18/TH 108/2023 DCS 03/48

004 0021

TH5103

OVERALL SURVIVAL PREDICTION OF GLIOMA PATIENTS USING GENOMICS

M. R. Navodini Wijethilake

208012F

UNIVERSITY OF MORATUWA, SRI LANKA

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science by Research

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

September 2021

TH-5103

DECLARATION

I, Navodini Wijethilake, declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature UOM Verified Signature Date: 23/09/2021

The above candidate has carried out research for the Masters thesis Dissertation under my supervision.

Name of Supervisor: Dr. Dulani Meedeniya

Signature of the Supervisor:

The above candidate has carried out research for the Masters thesis/Dissertation under my supervision.

CLANN

23/09/202

Date:

Name of Supervisor: Dr. Charith Chithraranjan

Signature of the Supervisor: UOM Verified Signature ²¹

ABSTRACT

Overall survival prediction is a vital task that will lead for better patient management in clinical practise. Existing approaches mainly focus on imaging based survival prediction, which is non invasive, and thus, easier to be implemented at the initial diagnosis stages. However, the advancements in the DNA/RNA technologies has given access to genomic and transcriptomic profiles of the gliomas, that directly reflect the molecular level alterations. Thus, in this work we mainly focus on using transcriptomic profiles for survival prediction, an area that has not been widely analysed yet for survival prediction. We utilize the gene expression and mutation profiles, while augmenting the recent Artificial Intelligence approaches, such as deep probabilistic programming and multi task learning for prognosis prediction. Thereby we do not just focus on the application, we also contribute with novel learning paradigms to improve the classification task performances. Nonetheless, we also focus on proposing a novel loss function, since architectural wise the state of art performance has been achieved for classification tasks.

In addition, we also investigate ability to employ radiomics, for subtype classification, that is also associated with survival. Since subtypes mainly rely on the genomic alterations, we found it useful to focus on imaging features ability to predict prognosis of glioma.

Keywords: Survival Prediction; Prognosis; Deep Learning; Multi-task Learning; Deep Probabilistic Programming

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisors Dr. Dulani Meedeniya and Dr. Charith Chithraranjan for the immense guidance provided to successfully finish this research. I'm extremely thankful for your patience, motivation, and immense knowledge given throughout the period. I firmly believe without your courageous support this would not be able to reach this stage.

I wish to thank Dr. Indika Perera for his valuable insights and guidance from the very beginning of this research. I would like to convey my gratitude to the entire staff of the Department of Computer Science and Engineering, both academic and non-academic for all their support given throughout the entire Masters course period. This research was supported by the University of Moratuwa Senate Research Grant. I would like to acknowledge the grant and other relevant parties who work hard to provide the required facilities to up bring the research facilities in Sri Lanka more specifically, by providing the financial support.

Nonetheless, I would like to thank my family for all the love and support.

Thank you!

LIST OF ABBREVIATIONS

GBM	Glioblastoma
DL	Deep Learning
ML	Machine Learning
IR	Importance Ranking
PCA	Principle Component Analysis
RFE	Recursive Feature Elimination
CC	Correlation Coefficient
RF	Random Forest
LR	Linear Regression
SVM	Support Vector Machine
XGB	eXtreme Gradient Boosting
ST	Survival Tree
ANN	Artificial Neural Network
LASSO	Least Absolute Shrinkage and Selection Operator
KM	Keplen Meier
TCGA	The Cancer Genome Atlas
CNN	Convolutional Neural Network
CGGA	Chinese Glioma Genome Atlas
CGGA OBTS	Chinese Glioma Genome Atlas the Ohio Brain Tumor Study
OBTS	the Ohio Brain Tumor Study
OBTS GEO	the Ohio Brain Tumor Study Gene ExpressionOmnibus
OBTS GEO CPTAC	the Ohio Brain Tumor Study Gene ExpressionOmnibus Clinical Proteomic Tumor Analysis Consortium
OBTS GEO CPTAC TCIA	the Ohio Brain Tumor Study Gene ExpressionOmnibus Clinical Proteomic Tumor Analysis Consortium TheCancer Imaging Archive
OBTS GEO CPTAC TCIA LGG	the Ohio Brain Tumor Study Gene ExpressionOmnibus Clinical Proteomic Tumor Analysis Consortium TheCancer Imaging Archive Lower Grade Glioma
OBTS GEO CPTAC TCIA LGG CoxPH	the Ohio Brain Tumor Study Gene ExpressionOmnibus Clinical Proteomic Tumor Analysis Consortium TheCancer Imaging Archive Lower Grade Glioma Cox Proportional Hazard model
OBTS GEO CPTAC TCIA LGG CoxPH CE	the Ohio Brain Tumor Study Gene ExpressionOmnibus Clinical Proteomic Tumor Analysis Consortium TheCancer Imaging Archive Lower Grade Glioma Cox Proportional Hazard model Cross-Entropy

