
COST OPTIMIZED SCHEDULING FOR
MICROSERVICES IN KUBERNETES

Sugunakuamr Arunan

219312R

Degree of Master of Science

Department of Computer Science and Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

July 2023

COST OPTIMIZED SCHEDULING FOR
MICROSERVICES IN KUBERNETES

Sugunakumar Arunan

219312R

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science

Department of Computer Science & Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

July 2023

i

DECLARATION

I declare that this is my own work, and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other university or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute the thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date: 9th July 2023

The above candidate has carried out research for the Masters under my supervision.

Name of Supervisor: Prof. G.I.U.S. Perera

Signature of the Supervisor: Date:

ii

ACKNOWLEDGEMENT

I would like thank Dr. Gayashan Amarasinghe who guided me from the beginning

throughout the research and did not hesitate to help even after migrating. His expertise

in related area helped me a lot in setting the right direction for this project and

accomplishing the research goals. I would like to thank Dr Indika Perara for agreeing

to be my supervisor.

I would not have achieved this without the immense support from my wife and family.

A special thanks to my wife and family for coping with me throughout my research

program and encouraging me to complete it. I would like to thank my parents for

supporting me throughout my studies from the start the up until today.

I also want to thank the University of Moratuwa for giving me an opportunity to

participate in the MSc program and for providing the necessary resources to

complete this research. This would not have been easy without the support from my

workplace as well. I would like to thank WSO2 for allowing me to do this part-time

MSc and research while working with them.

iii

ABSTRACT

The usage of Container Orchestration Platform like Kubernetes for running
Microservices applications is increasing nowadays. In a particular application, all
Microservices do not have the same priority. Hence it is costly to allocate the same
resources to both high and low-priority services. Spot instances are an attractive option
for running low-priority services due to their significantly lower cost compared to On-
Demand instances. Spot instances are available for use when cloud service providers
have excess capacity and can be bid on at a much lower price than the On-Demand
rate. But they can be revoked anytime by the Cloud provider which affects the
availability of the services.

This research aims to utilize Spot instances to run low-priority services with the
intention of reducing the cloud cost while providing overall high availability to the
application. A thorough literature review has been conducted on existing research that
utilizes Spot instances to save cost while maintaining high availability. This study
builds upon previous work and proposes a new approach to run low priority
Microservices to save cost. A service called KubeEconomy has been proposed to
monitor and manage Kubernetes worker nodes to efficiently schedule the
Microservices. Three functionalities of the KubeEconomy service have been explained
which contributes to the cost optimization. The KubeEconomy service utilizes cloud
APIs and Kubernetes APIs to promptly scale and reschedule pods within different
nodes.

Two experiments were conducted to show the effectiveness of KubeEconomy service.
In the first experiment, the KubeEconomy service was deployed on Azure cloud to
manage a Kubernetes cluster. The experiment showed that the KubeEconomy service
was able to dynamically provision and deprovision Spot instances based on the
workload demand and Spot evictions, resulting in significant cost savings while
maintaining high availability of the Microservices. In the second experiment, a
simulation was conducted using the parameters gathered from the first experiment to
calculate the cost savings of long running workloads. It is shown that it is possible to
reduce the cloud cost up to 80% while maintaining 99% availability for the
Microservices under optimal conditions.

Keywords: Cloud computing, Container Orchestration, Kubernetes, Microservices,
Cost optimization, High availability, Spot Instances

iv

TABLE OF CONTENTS

Declaration .. i

Acknowledgement ... ii

Abstract ... iii

Table of Contents .. iv

List of Figures ... vi

List of Tables ... vii

List of Abbreviations .. viii

Chapter 1: INTRODUCTION ... 1

Chapter 2 : LITERATURE REVIEW ... 5

2.1 Introduction .. 5

2.2 Scaling algorithms ... 9

2.3 Efficient scheduling ... 12

2.4 Fault tolerance .. 14

2.4.1 Migration .. 15

2.4.2 Checkpointing ... 17

2.4.3 Replication .. 18

Chapter 3: METHODOLOGY .. 20

3.1 Infrastructure .. 20

3.1.1 Managed Kubernetes solution .. 21

3.1.2 Scheduler .. 22

3.1.3 Scheduled Events service .. 23

3.1.4 Daemon Service .. 24

3.1.5 Test client .. 25

3.2 Scheduler functionalities .. 26

3.2.1 Peak-time Upscaling ... 26

3.3.2 Handling Eviction ... 30

3.3.3 Optimizing the scheduling frequently ... 34

Chapter 4 : EXPERIMENT ... 35

4.1 Experiment 1: Deployment on Azure .. 36

v

4.2 Experiment 2: Running simulations .. 39

Chapter 5 : EVALUATION ... 41

5.1 Pricing & Eviction History .. 42

5.1.1 Spot Pricing History ... 42

5.1.2 Spot Eviction Rate .. 43

5.2 Experiment 1 Results ... 44

5.2.1 Availability ... 44

5.2.2 Cost ... 45

5.3 Experiment 2 Results ... 46

5.3.1 Eviction Rate vs Additional VMs ... 46

5.3.2 Availability of a Microservice vs Eviction rate .. 47

5.3.3 Cost savings vs Spot price with different eviction rates 48

5.4 Summary .. 49

Chapter 6 : CONCLUSION & FUTURE WORKS ... 50

References .. 54

vi

LIST OF FIGURES

Figure Description Page

Figure 1 Relationship among different instances 7

Figure 2 Lifecycle of a Spot Instance 8

Figure 3 Relationship between Spot instances 9

Figure 4 Two stage Triple Modular Redundancy 15

Figure 5 Workflow scheduling on top of Spot instances 16

Figure 6 Infrastructure 20

Figure 7 KubeEconomy Scheduler 22

Figure 8 Rule & CronJobs 26

Figure 9 Upscaling & Downscaling 27

Figure 10 Handling Eviction 30

Figure 11 Cluster optimization 34

Figure 12 Teastore Microservices 37

Figure 13 Service calls for Teastore Microservices 38

Figure 14 Spot price comparison 42

Figure 15 Spot eviction rates 43

Figure 16 Eviction rates vs Additional VMs 46

Figure 17 Availability vs Eviction rate 47

Figure 18 Cost savings vs Eviction rate 48

Figure 19 Cost savings Heat Map 49

Figure 20 Elon Musk’s tweet 50

vii

LIST OF TABLES

Table Description Page

Table 1 Teastore Microservices 36

Table 2 Different Node pools used in Experiment 1 37

Table 3 Experiment 2 configured parameters 39

Table 4 Availability of Teastore Microservices after Scenario 2 44

Table 5 Cost of running the Microservices 45

viii

LIST OF ABBREVIATIONS

Abbreviation Description

SI Spot Instance

VM Virtual Machine

CRD Custom Resource Definition

KE KubeEconomy

HA High Availability

API Application Programming Interface

AKS Azure Kubernetes Service

IMDS Instance Meta Data Service

K8s Kubernetes

