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Abstract

Speech embeddings produced by Deep Neural Networks have yielded promising results in

a variety of speech processing applications. However, the performance in speech tasks like

automatic speech recognition and speech intent identification can be affected to a great extent

when there is a discrepancy between training and testing conditions. This is because, in addition

to linguistic information, speech signals carry para-linguistic information including speaker

characteristics, emotional states, and accent. Variations in the speaker traits and states lead

to compromise on performance in speech recognition applications that require only linguistic

information.

Over the years, there have been various approaches that attempt to disentangle the para-linguistic

information that support the linguistic information in speech. The commonly used strategy is

to integrate speaker representations into speech recognition models to normalise the speaker

effects. Still, it has received less attention when it comes to studies on speech-to-intent clas-

sification. Furthermore, large amounts of labeled speech data are required for these speaker

normalisation techniques. Under low-resource settings, when there is only a limited number of

speech samples available for training, transfer learning strategies can be used.

This study presents a speaker-invariant speech intent classification model using i-vector based

feature augmentation. We investigate the use of pre-trained acoustic models for transfer-

learning under low-resource settings. The proposed method is evaluated on the banking do-

main speech intent dataset in Sinhala and Tamil languages along with fluent speech command

dataset. Experimental results show the effectiveness of the proposed method in achieving bet-

ter prediction in the speech-to-intent classification model.

Keywords: speech-to-intent, speech recognition, linguistic, para-linguistic information,

speaker representation
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