normLSF Normalized Label Smoothing Focal

Acc. Accuracy

Prec. Precision

Sens. Sensitivity

MTL Multi Task Learning

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor		i		
Ał	ostrac	et		ii
Ackowledgement		iii		
List of Abbreviations		iv		
Ta	ble o	f Conte	nts	vi
Lis	st of I	Figures		ix
Lis	st of '	Tables		xi
1	Intro	oductio	11	2
	1.1	Doma	in Overview	2
		1.1.1	Classification based on underlying histology	2
		1.1.2	Classification based on molecular pathogenesis	3
		1.1.3	Mortality of Glioma patients	4
		1.1.4	Overall Glioma survival and Glioma survival	5
	1.2	Overv	iew of the Problem	5
	1.3	Motivation		6
	1.4	Importance of this research		6
	1.5	Objectives		7
	1.6	Contra	ibution	8
	1.7	Public	cations	8
2	Literature Review		10	
	2.1	Data	types used in Glioma survival analysis	10
		2.1.1	Glioma Screening and Data Collection in clinical practice	10
		2.1.2	Radiomics	11
		2.1.3	Genomics	16
		2.1.4	Other data types used in Survival Analysis	20
		2.1.5	Public Glioma Cohorts	21
		2.1.6	Preprocessing of Glioma survival related Data	23
	2.2	Gliom	a Survival Analysis Approaches	25

		2.2.1	Machine Learning based Survival Analysis	25
		2.2.2	Deep Learning based Survival Analysis	35
		2.2.3	Statistical Analysis tools for Survival Analysis	36
		2.2.4	Other methods used in survival prediction	39
3	Met	Methods		
	3.1	3.1 The Approaches included in this work		
	<u>3.2</u>	Progn	osis prediction with Gene Expression profiles	44
		3.2.1	Basic Machine Learning for Survival Prediction	44
		3.2.2	Deep Learning for survival prediction	50
	3.3	Progn	osis prediction with Mutation profiles	54
		3.3.1	Dataset	54
		3.3.2	Methods	55
	3.4	Progno	osis with Radiogenomics	56
		3.4.1	Dataset	56
		3.4.2	Segmentation	59
		3.4.3	Feature Extraction	59
		3.4.4	Statistical Analysis	6 0
		3.4.5	Subtype Predictive model	61
4	Rest	ılts		62
	4.1	Progno	osis prediction with gene expression profiles	62
		4.1.1	System Evaluation - ML approaches & Risk Score Model	62
		4.1.2	System Evaluation - DL approach	68
	4.2	Progno	osis prediction with mutation profiles	75
	4.3	Progno	osis Analysis with Radiogenomics	76
		4.3.1	Correlation between radiomics, genomics and overall survival	76
		4.3.2	Imaging biomarkers associated with molecular subtypes	78
		4.3.3	Subtype Prediction	79
5	Disc	ussion		81
	5.1	Comparison with existing studies 8		
	5.2	Limitations 86		
	5.3	3 Future Directions		87

