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ABSTRACT

Overall survival prediction is a vital task that will lead for better patient man­

agement in clinical practise. Existing approaches mainly focus on imaging based 

survival prediction, which is non invasive, and thus, easier to be implemented at 

the initial diagnosis stages. However, the advancements in the DNA/RNA tech­

nologies has given access to genomic and transcriptomic profiles of the gliomas, 

that directly reflect the molecular level alterations. Thus, in this work we mainly 

focus on using transcriptomic profiles for survival prediction, an area that has 

not been widely analysed yet for survival prediction. We utilize the gene expres­

sion and mutation profiles, while augmenting the recent Artificial Intelligence 

approaches, such as deep probabilistic programming and multi task learning for 

prognosis prediction. Thereby we do not just focus on the application, we also 

contribute with novel learning paradigms to improve the classification task per­

formances. Nonetheless, we also focus on proposing a novel loss function, since 

architectural wise the state of art performance has been achieved for classification 

tasks.

In addition, we also investigate ability to employ radiomics, for subtype clas­

sification, that is also associated with survival. Since subtypes mainly rely on 

the genomic alterations, we found it useful to focus on imaging features ability 

to predict prognosis of glioma.

Keywords: Survival Prediction; Prognosis; Deep Learning; Multi-task Learning; Deep 

Probabilistic Programming
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