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ABSTRACT 

Sarcopenia, a condition marked by age-related loss of muscle mass and function 

(especially in elders), is becoming more commonplace worldwide. Sarcopenia 

screening is necessary to identify at-risk people and implement measures to stop or 

slow their growth, especially in elders. Since many older people reject wearable 

sensor-based technologies, there is still a need for vision-attentive-based techniques 

for sarcopenia screening through the functional mobility of older people. In this 

research, combining the Timed Up and Go test (TUG-T), 3 Meters Walk Test (3mW-

T), and fall score model built a vision attentive system for screening for sarcopenia in 

elders. The t-test applied to the collected dataset indicated a direct correlation between 

sarcopenia and factors such as TUG time (p=0.004), gait speed (p=0.006), fall score 

(p=0.021), and age (p=0.002). The primary discovery of this research indicates that 

older individuals afflicted by sarcopenia exhibit a TUG time exceeding 13.1 (±0.35) 

seconds, along with a gait speed slower than 0.7 (±0.07) m/s. Moreover, using the 

TUG test, gait speed, and fall score, the system successfully recognized sarcopenia in 

individuals with an accuracy of 93.7 (±1.9) %, 96.1 (±2.1) %, and 92.14 (±4.6) %, 

respectively. The method can potentially be an effective sarcopenia screening tool, as 

evidenced by its overall accuracy of 91.2%. These findings suggest that a vision-

attentive system can be effective for sarcopenia screening and early detection, which 

may eventually enhance the elderly’s clinical outcomes and quality of life. 

Keywords: Geriatric assessment, Functional mobility estimation, Sarcopenia 

screening, TUG test, Vision attentive model 

  



v 

TABLE OF CONTENTS 

 

Declaration .................................................................................................................... i 

Dedication .................................................................................................................... ii 

Acknowledgment ........................................................................................................ iii 

Abstract ....................................................................................................................... iv 

Table of Contents ......................................................................................................... v 

List of Figures ............................................................................................................ vii 

List of Tables ............................................................................................................... x 

List of Abbreviations .................................................................................................. xi 

List of Appendices ..................................................................................................... xii 

Chapter 1 ...................................................................................................................... 1 

Introduction .................................................................................................................. 1 

1.1. Background ................................................................................................... 1 

1.2. Problem Statement ........................................................................................ 3 

1.3. Thesis Overview ............................................................................................ 4 

Chapter 2 ...................................................................................................................... 6 

Literature Review ......................................................................................................... 6 

2.1. Mechanism, Categories, and Stages of Sarcopenia ....................................... 6 

2.2. Functional Mobility and Functional Capacity Assessments ......................... 7 

2.3. Vision Attentive Methodologies for Elderly Healthcare ............................. 10 

2.4. Functional Mobility Assessments for Sarcopenia ....................................... 11 

2.4.1. Sarcopenia Screening Through Timed-Up-and Go (TUG) Test ........ 11 

2.4.2. Fall Prediction Through Functional Mobility Assessments ............... 13 

2.4.3. Human Body Key Point Extraction Using BlazePose Algorithm ...... 16 

2.4.4. Summary of Literature Review .......................................................... 17 

Chapter 3 .................................................................................................................... 20 

Automating TUG and 3m-Walk Test Using Vision Attentive Method ..................... 20 

3.1. TUG Activity Prediction and TUG Time Determination ............................ 20 

3.1.1. Procedure ........................................................................................... 20 

3.1.2. Results and Discussion ....................................................................... 24 



vi 

3.2. Gait Speed Estimation Using 3m Walk Test (3mWT) ................................ 28 

3.2.1. Procedure ........................................................................................... 28 

3.2.2. Results and Discussion ....................................................................... 30 

Chapter 4 .................................................................................................................... 33 

Estimation and Mapping of Muscular Strength with Fall Score  ............................... 33 

4.1. Body Balance Estimation Using Inverted Pendulum Mechanism .............. 35 

4.2. Estimation of Body Segment Mass ............................................................. 37 

4.3. Muscular Strength Vs. Fall Score Estimation ............................................. 38 

4.4. Results and Discussions .............................................................................. 39 

Chapter 5 .................................................................................................................... 43 

Vision Attentive-Enabled Sarcopenia Screening Model ........................................... 43 

5.1. Development of TUG Test, 3m-Walk Test, and Fall Prediction Enabled 

Sarcopenia Screening Tool .................................................................................... 43 

5.2. Experiment Method and Data Collection .................................................... 49 

5.3. Sarcopenia Prediction Through ANN Model .............................................. 51 

5.3.1. Results and Discussion ....................................................................... 53 

Chapter 6 .................................................................................................................... 59 

Discussion and Conclusion ........................................................................................ 59 

Ethical Consideration ................................................................................................. 62 

List of Publications .................................................................................................... 63 

References .................................................................................................................. 64 

Appendix A ................................................................................................................ 70 

Appendix B ................................................................................................................ 71 

Appendix C ................................................................................................................ 72 

 

  



vii 

LIST OF FIGURES 

Figure Description Page 

Figure 1.1 

Elder population growth during 1960 to 2021 (source:  

