AN ANALYSIS OF TRADE DYNAMICS OF SRI LANKAN TEA EXPORTS

Anupa Kalpani Atapattu Dissanayake

(189053 J)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Business Statistics

> Department of Mathematics Faculty of Engineering

University of Moratuwa Sri Lanka

October 2023

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Master's thesis/dissertation under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Dr. R. P. Abeysooriya

Signature of the Supervisor:

Date:

DEDICATION

I devote this thesis to my parents and husband.

For their everlasting love, generous support and encouragement....

ACKNOWLEDGEMENT

First and foremost, I wish to express my heartfelt gratitude to my research supervisor Dr. R. P. Abeysooriya, Senior Lecturer, Department of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, for his constant support and proper direction in completing this study. Further, I am thankful to Dr. R.P. Abeysooriya for his valued and productive comments to enhance the quality of this study.

My special gratitude goes to course coordinators, Ms. Ravindi Jayasundara and Dr. (Ms) Bimali Jayasinghe and all lecturers who taught me in the Master of Science in Business Statistics programme for their valuable contribution.

I am thankful to all officials in the Sri Lanka Tea Board who provided secondary data and other relevant qualitative information for the success of this study.

Finally, I wish to extend my appreciation to my parents and husband for their moral support, motivation, and great interest in my academic endeavors.

ABSTRACT

Tea exports significantly contribute to the Sri Lankan economy since it is one of the major agricultural export crops in this island nation. Even though Sri Lanka is one of the leading tea exporting nations in the world, the percentage share of Ceylon tea in the global tea market has been gradually decreased over the years. With this background, this study aims to comprehensively investigate the growth patterns, instability, influential factors, and future predictions of tea exports to propose recommendations to improve the tea export industry in Sri Lanka. Secondary data were mainly used in this study. The Compound Annual Growth Rate Analysis was employed to measure growth rates in production and exports of Sri Lankan tea while instability in production and export indicators of tea in Sri Lanka were calculated by using Cuddy Della Valle Index. The Sri Lankan tea export quantity was modelled and predicted by applying forecasting techniques as Seasonal Autoregressive Integrated Moving Average, Gaussian Hidden Markov Model, and Multilayer Perceptron. Sri Lankan tea exports has shown negative growth while tea export value has depicted positive growth during the period from 2011 to 2022. In the same time Iraq was the most stable market for Sri Lankan tea exports. The comparison of the prediction accuracy of various forecasting techniques in tea export quantity prediction was revealed that the Multilayer Perceptron was performed better than other techniques employed in this study. Tea export types as bulk tea, tea packets, and tea bags as well as year majorly affect on the future predictions of Sri Lankan tea export quantity in order to the data series which was applied for this study. The study findings will be useful for researchers, policy makers, exporters, and other relevant authorities. Further research efforts are recommended to do for tea export prices and earnings.

Keywords: Artificial Neural Network, Growth, Instability, Tea Exports, Time Series Forecasting

TABLE OF CONTENTS

Declarationi
Dedicationii
Acknowledgementiii
Abstractiv
Table of Contents
List of Figuresviii
List of Tablesix
List of Abbreviationsx
List of Appendicesxii
Chapter 1 1
Introduction1
1.1 Global Tea Industry1
1.2 Overview of the Tea Sector in Sri Lanka1
1.3 Tea Exports in Sri Lanka1
1.4 Problem Statement
1.5 Significance of the Study
1.6 Scope of the Study
1.7 Aim and Objectives4
1.8 Organization of the Thesis
Chapter 2
Literature Review
2.1 Introduction
2.2 Growth and Instability
2.2.1 Growth and Instability in Agricultural Commodities
2.2.2 Growth and Instability in Tea Production and Exports7
2.3 Forecasting Techniques
2.3.1 Forecasting Exports10
2.3.2 Forecasting the Tea Exports11
2.4 Research Gap
Chapter 3 15

