), keeping

two Adam [48] optimizers, one for EM optimization (LR = 5e-5) and one for

consistency optimization (LR = 1e-4). Assigning a higher learning rate for con-

sistency optimization is vital because the learned clusters shall be more accurate

if learning generic semantic features takes precedence over clustering. The mod-

els are trained for 250 epochs with batch size 128 and γ = 5 using the whole

61

Table 4.3: Clustering accuracy (%) comparison. † - methods that rely on k-means. ∗ -
DeepCluster [100] and ADC [99] figures reported by Ji et al . , [90]. Our two-fold optimization
outperforms all conventional clustering algorithms, all deep algorithms that continue to rely
on k-means, and in some circumstances, even state-of-the-art single-stage deep clustering tech-
niques.

Approach STL10 CIFAR10 CIFAR100 MNIST

Acc NMI Acc NMI Acc NMI Acc NMI

Random Network 10.01 10.35 5.16 21.15

K-means [118] 19.2 12.5 22.9 8.7 13.0 8.4 57.2 50.0

Spectral Clustering [119] 15.9 9.8 24.7 10.3 13.6 9.0 69.6 66.3

JULE [120] 27.7 18.2 27.2 19.2 13.7 10.3 96.4 91.3

Triplets [121] † 24.4 - 20.5 - 9.94 - 52.5 -

AE [122] † 30.3 25.0 31.4 23.4 16.5 10.0 81.2 72.6

Sparse AE [123] † 32.0 25.2 29.7 24.7 15.7 10.9 82.7 75.7

Denoising AE [124] † 30.2 22.4 29.7 25.1 15.1 11.1 83.2 75.6

Var. Bayes AE [125] † 28.2 20.0 29.1 24.5 15.2 10.8 83.2 73.6

SWWAE [126] † 27.0 19.6 28.4 23.3 14.7 10.3 82.5 73.6

GAN [127] † 29.8 21.0 31.5 26.5 15.1 12.0 82.8 76.4

DEC [104] † 35.9 27.6 30.1 25.7 18.5 13.6 84.3 77.2

K-meansNet [105] - - 20.23 6.87 - - 87.76 78.70

DeepCluster [100] † 33.4* - 37.4* - 18.9* - 65.6* -

DECCA [91] - - - - - - 96.37 0.9087

SCAE [128] - - 33.48 - - - 99.0 -

DAC [101] 47.0 36.6 52.2 40.0 23.8 18.5 97.8 93.5

ADC [99] 53.0 - 32.5 - 16.0* - 99.2 -

IIC [90] 59.8 49.6 61.7 51.1 25.7 22.5 99.2 -

IIC [90] our setting 47.12 41.02 44.17 34.89 16.18 9.88 95.72 93.96

EM Optimization (Eq. 4.23) 49.61 41.99 49.53 39.59 19.36 12.23 98.44 95.67

Two-Fold Optimization 63.84 50.3 57.97 47.03 25.94 19.72 98.88 96.74

± 2.6 ± 2.13 ± 3.03 ± 2.04 ± 0.8 ± 0.41 ± 0.07 ± 0.16

datasets, with the exception of STL10, for which we only utilize the labeled set.

Table 4.3 contrasts our methodology with conventional and state-of-the-art

single-stage deep clustering techniques. Here, we analyze the clustering accuracy

and normalized mutual information (NMI) metrics. Following the Hungarian ap-

proach [129], we match the predicted cluster index to the actual label using linear

sum assignment [90]. We present our model performance when trained with the

62

mixture-EM optimization using original and transformed images (Eq. 4.23), as

well as the two-fold optimization (Algorithm 3). We show the average accuracy

across six trials for each dataset, and for the two-fold optimization, we further

present the margin of error using a 95% confidence interval.

Our models, when trained with the mixture-EM optimization using original

and altered images, outperform all conventional algorithms and deep cluster-

ing approaches that still rely on k-means, including DeepCluster [100] and Deep

Embedded Clustering (DEC) [104]. The two-fold optimization considerably en-

hances the mixture-EM optimization, in most cases outperforming end-to-end

deep clustering methods such as IIC [90], DECCA [91], ADC [99], DAC [101],

and SCAE [128]. IIC [90] employs both labeled and unlabeled segments of

STL10, achieving 49.9% when trained in only labeled segment. In addition,

IIC uses many transformed samples in a single batch by repeatedly augmenting

each sample (5 times). With once-per-batch augmentation, IIC only reaches 47%

for STL10. IIC also uses multiple clustering heads and overclustering strategies.