United Nations Population Division. World Population 

Prospects: 2022 revision) 

1 

Figure 2.1 Mechanism of sarcopenia 6 

Figure 2.2 Body landmark distribution in Leonardo's Vitruvian man 16 

Figure 2.3 
Left: Body poses key landmarks, Right (top): Inference 

pipeline, Right (bottom): Network architecture 
17 

Figure 3.1 Human pose extraction using landmarks 20 

Figure 3.2 
Generated body landmarks and its geometrical 

representation for the "sit" activity 
21 

Figure 3.3 
Knee angle calculation using hip, knee, and ankle 

landmarks 
21 

Figure 3.4 
The overall architecture of the TUG variable estimation 

model 
22 

Figure 3.5 Architecture of the proposed activity prediction model 23 

Figure 3.6 Confusion matrix of the RF testing model 24 

Figure 3.7 The test case executes sit-to-stand in the TUG experiment 25 

Figure 3.8 
The test case executes 3 meters forward walk in the TUG 

experiment 
25 

Figure 3.9 
The test case executes 3 meters backward walk in the TUG 

experiment 
25 

Figure 3.10 

Body Landmarks behavior during the experiment (Top 

row: Standing, walking forward 3m, turn 180 degrees, and 

Bottom row: walk reverse 3m, turn 180 degrees, sitting) 

26 

Figure 3.11 Knee angle variation over TUG activities 27 

Figure 3.12 TUG time Vs knee angle variation 27 



viii 

Figure 3.13 TUG time measurement with both vision system and 

clinical method 

28 

Figure 3.14 TUG test embedded gait speed estimation model 29 

Figure 3.15 Gait speed variation with healthy and abnormal mobilities 30 

Figure 3.16 Speed Vs. Distance in the 3m walk test 31 

Figure 4.1 Stability margin prediction model 34 

Figure 4.2 BlazePose body landmarks model for fall detection 35 

Figure 4.3 Human body mass segment numbering 37 

Figure 4.4 Stability margin of the healthy gait pattern 39 

Figure 4.5 Stability margin of the abnormal gait pattern 40 

Figure 4.6 Stability margin of the diplegic gait pattern 40 

Figure 4.7 Stability margin of the high stepping gait pattern 41 

Figure 4.8 Stability margin of the myopathic gait pattern 41 

Figure 4.9 Relationship between stability margin (SM) and prominent 

grip strength 

42 

Figure 5.1 Demographic information feed GUI 44 

Figure 5.2 TUG time and gait speed estimation during the experiment 45 

Figure 5.3 Stability margin (SM) estimation during the experiment 46 

Figure 5.4 Different stability margin criterions 47 

Figure 5.5 Functional mobility analysis dashboard (Top: a: Distance 

variation graph, b: Hip angle variation graph, c: Knee angle 

variation, Middle: a: Forward speed variation, b: Hip y-

coordinate variation, c: Stability margin variation, Bottom: 

a: Reverse speed variation, b: Shoulder y-coordinate 

variation) 

 

 

 

48 

Figure 5.6 Domestic sarcopenia screening vision-attentive 

experimental setup 

51 

Figure 5.7 Proposed sarcopenia prediction ANN model 52 



ix 

Figure 5.8 ANN training, validation and accuracy curves 53 

Figure 5.9 Confusion matrix of the ANN prediction 54 

Figure 5.10 ROC curve of the experiment 55 

Figure 5.11 TUG time comparison of vision system vs. clinical method 56 

Figure 5.12 Gait speed comparison of vision system vs. clinical 

method) 

57 

  



x 

LIST OF TABLES 

Table Description Page 

Table 2.1 Sarcopenia Categories and It's Causes 7 

Table 2.2 
Stages of Sarcopenia Syndrome, According to the 

EWGSOP 
7 

Table 2.3 Functional mobility evaluation methodologies 8 

Table 2.4 Functional capacity evaluation methodologies 9 

Table 2.5 
Muscle mass, muscle strength, and physical performance 

for sarcopenia 
14 

Table 2.6 
Sarcopenia detectable tug time presented by previous 

researcher and guidelines 
15 

Table 2.7 
Gait speed for sarcopenia by previous researchers and 

guidelines 
15 

Table 2.8 Summary of literature review 18 

Table 3.1 Random forest feature importance identification 24 

Table 3.2 Angle criterions for tug activities 26 

Table 4.1 Fractions of body segment mass 38 

Table 5.1 Independent sample t-test of dataset 51 

Table 5.2 Variable means for healthy and sarcopenia cases 55 

 

  