Methodology	15
3.1 Introduction	15
3.2 Research Design and Data Collection	15
3.2.1 Data Collection	15
3.3 Growth and Instability Analysis	16
3.3.1 Growth Rate Analysis	16
3.3.2 Instability Analysis	17
3.3.3 Matrix Association between Growth Rate and Instability	17
3.3.4 Growth and Instability Analysis of Sri Lankan Tea Exports	
3.4 Application of Forecasting Techniques	19
3.5 Application of ARIMA/SARIMA Approach	19
3.5.1 Autoregressive Integrated Moving Average (ARIMA)	
3.5.2 Seasonal Autoregressive Integrated Moving Average (SARIMA)	
3.5.3 SARIMA Model Building	
3.5.4 Model Selection and Validation	21
3.5.5 Methodology of Investigating the Applicability of ARIMA/SARIMA M	odel22
3.6 Application of HMM Model	23
3.6.1 Hidden Markov Models	
3.6.2 Methodology of Investigating the Applicability of HMM Model	
3.7 Application of MLP Model	26
3.7.1 Multilayer Perceptron	
3.7.2 Methodology of Investigating the Applicability of MLP Model	
3.8 Comparison of Forecasting Models	28
3.9 Abridgment	28
Chapter 4	29
Results And Discussion: Growth Patterns and Instability of Sri Lankan Tea Exports	s29
4.0 Introduction	29
4.1 Production Patterns of Sri Lankan Tea	29
4.2 Compound Annual Growth Rates for Production Indicators of Sri Lankan Te	a30
4.3 Growth Patterns in Sri Lankan Tea Exports	31
4.4 Growth Rates and Instability of Sri Lankan Tea Exports	32
4.5 Import States-wise Compound Growth Rates and Instability Index Results	33
4.6 Summary Results of Compound Growth Rate and Instability Analysis	37

Chapter 5	38
Modelling and Forecasting of Tea Exports in Sri Lanka	38
5.0 Introduction	38
5.1 Modelling of Total Tea Export Quantity of Sri Lanka: SARIMA Approach3	38
5.2 Modelling of Total Tea Exports Quantity of Sri Lanka: HMM Model4	46
5.3 Modelling of Total Tea Export Quantity of Sri Lanka: MLP Approach5	50
5.4 Comparison of Forecasting Techniques based on Prediction Accuracy5	54
5.5 Benefits and Limitations of SARIMA, HMM and MLP Models5	55
5.6 Condensation of the Modelling and Forecasting of Sri Lankan Tea Exports5	56
Chapter 6 5	58
Conclusion and Recommendations	58
6.1 Conclusion5	58
6.2 Recommendations	59
References	50
Appendices	70
Appendix A: Tea Extent and Production Data (2011-2022)	70
Appendix B: Tea Export Quantity and Value: By Process (2011-2022)	72
Appendix C: Category-wise Tea Exports Quantity and Value (2011-2022)	73
Appendix D: Destination-wise Tea Export Quantity and Value (2011-2022)7	76
Appendix E: Monthly Tea Exports Quantity (mn kg) (January 2011 – June 2023)	78
Appendix F: Stationary Test Results	79
Appendix G: Model Summary of the Possible SARIMA Models	31
Appendix H: Forecasting Results of SARIMA $(1,1,1) \ge (0,1,1)_{12}$ Model	34
Appendix I: Factors Affecting Tea Exports in Sri Lanka From Year 2011 to 2022	85
Appendix J: Hidden Markov Chain Model Investigation	36
Appendix K: Correlation Matrix of Variables Used for MLP Model) 4
Appendix L: Network Diagram of MLP Model) 5

LIST OF FIGURES

Figure	Description	Page
Figure 3.1	The Box Jenkins Procedure Adopted from Box and Jenkins,	21
	(1976)	
Figure 4.1	Tea Production Trends (2011-2022)	29
Figure 4.2	Tea Production in Major Zones (2011-2022)	30
Figure 4.3	Total Tea Exports Quantity (2011-2022)	31
Figure 4.4	Total Tea Exports Value (2011-2022)	32
Figure 4.5	Compound Annual Growth Rate Vs Instability Index an	36
	Empasis on Tea Export Volume	
Figure 4.6	Compound Annual Growth Rate Vs Instability Index an	36
	Emphasis on Tea Export Earnings	
Figure 5.1	Time Series Plot of Monthly Tea Export Quantity (January	38
	2011 – June 2023)	
Figure 5.2	Correlogram of Monthly Tea Exports in Mn kg Against	40
	Time	
Figure 5.3	Time Series Plot of First Differences Series	41
Figure 5.4	Correlogram of First Differenced Series Against Time	42
Figure 5.5	Time Series Plot of Seasonal Differencing Series	43
Figure 5.6	Correlogram of Seasonal Differenced Series Against Time	44
Figure 5.7	Correlogram of Residuals SARIMA(1,1,1)x(0,1,1) ₁₂	45
Figure 5.8	Estimated Transition Matrix	48
Figure 5.9	The HMM-3 model performance	49
Figure 5.10	Normalized Importance of the Independent Variables	53
Figure 5.11	Forecasted Values of all Models	55