In contrast, when trained with only the labeled section and with once per-

batch augmentation, our architecture achieves 57.93% in STL10. We demon-

strate that IIC, in our training environment, with a single head and once a batch

augmentation, yields worse performance to mixture-EM and two-fold optimiza-

tion. Keeping similar responses to the original and altered images, the consistency

objective in the two-fold optimization has the same concept as IIC. Therefore,

we can conclude that the two-fold optimization is superior to consistency op-

timization alone. Figure 4.6 demonstrates the learning curves of IIC (in our

environment) and the two-fold optimization, proving this point.

Notably, several deep image clustering approaches report superior performance

to ours [102, 103, 109, 130].. The majority of methodologies, however, are multi-

stage approaches that include initialization methods, numerous losses, and fine-

tuning. For instance, the majority of SCAN’s [109] improved performance can

be attributed to the pre-text task learned before clustering and self-labeled fine-

63

Figure 4.6: Learning curves in STL10. Blue curve represents our two-fold optimization, and
red curve depicts the IIC [90] consistency optimization in our environment. With a combina-
tion of mixture-EM and consistency optimization, our two-fold optimization demonstrates a
considerable improvement above sole consistency optimization.

tuning post-clustering. While our mixture-EM formulation can also be expanded

to include pre-text learning, stronger augmentation, and self-labeling, we ignore

these improvements in this research.

4.5.3 Visualizations

Here, we empirically analyze cluster modeling and neural network’s feature

extraction using an STL10 clustered network. Figure 4.7 displays the model re-

sponse prior to softmax in two-dimension for a 2560 images-subset of STL10. Us-

ing T-SNE algorithm [115], we translate the model response to 2-d while maintain-

ing the original dimension relationship between vectors. The network response

for a randomly initialized network is depicted in Figure 4.7a. Figure 4.7b de-

picts the network’s response after training with our two-fold optimization but

64

(a) Random Network (b) No Normalization (c) Normalization

Figure 4.7: Two-dimensional mapping of network response for STL10 subset. a) Random
network: Has no knowledge of potential clusters. b) Network trained without relevance score
normalization: falls to a trivial solution of one cluster. c) Network trained with relevance score
normalization: meaningful clusters have been detected.

without relevance score normalization. Figure 4.7c depicts the network response

after training with relevance score normalization. The randomly initialized net-

work lacks knowledge regarding a potential clustering basis. Our approach trains

such a network to successfully cluster the sample space into meaningful groups

with visible borders. The relevnce score normalization plays a key role in our

formulation and prevents trivial convergence in which a single cluster is produced

with no members in other clusters.

Figure 4.8 shows the ten images with the highest relevance scores for five se-

lected clusters, as well as the image synthesized to maximize the particular final

layer node. We create the synthesized image by conducting gradient ascent on

a randomly initialized input to maximize the node’s response prior to activation

while freezing network parameters [87]. The visualizations that result demon-

strate that the model groups images with similar high-level features. Each clus-

ter’s synthesized image correlates to the top member images’ high-level patterns.

For instance, cluster 4 is predominantly activated for dogs, and the synthesized

image displays leg patterns that match. Cluster 7’s finest images are primarily

of cats, and the synthesized image contains matching dot patterns found in the

10 images. The majority of the top images in Cluster 8 depict deer viewed from

the side, and the synthesized image matches their body form. This experiment

demonstrates the trained network’s capacity to model rich clusters end-to-end.

65

cluster 3

cluster 4

cluster 7

cluster 8

cluster 9

Figure 4.8: STL10 clustered network. Five selected clusters, each represented by a particular
neuron in the final layer. Each row displays the ten images which show the highest relevance
score for the respective neuron, followed by the image synthesized to maximize that neuron.
Images containing similar high-level features have been grouped together. Similar bodily shapes
and patterns are displayed in the synthesized images.

Finally, we evaluate the convolutional feature extraction by visualizing the

model’s convolutional filters. To visualize a filter, we optimize a randomly ini-

tialized image while keeping the network parameters constant to maximize the

filter’s output [87]. We plot those visualizations of selected filters in the first and

last convolutional layers in Figure 4.9. The shallow filters from the first layer have

learned to extract low-level features (Figure 4.9a), whereas the deep final con-

volutional layer filters have learned high-level features (Figure 4.9b). Thus, it is

evident that CNN learns features that are dispersed with network depth, increas-

ing complexity with the depth. Consistency optimization, which encourages the

network to maintain similar responses to original and altered images, enables the

CNN filters to learn such features, producing an informative base for clustering.

66

(a) Initial convolutional layer filters

(b) Final convolutional layer filters

Figure 4.9: Visualization of the first and last convolutional layers’ selected filters. The
first layer filters display simple features, but the deep filters display intricate patterns. Overall,
the convolutional filters are learning features with climbing the abstraction level.