  



xi 

LIST OF ABBREVIATIONS 

Abbreviation   Description 

3mWT    3-meters Walk Test 

6mWT    6-Minute Walk Test 

ADL    Activities of Daily Living 

ANN    Artificial Neural Network 

AWGS    Asian Working Group for Sarcopenia 

BMI    Body Mass Index 

DNN    Deep Neural Network 

EWGSOP European Working Group on Sarcopenia in Older 

People 

FCE    Work-Specific Functional Capacity Evaluation 

FMS    Functional Movement Screen 

FRT    Functional Reach Test 

GUI    Graphical User Interface 

ICRP    International Commission on Radiological Protection 

IDE    Integrated Development Environment 

IMU    Inertial Measurement Units 

ISAK International Society for the Advancement of 

Kinanthropometry 

NIOSH   National Institute for Occupational Safety and Health 

ROC    Receiver Operating Characteristic 

SDOC    Sarcopenia Definition and Outcomes Consortium 

SFMA    Selective Functional Movement Assessment 

SLST    Single Leg Squat Test 

SPPB    Short Physical Performance Battery 

TUG    Timed Up and Go 

WHO    World Health Organization 

YBT    Y-Balance Test  



xii 

LIST OF APPENDICES 

Appendix  Description      Page 

Appendix A  Consent Form      68 

Appendix B  Evaluation Form     69 

Appendix C  Sample Dataset     70



1 

CHAPTER 1 

INTRODUCTION 

1.1.  Background  

The World Health Organization (WHO) defines "elderly" or "older person" as 

someone who is 60 years of age or older [1-2]. This concept is predicated on the notion 

that most persons in their 60s and older are retired and have begun a time of reduced 

activity. The WHO also acknowledges that a person's chronological age may not 

accurately reflect their functional competence or capability to contribute to society [3]. 

Therefore, it is crucial to adopt a more comprehensive strategy that considers the 

diversity and complexity of aging and encourages healthy aging and well-being for 

everyone, regardless of age. 

 

Fig.  1.1: Elder population growth from 1960 to 2021 (source:  United Nations 

Population Division. World Population Prospects: 2022 revision) 

Figure 1.1 depicts the rate of increase in elderly people in Sri Lanka and worldwide 

from 1960 to 2021. In Sri Lanka, the old population growth rate has been consistently 

rising over time, according to the data. The elderly population growth rate was 4.7% 

in 1960 and grew to 11.2% by 2021. Several causes, including longer life expectancies, 

lower fertility rates, and advancements in healthcare, can be blamed for the rise in the 

growth rate of the senior population. Sri Lanka has a comparatively slower pace of 

increase in its old population than the rest of the globe. Over time, the pace of growth 

in the senior population worldwide has also been rising. The growth rate of the old 

population was 5.1% in 1960 and grew to 9.6% by 2021. The over-60 population is 

expected to reach 20.1% (1 in 5 persons) in 2037 and 29.3% (almost 1/3 of the 

population) in 2050, according to predictions made by Gunarathna (2018) [4]. 
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Along with the global expansion in the older population, the frequency of age-related 

health conditions has increased, posing considerable healthcare issues. The complex 

process of aging significantly alters the physiological makeup of the body, making it 

more prone to various diseases and health issues [5]. These age-related illnesses 

include a variety of chronic conditions, including diabetes, heart disease, and cancer, 

as well as degenerative diseases like sarcopenia, dementia, and frailty. Notably, the 

probability of developing a chronic illness is increasing, which is a significant cause 

for worry in an aging society since it raises morbidity and death rates, lowers quality 

of life, and increases healthcare costs. A comprehensive strategy that prioritizes 

proactive prevention, early identification, and efficient treatment methods for age-

related chronic diseases is required to address these complex issues. The advent of 

physical and cognitive limits is one of the severe health issues aging brings. 

Sarcopenia, which is characterized by a loss of muscle mass and strength, offers an 

extreme risk since it frequently causes fractures, falls, and other adverse health effects 

[6-7]. Frailty, which is characterized by weakness, tiredness, and decreased physical 

capability, poses a significant concern for older people and raises the risks of disability, 

hospitalization, and mortality. Additionally, a decline in physical or cognitive 

function, such as the onset of sarcopenia, dementia, and Alzheimer's disease, results 

in severe impairments in day-to-day functioning and increases the need for specialized 

care and support services. 

Fostering comprehensive healthcare programs incorporating preventative measures, 

early intervention procedures, and effective management techniques is crucial in light 

of these difficulties. Age-related health issues can be considerably lessened by 

implementing personalized therapies, encouraging healthy lifestyle habits, and 

improving medical research and technology [8]. To ensure the health and quality of 

life of the aging population, it is crucial to invest in a robust healthcare infrastructure 

and promote multidisciplinary collaboration among healthcare professionals [9]. 

Society can successfully handle the complex and changing healthcare requirements of 

the elderly by emphasizing a comprehensive and proactive approach to elder care, 

encouraging a healthier and more robust aging process. 

As the global population ages, the incidence of age-related health conditions continues 

to rise. Sarcopenia, a gradual loss of muscle mass, strength, and function, is one such 

condition that affects a significant proportion of older adults. Sarcopenia can lead to a 

range of adverse outcomes, including falls, disability, and decreased quality of life. 

Early detection and monitoring of sarcopenia are critical for preventing or delaying its 

progression and improving health outcomes in older adults. 

Recently, there has been a growing interest in Sarcopenia condition. Sarcopenia is an 

aging-related loss of muscle mass and function [10]. It is common in older people, 

especially elders who live in long-term care facilities or hospitals [11]. Reduction of 

lean mass is a primary body composition change with aging. Low muscle strength is 

vital to senior physical disabilities and mortality [12]. Observing the loss of muscle 

mass with age is a simple approach to monitoring Sarcopenia. In clinical settings, 
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measuring hand-grip muscle strength (HGS) is a cost-effective and easy method to 

diagnose Sarcopenia [13].  

