A DEEP LEARNING ACCELERATOR FOR LOSSLESS IMAGE COMPRESSION USING TVM/VTA STACK

Malan Lakshan Evans

(219331A)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

March 2023

A DEEP LEARNING ACCELERATOR FOR LOSSLESS IMAGE COMPRESSION USING TVM/VTA STACK

Malan Lakshan Evans

(219331A)

Thesis submitted in partial fulfilment of the requirement for the degree Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

March 2023

Declaration

I declare that this is my own work, and this MSc Research Project Report does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

	16/07/2023
Malan Evans	Date

The above candidate has carried out research for the Masters' thesis under my supervision.

Name of the supervisor: Professor Sanath Jayasena

.....

Prof. Sanath Jayasena

16/07/2023

Date

Acknowledgment

I would like to thank my supervisor Professor Sanath Jayasena for his dedicated support and guidance from the moment he accepted this research project. He always shared his advice with me to drive this research project work in the right direction. I initially thought it would be a bit hard for me to contact him regularly due to his obvious busy schedule. But it was never the case. I have been so fortunate to have him as the supervisor for this research project, not only because he is one of the most senior professors in the department. But because he is also very kind, flexible and humble and it was so easy for me to communicate with him freely. I could not have completed this research project successfully if it was not for his guidance.

I would like to thank my former employer, Synopsys Lanka (Private) Limited for encouraging me to pursue this master's programme. I specially thank my former manager, Mr. Aabid Rushdi for his support, guidance and motivation which sparked my interest in this Computer Science master's degree.

I also would love to mention the support from my very own family. I really believe that my parents who encouraged me through every step of my life have contributed to the success of this research project. I would love to extend my gratitude to my wife's parents as well for motivating me always to strive. I must acknowledge my wife for standing beside me always encouraging me, guiding me, and motivating me. I was about to give up this research work many times when I was kept failing. She was the reason why I could put the failures behind me to achieve this height.

Abstract

Image compression is a requirement for storing and transmitting images. Many fields like digital photography demand lossless image compression as it's a requirement to reconstruct compressed images without a loss. Deep learning has opened so much room for improvements in image processing-related tasks. There are lossless image compression algorithms which use deep learning to achieve impressive compression ratio values. However, the time efficiency of lossless image compression might be affected due to using deep learning. Low-cost edge computing devices cannot use GPUs to accelerate deep learning algorithms. Deep Learning Accelerators (DLA) are the most feasible solution to eliminate time efficiency issues of deep learning-based algorithms for edge computing devices. Deep learning-based lossless image compression solution can be implemented in a System on Chip (SoC) with a Field Programmable Gate Array (FPGA). We propose a lossless image compression system in which a properly trained deep Convolutional Neural Network (CNN) is used to predict residual errors of LOCO-I-based pixel value prediction. Adaptive Arithmetic coding is applied to further improve the compression ratio. The main contribution of our approach is implementing the trained deep CNN in hardware using TVM/VTA stack. Finally, our proposed solution implements an end-to-end lossless image compression system by carrying out the prediction of residual error values of LOCO-I-based pixel value prediction in a Pynq-Z1 board (FPGA) while performing the rest of the tasks in a Python application. TVM/VTA stack stands as a bridge between the Python application and the FPGA. The proposed method yields a better compression performance with respect to state-of-the-art codecs according to the experimental results. The hardware implementation improves the time efficiency significantly enabling utilising the predictive power of deep CNNs for image compression systems. This is the first time a DLA is used effectively in a lossless image compression system, to the best of our knowledge.

Keywords: Lossless Image Compression, FPGA, DLA, VTA, TVM, Real-time,

Pynq-Z1

Table of Contents

1	. Intro	oduction
	1.1.	Background1
	1.1.1.	Overview of image compression1
	1.1.2.	Image compression algorithms1
	1.1.3.	Evaluation of image compression algorithms1
	1.1.4.	Deep Neural Networks (DNNs)2
	1.1.5.	Time efficiency of DNNs2
	1.1.6.	Deep Learning Accelerator (DLA)
	1.2.	Problem definition
	1.3.	Research objectives
2	. Lite	rature review
	2.1.	Image Compression
	2.2.	Non-Learning Codecs7
	2.2.1.	Lossy Image Compression7
	2.2.2.	Lossless Image Compression
	2.3.	Learning Codecs
	2.3.1.	Lossy Image Compression9
	2.3.2.	Lossless Image Compression 10
	2.4.	Hardware Implementations11
	2.5.	Deep Learning Accelerators
3.	. Met	hodology
	3.1.	Overview of the proposed method
	3.2.	Deep Learning based Prediction15
	3.2.1.	Selection of Causal Neighbourhood16
	3.2.2.	Pixel predictor in approach II18

