NAVIGATION PLANNING FOR A MULTI ROBOT SYSTEM EXPLORING AN UNKNOWN ENVIRONMENT SUPPORTED BY VOLUMETRIC DATA

R.M.K.V. Ratnayake

208005L

Degree of Master of Science

Department of Computer Science & Engineering

University of Moratuwa Sri Lanka

October 2021

NAVIGATION PLANNING FOR A MULTI ROBOT SYSTEM EXPLORING AN UNKNOWN ENVIRONMENT SUPPORTED BY VOLUMETRIC DATA

R.M.K.V. Ratnayake

208005L

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa Sri Lanka

October 2021

DECLARATION

I, Kalana Ratnayake, declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 28/01/2022

The above candidate has carried out research for the Masters thesis/dissertation under my supervision.

Name of Supervisor: Dr. Chandana Gamage

Signature of the Supervisor:

Date: 28/01/2022

Name of Supervisor: Dr. Sulochana Sooriyaarachchi

Signature of the Supervisor:

Date: 29/01/2022

ABSTRACT

Exploration and navigation in unknown environments can be done individually or as a group of robots. The current state-of-the-art systems mainly use frontier detection-based exploration approaches based on occupancy grids and are available as either single robot systems or multi-robot systems.

In this research, we propose a two-stage octomap-based exploration system for multi-robot systems that improve multi-robot coordinated exploration. We also present a prototype robotic system capable of exploring an unmapped area individually or while coordinating with other robots to complete the exploration fast and efficiently. During single robot exploration, the proposed system only uses the first stage of the two-stage system to evaluate the octomap of the environment. This stage utilizes the state of voxels to calculate target locations for navigation using a distance-based cost function. During multi-robot exploration, the proposed system uses both stages of the two-stage system to explore the given area. The second stage uses maps created by individual robots to create a merged map. The merged map can be used to evaluate the environment using octomaps to identify target locations for exploration and navigation.

We have also proposed a performance evaluation criterion for exploration systems considering the robot's operation time, power consumption, and stability. This criterion was used to evaluate the system and compare the performance of the individual robot system against the multi-robot system as well as against the state-of-the-art Explore-Lite system. Results of experiments show that the individual robot system proposed in this paper is about 38% faster than the Explore-Lite system, the multi-robot system using two robots is 48% faster than the individual robot system, and the multi-robot system using three robots is 38% faster than the individual robot system.

Keywords: multi-robot system; exploration; path planning; navigation; octomap based exploration; unstructured environment;

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisors Dr. Chandana Gamage and Dr. Sulochana Sooriyaarachchi for the support given for the success of this research. I'm incredibly grateful for their guidance throughout this research.

I want to thank both the academic and non-academic staff of the Department of Computer Science and Engineering for their help during this research in terms of administrative matters and in providing necessary resources.

I would also like to thank my family for all the love and support given throughout this research.

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor			i	
Abstract			ii	
Acknowledgement			iii	
Table of Contents			iv	
List of Figures			vii	
List of Tables			ix	
List of Abbreviations			1	
1	Introduction			2
	1.1	Background		2
	1.2	Resear	rch Problem	3
	1.3	Resear	rch Objectives	4
	1.4	Resear	rch Contributions	4
	1.5	Public	cations	5
	1.6	Outlin	ne of Thesis	5
2	Literature Survey			6
	2.1	Navigation		6
		2.1.1	Environment Perception	6
		2.1.2	Path Planning	7
		2.1.3	Summary	9
	2.2	Coord	lination	11
		2.2.1	Division of Map	11
		2.2.2	Association of Robots	12
		2.2.3	Summary	13
	2.3	Exploration		14
		2.3.1	Single Robot Systems	14
		2.3.2	Multi-Robot Systems	17
		2.3.3	Summary	18
	2.4	4 Mapping		20

		2.4.1	Simple Mapping Systems	21
		2.4.2	Multi-session Mapping Systems	21
		2.4.3	Multi-robot Mapping Systems	22
		2.4.4	Summary	25
3	Met	hodolog	gy	27
	3.1	Introd	luction	27
	3.2	Robot	System	27
		3.2.1	Mapping	27
		3.2.2	Exploration	29
		3.2.3	Navigation	30
	3.3	Server	r System	30
		3.3.1	Mapping	30
		3.3.2	Exploration	31
		3.3.3	Coordination	32
	3.4	Summ	nary	32
4	Syst	em Des	sign	34
	4.1	Introd	luction	34
	4.2	Server	: System	35
		4.2.1	Merging of Point Cloud	36
		4.2.2	Calculation of Octomap	37
		4.2.3	Evaluation of Octomap	37
		4.2.4	Filtering of Goals	38
	4.3	Robot	System	40
		4.3.1	Simultaneous Localization and Mapping System	41
		4.3.2	Exploration Module	42
		4.3.3	Planning Module	44
		4.3.4	Control Module	47
		4.3.5	Client Module	50
5	Exp	eriment	ts and Results	52
	5.1	Perfor	rmance Evaluation Criteria	52
		5.1.1	Time to Explore	53