4.6 Conclusion

Our mixture-EM formulation trains a network to learn cluster distributions

and cluster assignments simultaneously. Normalizing the cluster relevance scores

across batches allows the approximated cluster distributions to behave as PDFs of

the observation, hence avoiding trivial solutions. Visualizations empirically con-

firmed meaningful cluster modeling and rich convolutional feature extraction. We

experiment our mixture-EM clustering objective without substantial data aug-

mentation, alternative representation learning approaches such as pre-text tasks,

deeper networks, sophisticated initialization or fine-tuning methods. Despite this,

it is worthwhile to research the possibilities of further enhancements. While we

suggest the sigmoid activation in conjunction with normalized relevance scores to

represent cluster distributions, it would be interesting to investigate more com-

plex activations or techniques to create better distributions.

67

Chapter 5

REGULARIZE ROUTING WITH CLUSTERING LOSS

In this chapter, we discuss the potential of the clustering objective introduced

in Chapter 4 as a regularization loss for the gating modules in our multi-path net-

works and possible extensions toward regulating spare-path allocation methods.

We first incorporate this clustering loss in each cross-connection-based routing

layer in our multi-path networks and observe its regularization effect.

5.1 Regularization of Cross-connection based Routing

When the multi-path networks are trained with only the end-objective, we

identified that certain gating vectors showed skewed responses over the entire

dataset, i.e., among a gating vector, a particular gate predominantly activates

for all samples, leaving other gates with lesser activations. We observed that

the clustering objective mitigates this behavior, enabling gates to be more evenly

activated. We add the mixture-EM-based objective, as in Equation 4.4, to the

outputs of each gating network to encourage the gating to cluster their input

spaces in addition to updating from the end task loss. We weigh the clustering

objective with respect to the end-task loss to tune the priority of regularization

over the main task. We maintained the weighting coefficient of the clustering

objective with respect to the primary loss of 0.01 for our experiments.

Figure 5.1 shows a chosen gate’s response in a two-path network (Note that

a gate’s value can vary between 0-1). The corresponding gating vector has two

68

gates since there are two possible pathways to forward the input tensor. The

top figure shows the gate response when the network is trained with only the

end objective. In contrast, the bottom figure shows its response when trained

with the clustering objective as an additional gating regularization. Without any

explicit regularization, the gate is less activated all the time. As a result, the

gate’s output lies below 0.4 for all inputs. However, with our clustering objective

employed as a regularization loss for gating, the gate’s response stretches above

0.5, better activating it for certain samples.

However, we note that this clustering objective on each gating vector func-

tions as a gate-wise local regularization for the multi-path networks as it focuses

on clustering the input space to each gating vector only. Thus, the impact of

regularization should be tuned via the weighting coefficient of the clustering ob-

jective. In particular, we observed that the clustering objective has to be given

lesser weight with the increased number of parallel paths as it solely focuses on

clustering its respective input space to the given number of clusters. Using the

prior probabilities in the EM objective is also important since the gate clustering

shall be treated as an un-even clustering task. Also, we note the importance of

further updating the clustering objective to find the optimum number of clusters

for the given gating vector, which will also decide the optimum number of paths

for a given layer.

5.2 Towards Global Regularization

The clustering objective forces each gating network to distribute its inputs

and functions as a local regularization for the gating function. Such local regu-

larization does not consider the network’s end outcome. Thus, it is interesting

to exploit further updating the clustering objective to consider the entire layer

with parallel paths and multiple gating functions into account. Furthermore,

we encourage the exploration of alternative regularization methods for the gating

69

Figure 5.1: A chosen gate’s response in a two-path network for a sample set of input space.
The corresponding gating vector has two gates whose activations sum to 1. The top image
shows the gate response without regularization loss, and the bottom image shows the gate
response with regularization loss. Without regularization, the gate is mostly deactivated for all
samples, whereas with regularization, the gate’s response stretches above 0.5, better activating
it for certain samples.

function that looks at the function of all gates in the primary network throughout

the depth overall.

5.3 Towards Sparse Multi-path Networks

The proposed multi-path networks contain soft routers, i.e., all paths are ac-

tivated for a single sample with different soft weights. Also, one layer contains

multiple gating functions, each employed in one of the parallel paths, which leads

to difficulties in regularizing the routing layers and interpreting each gating func-

tion’s purpose. Thus, it is worthwhile to simplify the routing process further to

allocate incoming feature maps to parallel paths, do parallel path computation,

and accumulate the results for the next layer. Such a design will simplify the

path allocation process, and studying the effect of clustering objectives for path

allocation is easier.