The assessment of HGS helps plan and implement public health programs to preserve 

muscle strength in elderly people to enhance the health status of this population. 

Adequate protein intake is essential for muscle protein synthesis and the preservation 

or enhancement of muscle mass and strength. Protein synthesis, turnover, and 

breakdown decrease with age [14]. Therefore, protein requirement increases with 

aging [15]. Elders consume less protein-containing foods than other age groups. 

Inadequate protein intake can be attributed to muscle wasting, a frail immune status, 

and delayed wound healing. Insufficient protein intake leads to Sarcopenia, decreasing 

muscle strength [16-18].  

Functional mobility tests provide a thorough examination of the effects of protein 

consumption and exercise on several physical function measures, such as gait speed, 

balance, and total functional ability, when they are incorporated into intervention 

programs. The effectiveness of protein consumption and exercise regimes in reducing 

sarcopenia may be precisely assessed by closely monitoring changes in functional 

mobility metrics, such as timed-up-and-go tests, chair stands, or the 6-minute walk 

test. In senior care, developing automated Sarcopenia techniques combining available 

mobility tests are crucial. The ability to diagnose sarcopenia early, a disorder marked 

by age-related muscle loss and diminished physical capability, is made possible by 

these technologies. These technologies automate the diagnostic process, facilitating 

prompt intervention techniques that enable medical providers to execute 

individualized treatment regimens and lifestyle changes at the first phases of muscle 

deterioration. This can improve older people's general quality of life and considerably 

delay the trend of muscle loss. 

Moreover, using automated systems to incorporate standardized evaluation criteria 

maintain the assessment process's uniformity and impartiality. These techniques offer 

precise and trustworthy data for sarcopenia diagnosis and progression tracking by 

minimizing subjective biases and differences among assessors. In turn, this makes it 

possible for medical professionals to choose the best interventions and treatment 

methods for specific individuals. 

1.2. Problem Statement 

Sarcopenia has been linked to several detrimental health outcomes, such as falls, 

hospitalization, repeated injuries, functional decline, death, and other diseases. Among 

these negative impacts, falls, in particular, are a significant cause of mortality among 

older people. According to several studies, the risk of falling increases as sarcopenia 

progresses in elderly persons who have the condition. However, older people find it 

challenging to use wearable sensor-based activities, emphasizing the necessity for a 

vision-attentive-based development that may identify sarcopenia early in people with 

limited mobility. 
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Although sarcopenia has been associated with a higher risk of falling in multiple 

studies, there is still a need for research that concentrates on creating workable 

methods for the early detection of sarcopenia in elderly people with limited mobility. 

Although wearable sensor-based activities have been taken into consideration in 

specific research, it has been discovered that the elderly find them to be inconvenient. 

Therefore, additional research is required to develop visual, attentive-based solutions 

that may precisely identify sarcopenia in elderly people with restricted mobility and 

aid in avoiding falls and other adverse sarcopenia-related health effects. 

1.3. Thesis Overview 

The Overview of this thesis can be summarized as follows. 

• Chapter 1: Provides an introduction to the thesis. It discusses the background 

that motivated this research and presents the problem statement addressed by 

this research work. 

• Chapter 2: Presents a literature review on related concepts and past research 

work addressing similar problems. Moreover, related vision attentive 

methodologies for Timed Up and Go (TUG) time estimation, gait speed 

estimation, and fall prediction systems were explored. 

• Chapter 3: This chapter focuses on creating and implementing an automated 

system that employs a vision-attentive technique to administer the TUG test 

and the 3-Meter Walk (3M-Walk) test. It explores the technological facets and 

techniques used to automate these functional mobility evaluations, offering 

insights into the conception and application of the vision attentive model for 

precise and effective test automation. 

• Chapter 4: The detailed procedure of assessing and mapping muscle strength 

using a fall score is covered in Chapter 4. The algorithmic framework used to 

evaluate muscular strength and its relationship to fall scores is examined in this 

part, giving light to the usefulness of this strategy in foretelling and avoiding 

fall-related occurrences in sarcopenia. 

• Chapter 5: The thesis provides a thorough Vision Attentive-Enabled 

Sarcopenia Screening Model in this chapter, incorporating the automated TUG 

and 3M-Walk tests as well as assessment of muscle strength. It explains the 

conception and use of this model, emphasizing its value in precisely defining 

and assessing sarcopenia and assisting in early identification and intervention 

options for those who are at risk. 