6 Conclusions

References

LIBRARY CONTINUE

89

91

LIST OF FIGURES

Figure 2.1	A general radiomics extraction pipeline.	11
Figure 2.2	Sample survival tree for survival group classification into short.	
	medium, and long survival.	30
Figure 2.3	Artificial Neural Network consists of a single hidden layer.	34
Figure 2.4	A sample nomogram.	42
Figure 3.1	Graphical Abstract.	43
Figure 3.2	Proposed Bayesian Neural network architecture.	49
Figure 3.3	Survival Time Distribution (in days) into three class samples -	
	short-term, medium-term, and long term for CGGA and TCGA	
	dataset.	50
Figure 3.4	The 1D array containing the expressions levels of 13094 genes are	
	transformed into a 2D array of 116 x 116.	51
Figure 3.5	MTL model inspired with Resnet18 architecture for survival class	
	and grade prediction.	56
Figure 3.6	Step 1: Freeze the grade classification block and optimize survival	
	prediction task.	57
Figure 3.7	Step 2: Freeze the survival classification block and the shared	
	encoder, and optimize grade prediction task.	57
Figure 4.1	Heat map for the (a) CGGA cohort (b) validation TCGA cohort	
	with proposed gene signature.	65
Figure 4.2	Overall survival distribution of high and low risk groups.	66
Figure 4.3	Kaplan-Meier curves obtained for the high risk and low risk groups.	
	(a) CGGA (b) TCGA dataset.	67
Figure 4.4	mRNA expression value distribution of each selected genes for the	
	high and low risk groups.	68
Figure 4.5	Comparative classification performance analysis for model trained	
	with state-of-the-art cross entropy and proposed cost function on	
	TCGA dataset.	71

Figure 4.6	Reliability graph for normLSF comparing with CE, FL and LSF.	
	The curve for normLSF is much closer to the perfect reliability	
	cure (dash line).	72
Figure 4.7	tSNE projections of penultimate layer features of ResNet18 model	
	trained on Genomics data with various loss functions.	73
Figure 4.8	SHAP analysis	74
Figure 4.9	The most crucial clinical genes responsible for true and false pre-	
	diction in red and blue, respectively of all three categories.	74
Figure 4.10	Performance comparison between using Label smoothing and Cross	
	entropy loss with and without gradnorm.	76
Figure 4.11	The comparison of the fractal dimensions of whole tumor, tumor	
	core and necrosis regions between 4 subtypes of Glioblastoma	79

LIST OF TABLES

- Table 2.1
 Open source Tools available for Preprocessing and Segmentation

 of MRI
- Table 2.2Segmentation methods and imaging features extracted in gliomarelated studies.
- Table 2.3 Frequently used Glioma cohorts for survival analysis of Glioma patients. TCGA: The Cancer Genome Atlas; CPTAC: Clinical Proteomic Tumor Analysis Consortium; BraTS: Brain Tumor Segmentation; CGGA: Chinese Glioma Genome Atlas; GEO: Gene Expression Omnibus, OBTS: the Ohio Brain Tumor Study
- Table 2.4 Feature selection and analyzing techniques used in survival prediction of gliomas with radiomics. IR: Importance Ranking: PCA:
 Principle Component Analysis; RFE: Recursive Feature Elimination; CC: Correlation Coefficient: RF: Random Forest: LR: Linear Regression; SVM: Support Vector Machine: NGB: eXtreme Gradient Boosting; ST: Survival Tree: ANN: Artificial Neural Network
- Table 2.5Feature selection and analysing techniques used in survival pre-
diction of gliomas with radiogenomics. RFE: Recursive Feature
Elimination; LASSO: Least Absolute Shrinkage and Selection Op-
erator; KM: Keplen Meier: LR: Linear Regression: SVM: Support
Vector Machine
- Table 2.6
 Related work with DL approaches. TCGA: The Cancer Genome

 Atlas; CNN: Convolutional Neural Network
- Table 2.7Related work on prognostic risk score calculation. TCGA: The
Cancer Genome Atlas; CGGA: Chinese Glioma Genome Atlas;
GEO: Gene Expression Omnibus; CPTAC: Clinical Proteomic Tu-
mor Analysis Consortium; TCIA: The Cancer Imaging Archive:
LGG: Lower Grade Glioma, GBM: Glioblastoma, Cox PH: Cox
Proportional Hazard model