70

Such simplified multi-path allocation (divide to paths, compute, and accumu-

late layer-wise) will be more suitable for a sparse-path allocation system where

only one or several paths are activated. Such a sparse-path allocation method

can handle more diversity among the input space and can even be extended to-

ward learning from multiple domains. Thus, it is worthwhile to extend such

routing mechanisms toward regulating sparse multi-path networks. For example,

a clustering-based router can route an incoming tensor to one or a few next-layer

paths based on the clusters it falls under. This can be considered an alternative

clustering-based path allocator for existing sparse multi-path networks [78,80–83].

Unlike in soft routing, such a sparse routing network would allow more diversity

in the dataset to be addressed and allow efficient scalability as, despite how large

the network, only a portion of it will be used for one sample. However, modeling

and training such a sparse-path network would meet several challenges, such as

the engineering of the network with sparse activations using multiple devices and

parallelization for parallel paths, optimization, and the need for large-scale data.

71

Chapter 6

CONCLUSIONS

Deep networks require a substantial amount of resources. Thus, it is vital to

attain the best performance for the given number of parameters with appropri-

ate depth and width. In this dissertation, we explored strengthening layer-wise

feature extraction by stacking parallel paths and introducing novel mechanisms

to route the input among such parallel paths end-to-end intelligently. The pro-

posed multi-path networks behave as a composite network of parallel paths with

layer-wise soft path allocation methods.

The neural mixture-EM formulation trains a network to model advanced clus-

ter distributions and cluster the input space accordingly. It is a superior alter-

native to traditional clustering algorithms such as k-means or GMM; one can

substitute traditional clustering in any application with a neural network and

mixture-EM optimization. Using a neural network with appropriate depth and a

straightforward training procedure makes our clustering technique easy to adopt

for any clustering problem with different cluster modeling complexity. Further-

more, the neural mixture-EM optimization can be easily plugged into gating-like

sub-networks within a complex network which forces the sub-networks to cluster

their input spaces while also learning from the end objective (Attention). Such

cluster-based regularizing method’s utility will be significant with sparse resource

allocation methods.

As a standalone end-to-end neural network-based clustering approach, the

proposed neural mixture modeling can benefit from sophisticated augmentation

72

methods, initialization methods, representation learning methods, and deeper

networks. Furthermore, improving the current clustering framework by tuning

the mix of cluster-specific and shared layers is worthwhile. For our experiments,

we use a single-column neural network for clustering, leading to the final layer’s

parameters being cluster-specific and all other parameters being shared between

clusters. Thus, it is interesting to see the effect of cluster distribution modeling

with more layers in the network allocated as cluster-exclusive layers (By split-

ting into multiple columns after a certain number of layers). Exploring advanced

transformations to approximate cluster distributions and posterior probabilities

from final layer neurons is also important. Furthermore, we note the importance

of advanced arrangements of layer computation, including layer activation, to ex-

tend towards clustering datasets other than distance/distribution-based spaces,

such as connectivity-based clustering spaces. We also note the potential direc-

tion towards updated formulation to cluster un-even datasets accommodating

prior probabilities and updating towards dynamic online clustering, which can

also capture emerging clusters.

Once employed as a local regularization for each gating network, the clustering

objective was able to enforce each gating network to distribute its input space

better, mitigating always activated or deactivated gates. However, we note the

importance of tuning the weight of the clustering-based regularization with re-

spect to the primary loss function based on the number of paths in the network,

as the clustering objective in each gating network functions as a local regulariza-

tion. It is also important to extend such regularization methods towards global

regularization techniques, considering all the gating in one routing layer or all the

gating vectors in the network as whole. Also, we note the importance of having

prior probabilities calculated and used in the EM formulation that supports un-

even cluster assignments in multi-path network gating. We also note the future

direction towards using the clustering objective to decide the optimum number

of paths for a given layer.

73

The proposed multi-path networks are soft routers; hence, all neurons will be

used during training and inference. It is worthwhile to extend this mechanism

towards sparse resource allocation along with the clustering objective to govern

the behavior of gating networks. A sparse resource allocation method can handle

more diversity in the input space. Only a portion of the network is used for each

sample, leading to improved scalability.

74

LIST OF PUBLICATIONS

Articles Accepted in International Conferences and Journals

1. D. Tissera, K. Vithanage, R. Wijesinghe, K. Kahatapitiya, S. Fernando,

R. Rodrigo, “Feature-dependent cross-connections in multi-path neural net-

works,” in 2020 25th International Conference on Pattern Recognition (ICPR),

IEEE, 2021, pp. 4032-4039.