• Chapter 6: In this part, the research's implications are critically examined. Any 

restrictions or difficulties observed during the study are also addressed, and 

prospective directions for further investigation and the use of the suggested 
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approaches are suggested. It highlights the importance of the automated 

method for estimating muscle strength and functional mobility tests for the 

early diagnosis and treatment of sarcopenia. It also discusses the research's 

enormous ramifications and recommends possible research and application 

opportunities in senior care and preventive healthcare. 
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CHAPTER 2 

LITERATURE REVIEW  

2.1. Mechanism, Categories, and Stages of Sarcopenia 

The neuromuscular system's integrity, the amount of muscle fat, protein synthesis, and 

proteolysis are a few of the variables that can influence the development and course of 

sarcopenia. People with sarcopenia may be affected by multiple processes, and the 

relative importance of these mechanisms may change over time. Designing 

intervention studies that focus on one or more underlying mechanisms should be made 

more accessible by understanding these mechanisms and the underlying reasons 

behind them [19]. Figure 2.1 illustrates the process of sarcopenia occurring in 

individuals. 

 

Fig.  2.1: Mechanism of sarcopenia. Adopted from [19] 

Sarcopenia, a condition characterized by the progressive loss of muscle mass and 

strength, shares a multifaceted nature with dementia and osteoporosis. The origins of 

sarcopenia are diverse, stemming from factors such as aging, sedentary lifestyle, 

hormonal changes, and inadequate nutrition. It can appear in younger people, even 

though it is typically seen in older adults. Diverting primary from secondary 

sarcopenia can be helpful in clinical situations. If ageing is the only known cause, the 

condition is diagnosed as primary sarcopenia, also called age-related sarcopenia. 

Primary sarcopenia, on the other hand, is identified when it develops with the help of 

one or more other causes. The types and corresponding causes of sarcopenia are listed 

in Table 2.1. 
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TABLE 2.1: SARCOPENIA CATEGORIES AND IT'S CAUSES 

Sarcopenia Category Causes 

Primary sarcopenia - 

Age-related sarcopenia Only due to the aging. 

Secondary sarcopenia - 

Activity-related sarcopenia It can be caused by prolonged bed rest, a 

sedentary lifestyle, deconditioning, or zero-

gravity circumstances. 

Disease-related sarcopenia It is associated with organ failure (brain, 

heart, kidney, etc.), an inflammatory 

condition, cancer, or an endocrine disorder. 

Nutrition-related sarcopenia results from a diet that is deficient in protein 

energy, as in cases of malabsorption, 

gastrointestinal problems, or the use of drugs 

that promote anorexia. 

The stages of sarcopenia were outlined by the European Working Group on Sarcopenia 

in Older People (EWGSOP). Table 2.2 illustrates EWGSOP's proposed conceptual 

classification, which includes stages labeled as 'pre-sarcopenia,' 'sarcopenia,' and 

'severe sarcopenia'. 

TABLE 2.2: STAGES OF SARCOPENIA SYNDROME, ACCORDING TO THE 

EWGSOP 

Stage Muscle Mass Muscle 

Strength 

Performance 

Pre-sarcopenia ↓   

Sarcopenia ↓ ↓  

Severe sarcopenia ↓ ↓ ↓ 

In the initial phase known as "pre-sarcopenia," there is a discernible decline in muscle 

mass, yet it is accompanied by an absence of apparent effects on muscular strength or 

overall physical performance. Accurate methods that specifically measure muscle 

mass within typical populations are necessary to identify individuals in this stage. 

2.2. Functional Mobility and Functional Capacity Assessments 

Functional mobility screening procedures are evaluations or tests created to examine 

a person's capacity to perform functional movements and activities required for 

everyday life and physical performance. These exams assist in locating any movement 

restrictions, imbalances, or impairments that can raise the risk of injury or impair 

general physical performance. They are frequently employed in several contexts, 
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including physical rehabilitation, ergonomic workplace training, and sports and 

fitness. Table 2.3 shows the commonly used functional mobility screening procedures. 

TABLE 2.3: FUNCTIONAL MOBILITY EVALUATION METHODOLOGIES 

Method Description 

Functional Movement 

Screen (FMS) 
One of the most popular approaches for functional 

mobility screening is FMS. A person's mobility and 

stability are evaluated using seven fundamental 

movement patterns. These exercises include the deep 

squat, the hurdle step, the inline lunge, the shoulder 

mobility, the active straight leg raise, the push-up, the 

trunk stability, and the rotary stability. To discover 

asymmetries or dysfunctions that require attention, each 

movement is graded on a scale from 0 to 3. 

Selective Functional 

Movement Assessment 

(SFMA) 

Determine the source of discomfort or functional 

limitations in patients by evaluating certain motions. 

When motions are broken down into different patterns, 

the SFMA determines if the issue is one of mobility or 

stability/motor control. 

Y-Balance Test (YBT) 
In situations related to sports medicine and rehabilitation, 

this screening technique is frequently employed. By 

testing how far a person can reach while standing on one 

leg, it evaluates their functional mobility and dynamic 

balance. Anterior, posteromedial, and posterolateral are 

the three directions. The Y-Balance Test aids in detecting 

asymmetries and functions as a risk indicator for injuries. 

Functional Reach Test 

(FRT) 
This exam is designed to evaluate functional mobility and 

static balance, particularly in senior populations. It 

gauges how far a person may advance while having a 

solid basis of support. The exam can help pinpoint 

balance problems and fall risk. 
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Single Leg Squat Test 

(SLST) 
The SLST evaluates a person's strength, stability, and 

control of their lower extremities during a single-leg 

squat action. It is frequently used in sports performance 

training to find imbalances and weak points that might 

result in injury. 