26

LIBRAR

36

41

13

17

22

Related work on prognostic nomograms development. TCGA: The	
Cancer Genome Atlas; CPTAC: Clinical Proteomic Tumor Analy-	
sis Consortium; GEO: Gene Expression Omnibus, OBTS: the Ohio	
Brain Tumor Study, LGG: Lower Grade Glioma: GBM: Glioblastoma	42
Dataset Description	45
Selected 7 genes and their corresponding posterior probabilities	46
Parameters of the subtype prediction learning models	61
Comparison of Overall Survival Prediction with Machine Learning	
- 4 fold cross validation on CGGA cohort	62
Comparison of Overall Survival Prediction with Machine Learning	
- testing on TCGA cohort	63
Univariate Cox Regression analysis on the chosen 7 genes	64
Performance study of state-of-the-art CNN models trained with	
cross-entropy and proposed loss for classifying of 4 cross-validated	
CGGA genomic data samples. CE, normLSF, Acc., Prec., Sens.	
represents Cross-Entropy, Normalized Label Smoothing Focal, Ac-	
curacy, Precision and Sensitivity respectively.	69
Average classification metrics for validation-set obtained with dif-	
ferent loss functions on a 4-fold CGGA dataset. The values mani-	
fested in bold are best per column. CE, FL, LSCE, LSF, normLSF.	
Acc., Prec., Sens. represents Cross-Entropy, Focal Loss, Label	
Smoothing Cross-Entropy, Label Smoothing Focal, Normalized	
Label Smoothing Focal. Accuracy, Precision and Sensitivity re-	
spectively.	70
4-fold cross evaluation metrics of ResNet18 model trained on CGGA	
Genomics dataset using ours loss.	70
	Cancer Genome Atlas: CPTAC: Clinical Proteomic Tumor Analy- sis Consortium; GEO: Gene Expression Omnibus, OBTS: the Ohio Brain Tumor Study, LGG: Lower Grade Glioma; GBM: Glioblastoma Dataset Description Selected 7 genes and their corresponding posterior probabilities Parameters of the subtype prediction learning models Comparison of Overall Survival Prediction with Machine Learning - 4 fold cross validation on CGGA cohort Comparison of Overall Survival Prediction with Machine Learning - testing on TCGA cohort Univariate Cox Regression analysis on the chosen 7 genes Performance study of state-of-the-art CNN models trained with cross-entropy and proposed loss for classifying of 4 cross-validated CGGA genomic data samples. CE, normLSF, Acc., Prec., Sens. represents Cross-Entropy, Normalized Label Smoothing Focal, Ac- curacy, Precision and Sensitivity respectively. Average classification metrics for validation-set obtained with dif- ferent loss functions on a 4-fold CGGA dataset. The values mani- fested in bold are best per column. CE, FL, LSCE, LSF, normLSF, Acc., Prec., Sens. represents Cross-Entropy, Focal Loss, Label Smoothing Cross-Entropy, Label Smoothing Focal. Normalized Label Smoothing Focal, Accuracy, Precision and Sensitivity re- spectively.

Table 4.7 Model miscalibration quantification for CE. FL. LSF and proposed normLSF loss. Evaluation metrics such as Expected Calibration Error (ECE), Static Calibration Error (SCE), Thresholded Adaptive Calibration Error (TACE), Brier Score (BS) and Uncertainty Calibration Error (UCE) are used to calculate the calibration error for each model. 72 Table 4.8 Prediction of subtype and grade as a multi task classification using mutation profiles on CGGA dataset. Step 1. freeze grade prediction branch(Label Smoothing) Step 2. freeze shared encoder survival prediction branch (Label Smoothing) Step 3. both unfreeze - GradNorm 75 Table 4.9 Prediction of subtype and grade as a multi task classification using mutation profiles on TCGA dataset. Step 1. freeze grade prediction branch(Label Smoothing) Step 2. freeze shared encoder survival prediction branch (Label Smoothing) Step 3. both unfreeze - GradNorm 75 Table 4.10 Kruskal Wallis statistics for radiomic features (p < 0.05) between 4 subtypes. 78 Table 4.11 Prediction of subtypes as a binary classification using Radiomics 80 Table 4.12 Prediction of Molecular subtypes as a 4 class classification with Genomics 80 Table 5.1 Comparison with existing best performing works. 86