2. D. Tissera, K. Vithanage, R. Wijesinghe, A. Xavier, S. Jayasena, S. Fer-

nando, R. Rodrigo, “Neural mixture models with expectation-maximization

for end-to-end deep clustering,” in Neurocomputing, vol. 505, pp. 249-262,

2022.

3. D. Tissera, R. Wijesinghe, K. Vithanage, A. Xavier, S. Fernando, R. Ro-

drigo, “End-to-end data-dependent routing in multi-path neural networks,”

in Neural Computing and Applications, 2023 - Accepted.

75

BIBLIOGRAPHY

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016, pp. 770–778.

[2] ——, “Identity mappings in deep residual networks,” in European Confer-

ence on Computer Vision (ECCV). Springer, 2016, pp. 630–645.

[3] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Ben-

gio, “Fitnets: Hints for thin deep nets,” in Proceedings of International

Conference on Learning Representations(ICLR), 2015.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-

han, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015, pp. 1–9.

[6] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in Proceedings

of the British Machine Vision Conference (BMVC), 2016, pp. 87.1–87.12.

[7] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual

transformations for deep neural networks,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR), 2017, pp.

1492–1500.

76

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in Neural Information

Processing Systems, 2012, pp. 1097–1105.

[9] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural

networks for image classification,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2012, pp. 3642–

3649.

[10] M. Wang, “Multi-path convolutional neural networks for complex image

classification,” arXiv preprint arXiv:1506.04701, 2015.

[11] K. Kahatapitiya, D. Tissera, and R. Rodrigo, “Context-aware automatic

occlusion removal,” in 2019 IEEE International Conference on Image Pro-

cessing (ICIP). IEEE, 2019, pp. 1895–1899.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-

geNet Large Scale Visual Recognition Challenge,” International Journal of

Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE conference on

computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[14] D. Tissera, K. Kahatapitiya, R. Wijesinghe, S. Fernando, and R. Rodrigo,

“Context-aware multipath networks,” arXiv preprint arXiv:1907.11519,

2019.

[15] D. Tissera, K. Vithanage, R. Wijesinghe, K. Kahatapitiya, S. Fernando,

and R. Rodrigo, “Feature-dependent cross-connections in multi-path neural

networks,” in 2020 25th International Conference on Pattern Recognition

(ICPR). IEEE, 2021, pp. 4032–4039.

77

[16] D. Tissera, R. Wijesinghe, K. Vithanage, A. Xavier, S. Fernando, and

R. Rodrigo, “End-to-end data-dependent routing in multi-path neural net-

works,” Neural Computing and Applications, pp. 1–20, 2023.

[17] D. Tissera, K. Vithanage, R. Wijesinghe, A. Xavier, S. Jayasena, S. Fer-

nando, and R. Rodrigo, “Neural mixture models with expectation-

maximization for end-to-end deep clustering,” Neurocomputing, vol. 505,

pp. 249–262, 2022.

[18] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-

works are universal approximators,” Neural networks, vol. 2, no. 5, pp.

359–366, 1989.

[19] P. Werbos, “Beyond regression: New tools for prediction and analysis in

the behavioral sciences,” PhD thesis, Committee on Applied Mathematics,

Harvard University, Cambridge, MA, 1974.

[20] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-

tions by back-propagating errors,” Nature, vol. 323, p. 533, 1986.

[21] D. E. Rumelhart, G. E. Hinton, R. J. Williams et al., “Learning internal

representations by error propagation,” 1985.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

pp. 2278–2324, 1998.

[23] M. I. Jordan, “Serial order: A parallel distributed processing approach,” in

Advances in psychology. Elsevier, 1997, vol. 121, pp. 471–495.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-

putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using

78

rnn encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural

information processing systems, vol. 30, 2017.

[27] M. Zhou, Y. Bai, W. Zhang, T. Zhao, and T. Mei, “Look-into-object: Self-

supervised structure modeling for object recognition,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2020,

pp. 11 774–11 783.

[28] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong,

T. Luong, C.-J. Hsieh et al., “Symbolic discovery of optimization algo-

rithms,” arXiv preprint arXiv:2302.06675, 2023.

[29] P. Wang, S. Wang, J. Lin, S. Bai, X. Zhou, J. Zhou, X. Wang, and C. Zhou,

“One-peace: Exploring one general representation model toward unlimited

modalities,” arXiv preprint arXiv:2305.11172, 2023.

[30] Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V. Le,

and Y. Wu, “Pushing the limits of semi-supervised learning for automatic

speech recognition,” arXiv preprint arXiv:2010.10504, 2020.