Timed Up and Go 

(TUG) Test 

The TUG test is primarily used in geriatric and 

therapeutic settings to evaluate dynamic balance and 

functional mobility. It calculates how long someone can 

get out of a chair, walk a short distance, turn around, and 

return to a seat. The exam aids in identifying fall risk and 

mobility problems. 
 

Methods for assessing a person's functional capacity are used to determine how well 

they can physically accomplish tasks and activities that are necessary for them to live 

their everyday lives, meet the demands of their jobs, or achieve specific functional 

objectives. These evaluations aid in figuring out a person's total useful capability, 

seeing any potential obstacles, and creating the best treatments or modifications. Table 

2.4 depicts the most common functional capacity evaluation techniques. 

TABLE 2.4: FUNCTIONAL CAPACITY EVALUATION METHODOLOGIES 

Method Description 

Physical Performance 

Tests 
Strength, endurance, flexibility, and balance are just a 

few of the physical traits evaluated in these tests. 

Grip Strength Test: Measures hand and forearm strength 

using a dynamometer.  

Sit-to-Stand Test: Assesses lower body strength and 

functional mobility by counting how many times a 

person can stand up from a chair and sit back down in a 

specified time.  

Timed Up and Go (TUG) Test: Evaluates functional 

mobility and balance by timing how long it takes a 

person to rise from a chair, walk a short distance, turn 

around, walk back, and sit down again.  
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6-Minute Walk Test (6MWT): Measures the distance a 

person can walk in 6 minutes, assessing overall 

functional endurance. 

Work-Specific 

Functional Capacity 

Evaluation (FCE) 

FCEs are specialized tests created to measure a person's 

capacity to handle the physical demands of particular 

professional responsibilities. They are frequently used to 

assess a worker's competence to return to work safely 

following an illness or accident in occupational 

rehabilitation settings. 

Aerobic Capacity 

Testing 
These examinations concentrate on determining a 

person's level of cardiovascular fitness and stamina, 

frequently through activities like treadmill tests and 

cycle ergometer examinations. They can offer valuable 

data for formulating suitable exercise plans or 

determining a person's capacity for prolonged effort in 

activities. 

Activities of Daily 

Living (ADL) 

Assessments: 

These evaluations focus on a person's ability to perform 

basic self-care tasks required for daily living, such as 

dressing, bathing, grooming, and feeding. 

Instrumented Gait 

Analysis 

It involves evaluating a person's gait mechanics and 

walking patterns using specialist equipment. To pinpoint 

gait problems and assess the efficacy of therapies, it is 

frequently used in orthopedics and rehabilitation. 

2.3. Vision Attentive Methodologies for Elderly Healthcare 

An increasing number of people have been interested in using vision-attentive models 

to track their health in recent years [20]. These models examine photographs and 

videos of people to spot potential health problems using cutting-edge computer vision 

algorithms and artificial intelligence approaches. By providing non-invasive, real-time 

monitoring of various medical problems, from chronic illnesses to acute injuries, this 

technology has the potential to revolutionize healthcare [21-22]. 

The potential of vision-attentive models to identify health problems early-often before 

symptoms emerge-is one of its main advantages. Through immediate intervention and 

treatment, this early diagnosis may improve health outcomes and perhaps save lives. 
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A neurological disorder like Parkinson's disease or a stroke, for instance, may be 

indicated by changes in facial expression or movement patterns that may be picked up 

by visually attentive models [23]. The fact that they are non-invasive is another benefit 

of vision-attentive models. Vision-attentive models can monitor health without 

invasive procedures or painful instruments, in contrast to conventional health 

monitoring approaches. This can improve cooperation on the part of the patient and 

lower the danger of problems or infections brought on by intrusive treatments. 

Using vision-attentive models, people may receive real-time feedback on their health 

state from the comfort of their own homes and enable remote health monitoring. 

People with chronic diseases or mobility challenges, who might find it challenging or 

inconvenient to get to a healthcare institution for monitoring, may find this very helpful 

[24]. 

Despite these advantages, using vision-attentive models for health monitoring has 

certain drawbacks as well. The requirement for high-quality photos and videos for 

analysis is one of the significant difficulties. Poor illumination, low-resolution 

cameras, or obstructed viewpoints might impact the accuracy and dependability of the 

models. Due to the possibility that the photographs and videos utilized for analysis 

include sensitive personal data, there are additional privacy and security 

considerations. Researchers are working on more sophisticated computer vision 

algorithms and artificial intelligence strategies to solve these problems and increase 

the precision and dependability of vision-attentive models. They are also looking for 

ways to improve security and privacy, such as adopting encryption or anonymization 

to safeguard personal data. 

2.4. Functional Mobility Assessments for Sarcopenia 

2.4.1. Sarcopenia Screening Through Timed-Up-and Go (TUG) Test 

The TUG test is a simple and quick test that measures the time taken by an individual 

to stand up from a chair, walk a short distance (usually 3 meters or 10 feet), turn 

around, walk back to the chair, and sit down again. The test evaluates a person's 

balance, mobility, and overall functional capacity. 