		5.1.2	Exploration Path Length	53
		5.1.3	Lateral Stress	54
		5.1.4	Tangential Stress	54
		5.1.5	Explored Percentage	55
	5.2	Single	Robot Experiments and Results	56
		5.2.1	Explore-Lite System	56
		5.2.2	Experimental Setup	56
		5.2.3	Experiment	57
		5.2.4	Result Analysis	59
	5.3	Multi-	Robot Experiments and Results	61
		5.3.1	Experiment Setup	61
		5.3.2	One Robot Experiment	63
		5.3.3	Two Robot Experiment	64
		5.3.4	Three Robot Experiment	66
		5.3.5	Results Analysis	68
	5.4	Discus	ssion	70
6	Con	clusions	s and Recommendations	77
References			79	

LIST OF FIGURES

Figure 1.1	Robot systems used for exploration	2
Figure 2.1	Viewing environment through a point cloud	7
Figure 2.2	Viewing environment through an octomap	8
Figure 2.3	Division of map approaches	12
Figure 2.4	Frontiers on an occupancy grid	15
Figure 2.5	Reaching a known position in an unknown area in goal-seeking	
	algorithms	16
Figure 2.6	Searching the occupancy grid using BFS	17
Figure 2.7	Abstract design of multi-session mapping systems	22
Figure 2.8	Abstract design of multi-robot mapping systems	23
Figure 3.1	Overview of Methodology	33
Figure 4.1	Expected use of the multi-robot system	34
Figure 4.2	Abstract design of the server system with n robots and m input	
	processing threads	36
Figure 4.3	Detailed design of processing stages from merging of point clouds	
	to filtering of goals	37
Figure 4.4	Robot system structure when operating as a single robot system	41
Figure 4.5	Robot system structure when operating as a multi-robot system	42
Figure 4.6	Exploration module during single robot operation	43
Figure 4.7	Exploration module during multi-robot operation	43
Figure 4.8	Planning module during single robot operation	45
Figure 4.9	Planning module during multi-robot operation	46
Figure 4.10	Common control sequence offered by control module as a single	
	robot system	48
Figure 4.11	Position tracking system	48
Figure 4.12	Common control sequence offered by control module as a multi-	
	robot system	49
Figure 4.13	Connectivity between the server system and client modules	50

Figure 4.14	Data collection by client module to be sent to the server system	51
Figure 4.15	Data received by the client module is used to update other modules	51
Figure 5.1	The simulated environment used for a single robot experiment	57
Figure 5.2	Single robot exploration during an experiment	58
Figure 5.3	Comparison of fastest explorations of the single robot system and	
	Explore-Lite system	61
Figure 5.4	Comparison of explorations with highest Explored Percentage of	
	the single robot system and Explore-Lite system	62
Figure 5.5	The simulated environment used for one robot experiment	63
Figure 5.6	The simulated environment used for two robot experiment	64
Figure 5.7	Two robot exploration during an experiment	65
Figure 5.8	The simulated environment used for three robot experiment	66
Figure 5.9	Three robot exploration during an experiment	67
Figure 5.10	Comparison of fastest explorations of one robot system, two robot	
	system, and three robot system	71
Figure 5.11	Comparison of explorations with highest Explored Percentage of	
	one robot system, two robot system, and three robot system	72
Figure 5.12	Resource utilization of ROS and Gazebo simulator during (a) one	
	robot system simulations (b) two robot system simulations (c)	
	three robot system simulations at mid-way.	73
Figure 5.13	SLAM system failure	74
Figure 5.14	Dynamic objects that were visualized as obstacles (a) in point	
	cloud (b) in octomap	76

LIST OF TABLES

Table 2.1	Summary of environment perception approaches	9
Table 2.2	Summary of path planning approaches	10
Table 2.3	Summary of robot coordination approaches	13
Table 2.4	Summary of approaches for exploration	18
Table 2.5	Summary of literature related to mapping	25
Table 3.1	Summary of robot coordination approaches	28
Table 3.2	Summary of robot coordination approaches	29
Table 3.3	Summary of robot coordination approaches	30
Table 5.1	Single robot system evaluation results	59
Table 5.2	Multi robot system - system level evaluation results	68
Table 5.3	Multi robot system - robot level evaluation results	68

LIST OF ABBREVIATIONS

- SLAM Simultaneous Localization And Mapping
- ROS Robot Operating System
- ORB Oriented FAST and rotated BRIEF
- PRM Place Recognition Module
- ICP Iterative Closest Point
- SD Standard Deviation
- 2D Two Dimensional
- 3D Three Dimensional
- BFS Breadth-First Search
- BGS Basic Goal Seeking
- MGS Modified Goal Seeking
- GSI Goal Seeking Index
- LIDAR Light Detection and Ranging
- EKF Extended Kalman Filter
- RGB-D Red Green Blue Depth