[31] P.-Y. Huang, V. Sharma, H. Xu, C. Ryali, H. Fan, Y. Li, S.-W. Li,

G. Ghosh, J. Malik, and C. Feichtenhofer, “Mavil: Masked audio-video

learners,” arXiv preprint arXiv:2212.08071, 2022.

[32] T. Zhou, Z. Ma, Q. Wen, L. Sun, T. Yao, W. Yin, R. Jin et al., “Film:

Frequency improved legendre memory model for long-term time series fore-

casting,” Advances in Neural Information Processing Systems, vol. 35, pp.

12 677–12 690, 2022.

79

[33] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for

time series forecasting?” in Proceedings of the AAAI conference on artificial

intelligence, vol. 37, no. 9, 2023, pp. 11 121–11 128.

[34] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,

A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models

are few-shot learners,” Advances in neural information processing systems,

vol. 33, pp. 1877–1901, 2020.

[35] OpenAI, “Gpt-4 technical report,” 2023.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in

Adv. in Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[37] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-

resolution image synthesis with latent diffusion models,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition,

2022, pp. 10 684–10 695.

[38] S. Gao, P. Zhou, M.-M. Cheng, and S. Yan, “Masked diffusion transformer

is a strong image synthesizer,” arXiv preprint arXiv:2303.14389, 2023.

[39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, pp. 436–444, 2015.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,

2016.

[41] S. Hochreiter, “The vanishing gradient problem during learning recurrent

neural nets and problem solutions,” International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[42] T. Dietterich, “Overfitting and undercomputing in machine learning,” ACM

computing surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995.

80

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” arXiv preprint

arXiv:1502.03167, 2015.

[44] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in Proceedings of the thirteenth international

conference on artificial intelligence and statistics. JMLR Workshop and

Conference Proceedings, 2010, pp. 249–256.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpass-

ing human-level performance on imagenet classification,” in Proceedings of

the IEEE international conference on computer vision, 2015, pp. 1026–1034.

[46] A. Krogh and J. Hertz, “A simple weight decay can improve generalization,”

Advances in neural information processing systems, vol. 4, 1991.

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov, “Dropout: a simple way to prevent neural networks from overfitting,”

Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-

tion,” in Procedings of International Conference on Learning Representa-

tions (ICLR), 2015.

[49] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv

preprint arXiv:1609.04747, 2016.

[50] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in International conference on machine learning. PMLR,

2019, pp. 6105–6114.

[51] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,

inception-resnet and the impact of residual connections on learning,” in

AAAI Conference on Artificial Intelligence, 2017.

81

[52] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the inception architecture for computer vision,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 2818–2826.

[53] Z. Chen, Y. Deng, Y. Wu, Q. Gu, and Y. Li, “Towards understanding mix-

ture of experts in deep learning,” arXiv preprint arXiv:2208.02813, 2022.

[54] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1, pp.

41–75, 1997.

[55] K.-H. Thung and C.-Y. Wee, “A brief review on multi-task learning,” Mul-

timedia Tools and Applications, vol. 77, no. 22, pp. 29 705–29 725, 2018.

[56] M. Crawshaw, “Multi-task learning with deep neural networks: A survey,”

arXiv preprint arXiv:2009.09796, 2020.

[57] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert, “Cross-stitch networks

for multi-task learning,” in Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2016, pp. 3994–4003.

[58] S. Ruder, J. Bingel, I. Augenstein, and A. Søgaard, “Latent multi-task

architecture learning,” in Proceedings of AAAI Conference of Artificial In-

telligence, February 2019, pp. 4822–4829.

[59] Y. Gao, J. Ma, M. Zhao, W. Liu, and A. L. Yuille, “Nddr-cnn: Layerwise

feature fusing in multi-task cnns by neural discriminative dimensionality

reduction,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 3205–3214.

[60] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” in Proceedings of Interna-

tional Conference on Learning Representations (ICLR), 2017.

[61] G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM rout-

ing,” in Proceedings of International Conference on Learning Representa-

tions (ICLR), 2018.

82

[62] J. Hu, L. Shen, S. Albanie, G. Sun, and A. Vedaldi, “Gather-excite: Ex-

ploiting feature context in convolutional neural networks,” in Advances in

Neural Information Processing Systems, 2018, pp. 9401–9411.

[63] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2018, pp. 7132–7141.

[64] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between cap-

sules,” in Advances in Neural Information Processing Systems, 2017, pp.

3856–3866.

[65] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “Eca-net: Efficient

channel attention for deep convolutional neural networks,” arXiv preprint

arXiv:1910.03151, 2019.

[66] A. Veit and S. Belongie, “Convolutional networks with adaptive inference

graphs,” in European Conference on Computer Vision, 2018, pp. 3–18.