The TUG test is used to evaluate mobility and fall risk in older persons and screen for 

sarcopenia. A longer time needed to complete the TUG test, however, may indicate 

reduced muscle function and may call for additional testing for sarcopenia in the 

context of sarcopenia screening. 

Martinez et al. [25] conducted an evaluation of the Timed Up and Go (TUG) test to 

determine its effectiveness in predicting sarcopenia among elderly patients admitted 

to hospitals. In elderly people, the TUG test is a good indicator of sarcopenia, 

according to their research. A sensitivity of 67% and a specificity of 88.7% were found 

for durations that were equal to or greater than the cut-off of 10.85 seconds. 
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To minimize the subjectivity of outcome measurements and to deliver additional data 

regarding patient performance, Dubois et al. [26] have employed the Microsoft Kinect 

ambient sensor to automate the TUG test. They used the depth images from the Kinect 

to identify each phase of the TUG test automatically.   

For the diagnosis of sarcopenia, EWGSOP recommends using both low muscle mass 

and low muscle function (strength or performance). This was presented by Cruz-

Jentoft et al. [27]. Sarcopenia refers to the age-related reduction in muscle mass, 

strength, and athletic performance. Due to its laborious diagnostic method, sarcopenia 

is seldom identified in clinical settings. Phu et al. [28] investigated the diagnostic use 

of the Short Physical Performance Battery (SPPB) for muscular illness sarcopenia. The 

SPPB stands as a concise, easily administered evaluation, offering an objective 

measure of both muscle strength and physical performance—integral facets of the 

underlying condition. 294 seniors (>65 years old) who live in the neighborhood were 

the subject of a cross-sectional investigation. Employing sanctioned methodologies, 

various essential metrics were meticulously gauged, encompassing appendicular lean 

body mass (ALM/h2), handgrip strength, sit-to-stand capacity, and an array of physical 

performance indicators, including gait speed, Timed Up and Go (TUG) time, and 

SPPB scores.  

Kim and Won [29] introduced the 2019 definition and algorithm of the Asian Working 

Group for Sarcopenia (AWGS) to assess the prevalence of sarcopenia in a substantial 

community-dwelling elderly population. Their study involved a cross-sectional data 

analysis of a cohort study with 2123 ambulatory older adults aged 70 to 84. A 

comprehensive array of physical function assessments was undertaken, encompassing 

handgrip strength, usual gait speed, the 5-times-sit-to-stand test, the timed up-and-go 

test, and the SPPB. The screening process for sarcopenia, within a case-finding 

assessment, involved the meticulous consideration of calf circumference (CC), the 

SARC-F questionnaire, and the amalgamation of SARC-F with CC (SARC-CalF). 

Employing the AWGS 2019 algorithm, the study discerned varying degrees of risk for 

sarcopenia among participants, revealing percentages of 43.5%, 7.5%, and 26.0% 

based on CC, SARC-F, and SARC-CalF, respectively. The results suggested that, 

based on the AWGS 2019 diagnostic criteria, screening for potential sarcopenia in 

community-dwelling individuals aged 70 to 84 may be more accurate when utilizing 

CC and SARC-CalF, as opposed to relying solely on the SARC-F questionnaire. 

Savoie et al. [30] have innovatively automated the Timed Up and Go (TUG) test by 

utilizing a primary RGB video camera, without the need for additional depth sensors. 

This approach leverages contemporary advancements in computer vision technology. 

Thirty healthy individuals were videotaped while conducting numerous trials of the 

TUG test at 3 and 1.5 meters using a Kinect V2 and a conventional video feed. They 

employed deep learning algorithms to extract global 3D skeletons quite similar to those 

produced previously only using Kinect-based RGBD. 

To improve the prediction of the risk of falling, Buisseret et al. [31] have developed a 

technique integrating clinical evaluations with motion capture sensors. Additionally, 
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they evaluated AI's capacity to forecast fall risk using only sensor raw data. They have 

demonstrated that combining the TUG test findings with gait variability indicators 

from a six-minute walking test enhances the capacity to forecast the risk of falling. 

Sarcopenia is a condition characterized by a rapid loss of skeletal muscle and an 

accompanying deterioration in functional ability. Over 60-year-olds worldwide make 

up around 13% of those who are affected. Exercise prescription, together with the use 

of proper dietary techniques, are the mainstays of managing and preventing 

sarcopenia. Dent et al. [32] described age-related (primary) sarcopenia diagnostic and 

case-finding/screening techniques used in clinical practice and research. This 

evaluation also assessed each diagnostic and case-finding tool's strengths and flaws, 

as well as its accuracy in foretelling poor clinical outcomes and patient reactions to 

prospective treatments. 

Using machine learning classifiers, Ko et al. [33] have conducted research to predict 

sarcopenia in older females through measurements of physical activity performance. 

They performed the experiment using the TUG test and the 6-minute Walk Test 

(6mWT) while wearing a single IMU to assess the physical performance of the elderly. 

Elderly fall risk is frequently calculated using the TUG test. Incorporating general 

resident characteristics with the kinematic data obtained with a single inexpensive 

IMU during TUG can increase the precision of fall risk prediction, as demonstrated by 

Dierick et al. [34]. Data was gathered during the experiments using inertial sensors. 