	3.2.3.	The Convolutional Neural Network (CNN)	19
	3.2.4.	Training CNN	23
	3.3.	Error Coding	25
	3.4.	End-to-end lossless image compression system	26
	3.5.	Deep Learning Accelerator for lossless image compression	26
	3.5.1.	Hardware accelerator using TVM/VTA stack	27
	3.6.	End-to-end lossless image compression system with DLA	30
4	. Imp	lementation	31
	4.1.	Implementation of CNN	31
	4.1.1.	General CNN model definition	31
	4.1.2.	CNN model compilation	32
	4.1.3.	DNN model	36
	4.2.	Entropy coding	38
	4.3.	End-to-end image compression flow	38
	4.4.	End-to-end image decompression flow	39
	4.5.	Obtaining DLA	40
	4.5.1.	Setting up TVM/VTA with FPGA	40
	4.5.2.	Prepare DNNs for compilation into hardware implementation	42
	4.5.3.	Compile DNN into the hardware implementation	43
5	. Eva	luations	45
	5.1.	Evaluation of compression performance	46
	5.2.	Evaluation of elapsed time	52
	5.3.	Evaluation of compression quality	54
	5.4.	Evaluation of FPGA resource utilisation	56
6	. Disc	cussion and conclusion	58
	6.1.	Discussion	58

6.2.	Limitations and Future Work	
6.3.	Conclusion	61
7. Re	eferences	

List of Figures

Figure 3.1: Main blocks of a traditional prediction-based lossless image compress	ion
algorithm	13
Figure 3.2: Lossless image compression system with residual error prediction	14
Figure 3.3.3: General usage of the proposed CNN	16
Figure 3.4: The Causal Neighbourhood for d=5	17
Figure 3.5: Sample image of size M x N	17
Figure 3.6: Causal neighbourhood for pixel Pxy	18
Figure 3.7: Residual error for image of size M x N	18
Figure 3.8: Causal neighbourhood for residual error at (x, y) pixel	18
Figure 3.9: Convolutional Neural Network Architecture	22
Figure 3.10: training data preparation in approach I	24
Figure 3.11: training data preparation in approach II	25
Figure 3.12: Proposed lossless image compression system approach I	26
Figure 3.13: Proposed lossless compression system approach II	26
Figure 3.14: Basic use model of TVM	28
Figure 3.15: DLA for pixel value prediction using TVM/VTA stack and FPGA	29
Figure 4.1: Implementation of the CNN	31
Figure 4.2: Proximity-based loss algorithm	34
Figure 5.1: Mandril qualitative analysis	55
Figure 5.2: Cameraman qualitative analysis	56
Figure 5.3: Pirate qualitative analysis	56

List of Tables

Table 3.1: Input, output shapes and parameters at each layer of the proposed CNN	
architecture	
Table 4.1: Different CNN compile options	
Table 4.2: Results of experiments to find CNN model compile options	
Table 4.3: Experiment find out best unavailable causal neighbourhood pixel value. 37	
Table 4.4: Different DNN models in the proposed approaches 38	
Table 5.1: Compression performance comparison for test image set in BPP47	
Table 5.2: Shannon Entropy values for test images 47	
Table 5.3: Average BPP values for test images	
Table 5.4: Compression performance for test images considering compression ratio	
Table 5.5: Average compression ratios for test images	
Table 5.6: compression performance for known images in BPP	
Table 5.7: Shannon Entropy values for known images 51	
Table 5.8: Average BPP for each compression algorithm/standard for known images	
Table 5.9: Compression performance for known images considering compression	
ratio	
Table 5.10: Average compression ratios for known images 52	
Table 5.11: Elapsed time of each compression algorithm and DNNs in seconds 53	
Table 5.12: Pixel error in different implementations of Approach II full model-based	
method	
Table 5.13: Resource utilisation comparison of the proposed approach	