LIST OF TABLES

Table	Description	Page
Table 4.1	Compound Growth Rates for Production Indicators of Tea (2011-2022)	30
Table 4.2	Compound Growth Rates and Instability of Sri Lankan Tea	32
	Exports for the period of 2011-2022	
Table 4.3	Compound Growth Rates and Instability of Category-wise Sri	33
	Lankan Tea Exports for the Period of 2011-2022	
Table 4.4	Destination-wise Growth Rates for Total Tea Exports from Sri	34
	Lanka (2011-2022)	
Table 4.5	Destination-wise Instability Analysis of Sri Lankan Tea Exports	34
	(2011-2022)	
Table 4.6	Destination-wise Growth Rate and Instability Index	35
Table 5.1	Descriptive Statistics of Monthly Tea Exports	39
Table 5.2	The Unit Root Tests Results for Original Series	40
Table 5.3	The Results of the Unit Root Tests for First Differenced Series	41
Table 5.4	The Unit Root Tests Results for Seasonal Differenced Series	43
Table 5.5	Comparison of Identified Models for Seasonal Differencing Series	45
Table 5.6	Parameter Estimation of the Best Fitted SARIMA Model	45
Table 5.7	Comparison of HMM models derived from different number of	47
	Hidden states	
Table 5.8	Descriptive Statistics of the Independent Variables	50
Table 5.9	Network Information of MLP Model	51
Table 5.10	Model Summary of the MLP Model	52
Table 5.11	Importance of the Predictors used for MLP Model	53
Table 5.12	Comparison between Actual Value and Predicted Values of	54
	Different Forecasting Approaches	
Table 5.13	Comparison of Accuracy Measures of SARIMA, HMM and MLP	55
	Models	

LIST OF ABBREVIATIONS

Abbreviation	Description
ACF	Auto Correlation Function
ADF	Augmented Dickey Fuller
AIC	Akaike's Information Criterion
ANN	Artificial Neutral Networks
AR	Autoregressive
ARIMA	Autoregressive Integrated Moving Average
BANN	Bayesian Artificial Neural Networks
BIC	Bayesian Information Criterion
CAGR	Compound Annual Growth Rate
CDVI	Cuddy Della Valle Index
CII	Coppock's Instability Index
CIS	Commonwealth of Independent States
CTC	Crush, Tear and Curl
CV	Coefficient of Variation
FFANN	Feed Forward Artificial Neural Network
FOB	Free on Board
GDP	Gross Domestic Production
GHMM	Gaussian Hidden Markov Model
HES	Holt's Exponential Smoothing
HMM	Hidden Markov Model
KPSS	Kwiatkowski, Phillips, Schmidt and Shin
LSTM	Long Short-Term Memory
MA	Moving Average
MAD	Mean Absolute Deviation
MAPE	Mean Absolute Percent Error
MLP	Multilayer Perceptron
MSE	Mean Squared Error
PACF	Partial Auto Correlation Function
RMSE	Root Mean Squared Error
SARIMA	Seasonal Autoregressive Integrated Moving Average
SBC	Schwartz's Bayesian Criterion
SECM	Seasonal Error Correction Model

SES	Single Exponential Smoothing
SLTB	Sri Lanka Tea Board
UAE	United Arab Emirates
VEC	Vector Error Correction
WDI	World Development Indicators

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Tea Extent and Production Data (2011-2022)	70
Appendix B	Tea Export Quantity and Value: By Process (2011-2022)	72
Appendix C	Category-wise Tea Exports Quantity and Value (2011-	73
	2022)	
Appendix D	Destination-wise Tea Export Quantity and Value (2011-	76
	2022)	
Appendix E	Monthly Tea Exports Quantity (Mn Kg) (January 2011 -	78
	December 2022)	
Appendix F	Stationary Test Results	79
Appendix G	Model Summary of the Possible SARIMA Models	81
Appendix H	Forecasting Results of SARIMA (1,1,1)x(0,1,1) ₁₂	84
Appendix I	Factors Affecting Tea Exports in Sri Lanka From Year	85
	2011 to 2022	
Appendix J	Hidden Markov Chain Model Investigation	86
Appendix K	Correlation Matrix of Variables Used for MLP Model	94
Appendix L	Network Diagram of MLP Model	95