[67] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman,

and R. Feris, “Blockdrop: Dynamic inference paths in residual networks,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018, pp. 8817–8826.

[68] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv

preprint arXiv:1505.00387, 2015.

[69] Y. Rao, J. Lu, J. Lin, and J. Zhou, “Runtime network routing for efficient

image classification,” IEEE transactions on pattern analysis and machine

intelligence, vol. 41, no. 10, pp. 2291–2304, 2018.

[70] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet:

Learning dynamic routing in convolutional networks,” in Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 409–424.

83

[71] B. Chen, T. Zhao, J. Liu, and L. Lin, “Multipath feature recalibration

densenet for image classification,” International Journal of Machine Learn-

ing and Cybernetics, vol. 12, no. 3, pp. 651–660, 2021.

[72] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,

J. Mueller, R. Manmatha et al., “Resnest: Split-attention networks,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2022, pp. 2736–2746.

[73] K. Yu, X. Wang, C. Dong, X. Tang, and C. C. Loy, “Path-restore: Learn-

ing network path selection for image restoration,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2021.

[74] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep net-

works,” in Advances in neural information processing systems, 2015, pp.

2377–2385.

[75] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive

mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–87,

1991.

[76] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and the

em algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214, 1994.

[77] D. Eigen, M. Ranzato, and I. Sutskever, “Learning factored representations

in a deep mixture of experts,” arXiv preprint arXiv:1312.4314, 2013.

[78] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and

J. Dean, “Outrageously large neural networks: The sparsely-gated mixture-

of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[79] W. Fedus, J. Dean, and B. Zoph, “A review of sparse expert models in deep

learning,” arXiv preprint arXiv:2209.01667, 2022.

[80] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,

N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with conditional

84

computation and automatic sharding,” arXiv preprint arXiv:2006.16668,

2020.

[81] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to tril-

lion parameter models with simple and efficient sparsity,” 2021.

[82] C. Riquelme, J. Puigcerver, B. Mustafa, M. Neumann, R. Jenatton, A. Su-

sano Pinto, D. Keysers, and N. Houlsby, “Scaling vision with sparse mixture

of experts,” Advances in Neural Information Processing Systems, vol. 34,

pp. 8583–8595, 2021.

[83] L. Wu, M. Liu, Y. Chen, D. Chen, X. Dai, and L. Yuan, “Residual mixture

of experts,” arXiv preprint arXiv:2204.09636, 2022.

[84] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from

tiny images,” Citeseer, Tech. Rep., 2009.

[85] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint

arXiv:1609.09106, 2016.

[86] Facebook, “fb.resnet.torch.” [Online]. Available:

https://github.com/facebookarchive/fb.resnet.torch

[87] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional

networks: Visualising image classification models and saliency maps,” arXiv

preprint arXiv:1312.6034, 2013.

[88] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the em algorithm,” Journal of the Royal Statistical

Society: Series B (Methodological), vol. 39, no. 1, pp. 1–22, 1977.

[89] S. Laine and T. Aila, “Temporal ensembling for semi-supervised learning,”

arXiv preprint arXiv:1610.02242, 2016.

[90] X. Ji, J. F. Henriques, and A. Vedaldi, “Invariant information clustering

for unsupervised image classification and segmentation,” in Proceedings of

85

the International Conference on Computer Vision (ICCV), 2019, pp. 9865–

9874.

[91] B. Diallo, J. Hu, T. Li, G. A. Khan, X. Liang, and Y. Zhao, “Deep embed-

ding clustering based on contractive autoencoder,” Neurocomputing, vol.

433, pp. 96–107, 2021.

[92] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals

of mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[93] J. MacQueen et al., “Some methods for classification and analysis of mul-

tivariate observations,” in Proceedings of the fifth Berkeley Symposium on

Mathematical Statistics and Probability, vol. 1, no. 14. Oakland, CA, USA,

1967, pp. 281–297.

[94] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,

no. 3, pp. 241–254, 1967.

[95] G. J. McLachlan, S. X. Lee, and S. I. Rathnayake, “Finite mixture models,”

Annual review of statistics and its application, vol. 6, pp. 355–378, 2019.

[96] J. A. Hartigan, “Direct clustering of a data matrix,” Journal of the Amer-

ican Statistical Association, vol. 67, no. 337, pp. 123–129, 1972.

[97] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algo-

rithm for discovering clusters in large spatial databases with noise.” in Kdd,

vol. 96, no. 34, 1996, pp. 226–231.

[98] C. M. Bishop, “Pattern recognition and machine learning: springer new

york,” 2006.

[99] P. Haeusser, J. Plapp, V. Golkov, E. Aljalbout, and D. Cremers, “Associa-

tive deep clustering: Training a classification network with no labels,” in

German Conference on Pattern Recognition. Springer, 2018, pp. 18–32.

86

[100] M. Caron, P. Bojanowski, A. Joulin, and M. Douze, “Deep clustering for

unsupervised learning of visual features,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 132–149.

[101] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive im-

age clustering,” in Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017, pp. 5879–5887.

[102] J. Wu, K. Long, F. Wang, C. Qian, C. Li, Z. Lin, and H. Zha, “Deep

comprehensive correlation mining for image clustering,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2019, pp.

8150–8159.

[103] S. Han, S. Park, S. Park, S. Kim, and M. Cha, “Mitigating embedding and

class assignment mismatch in unsupervised image classification,” in 16th

European Conference on Computer Vision, ECCV 2020. Springer, 2020.

[104] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clus-

tering analysis,” in International Conference on Machine Learning (ICML),

2016, pp. 478–487.

[105] X. Peng, I. W. Tsang, J. T. Zhou, and H. Zhu, “k-meansnet: When k-means

meets differentiable programming,” arXiv preprint arXiv:1808.07292, 2018.

[106] O. Kilinc and I. Uysal, “Learning latent representations in neural networks

for clustering through pseudo supervision and graph-based activity regular-

ization,” in International Conference on Learning Representations, 2018.

[107] Y. Tao, K. Takagi, and K. Nakata, “Clustering-friendly representation

learning via instance discrimination and feature decorrelation,” in Inter-

national Conference on Learning Representations, 2020.

[108] K. Greff, S. Van Steenkiste, and J. Schmidhuber, “Neural expectation max-

imization,” in Advances in Neural Information Processing Systems, 2017,

pp. 6691–6701.

87

[109] W. Van Gansbeke, S. Vandenhende, S. Georgoulis, M. Proesmans, and

L. Van Gool, “Scan: Learning to classify images without labels,” in Euro-

pean Conference on Computer Vision. Springer, 2020, pp. 268–285.

[110] T. W. Tsai, C. Li, and J. Zhu, “Mice: Mixture of contrastive experts for

unsupervised image clustering,” in International Conference on Learning

Representations, 2020.

[111] R. E. Shiffler, “Maximum z scores and outliers,” The American Statistician,

vol. 42, no. 1, pp. 79–80, 1988.

[112] N. Metropolis and S. Ulam, “The monte carlo method,” Journal of the

American Statistical Association, vol. 44, no. 247, pp. 335–341, 1949.

[113] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning

applied to document recognition,” Proc. of the IEEE, vol. 86, pp. 2278–

2324, 1998.

[114] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”

Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–

52, 1987.

[115] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of

Machine Learning Research (MLR), vol. 9, pp. 2579–2605, 2008.

[116] M. A. Kramer, “Nonlinear principal component analysis using autoassocia-

tive neural networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[117] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in un-

supervised feature learning,” in Proceedings of the fourteenth international

conference on artificial intelligence and statistics, 2011, pp. 215–223.

[118] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in Ad-

vances in Neural Information Processing Systems, 2005, pp. 1601–1608.

88

[119] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li, “Optimized

cartesian k-means,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 27, no. 1, pp. 180–192, 2014.

[120] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep

representations and image clusters,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 5147–

5156.

[121] M. Schultz and T. Joachims, “Learning a distance metric from relative

comparisons,” in Advances in Neural Information Processing Systems, 2004,

pp. 41–48.

[122] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise

training of deep networks,” in Advances in Neural Information Processing

Systems, 2007, pp. 153–160.

[123] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.

2011, pp. 1–19, 2011.

[124] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bot-

tou, “Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion.” Journal of Machine Learning

Research (MLR), vol. 11, no. 12, 2010.

[125] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv

preprint arXiv:1312.6114, 2013.

[126] J. Zhao, M. Mathieu, R. Goroshin, and Y. Lecun, “Stacked what-where

auto-encoders,” arXiv preprint arXiv:1506.02351, 2015.

[127] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation

learning with deep convolutional generative adversarial networks,” arXiv

preprint arXiv:1511.06434, 2015.

89

[128] A. Kosiorek, S. Sabour, Y. W. Teh, and G. E. Hinton, “Stacked capsule au-

toencoders,” in Advances in Neural Information Processing Systems, 2019,

pp. 15 512–15 522.

[129] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval

research logistics quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[130] S. Park, S. Han, S. Kim, D. Kim, S. Park, S. Hong, and M. Cha, “Improving

unsupervised image clustering with robust learning,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,

pp. 12 278–12 287.

90