The Timed Up and Go (TUG) test is a widely recognized assessment of overall 

functional mobility, gauging an individual's proficiency in activities such as 

transferring, walking, and changing directions. As outlined by Dhar et al. [35], the 

TUG test serves as another means to evaluate muscle performance and functionality. 

In this test, the patient stands up from a chair, covers a distance of three meters, turns 

around, walks back, and then sits down. The customary duration for completing the 

Timed Up and Go (TUG) test is under 10.2 seconds, signifying a typical performance 

benchmark. Intriguingly, when examining the Western population, a distinctive trend 

emerges, revealing a protracted average TUG time of approximately 12.3 seconds. 

This observation underscores a notable divergence in the execution of the TUG test 

between different demographic groups. 

An iPhone app to identify pre-frailty and sarcopenia syndromes in older persons living 

in the community has been developed by Montemurro et al. [36]. To measure sit-to-

stand muscular strength, the video was employed. 

2.4.2. Fall Prediction Through Functional Mobility Assessments 

The assessment criteria for sarcopenia are summarized in Table 2.5, emphasizing 

physical performance, reduced muscle mass, and poor muscular strength. Low 

muscular strength is indicated by a grip strength of less than 27 kg for males and fewer 

than 16 kg for females, according to the EWGSOP2 (European Working Group on 

Sarcopenia in Older People) standards. Low muscle mass is defined as less than 20 kg 



14 

for males and less than 15 kg for females. Gait speed (0.8 ms-1) and the TUG time (20 

seconds) measure physical performance. The SDOC (Sarcopenia Definition and 

Outcomes Consortium) standards place a strong emphasis on muscle mass, with male 

and female cutoff weights of less than 35.5 kg and 20 kg, respectively. The same gait 

speed (0.8 ms-1) is maintained, and the TUG time is not given. The AWGS standards 

also consider poor muscular strength, with values less than 28 kg for males and fewer 

than 18 kg for females. These cutoffs are less than 7 kgm-2 for males and less than 5.7 

kgm-2 for females. Gait speed (1.0 ms-1) and the 6-meter walk test are used to measure 

physical performance, showing differences in the standards employed by various 

organizations to diagnose sarcopenia. 

TABLE 2.5: MUSCLE MASS, MUSCLE STRENGTH, AND PHYSICAL 

PERFORMANCE FOR SARCOPENIA 

Criteria 
Low Muscle 

Mass 

Low Muscle 

strength 
Physical Performance 

Hand Grip Gait Speed 
TUG 

Time 

EWGSOP2 
M: <20 kg 

F:<15 kg 

M: <27 kg 

F:<16 kg 

≤0.8 ms-1 

 

≥ 20 s 

 

SDOC - 
M: <35.5 kg 

F: < 20 kg 

≤0.8 ms-1 

 

- 

AWGS 
M: <7 kg/m2 

F:< 5.7 kg/m2 

M: <28 kg 

F: < 18 kg 

≤1 ms-1 (*) - 

Note. M: Male, F: Female, * 6m Walk Test 

According to prior studies and recommendations, Table 2.6 lists the detectable TUG 

time requirements for sarcopenia identification. Two cut-off values, with TUG times 

of > 10.20 seconds and > 12.30 seconds, were recommended by Choo et al. [27], 

suggesting probable sarcopenia. Martinez et al.'s [37] recommendation for a TUG time 

threshold for sarcopenia detection was 10.85 seconds. While Bischoff et al. [26] also 

indicated a TUG time of 20.0 seconds for the diagnosis of sarcopenia, the EWGSOP 

advocated a more cautious threshold of 20.0 seconds. Finally, a lower threshold of 

7.50 seconds was suggested by Filippin et al. [38]. These different cutoff values 

demonstrate the range of standards and criteria used to evaluate sarcopenia, 

emphasizing the significance of knowing the precise criteria used in assessing research 

findings in this area. 
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TABLE 2.6: SARCOPENIA DETECTABLE TUG TIME PRESENTED BY 

PREVIOUS RESEARCHERS AND GUIDELINES 

Reference/Institute Cut-Off TUG time/(s) 

Choo et al. [39] > 10.20 

Choo et al. [39] > 12.30 

Martinez et al. [40] ≥ 10.85  

EWGSOP ≥ 20.00 

Bischoff et al. [41] ≥ 20.00 

Filippin et al. [42] ≥ 07.50 
 

Table 2.7 lists the gait speed cut-off values for sarcopenia as determined by several 

earlier studies and recommendations. Cruz-Jentoft et al. [43] created a gait speed 

threshold of 0.8 ms-1 to signify sarcopenia-related impaired physical function. A 

walking speed of less than 0.8 ms-1 was accepted by Shaikh et al. [44] as the standard 

for diagnosing sarcopenia.  

TABLE 2.7: GAIT SPEED FOR SARCOPENIA BY PREVIOUS RESEARCHERS 

AND GUIDELINES 

Reference Cut-Off Gait 

Speed (m/s) 

Description 

Cruz-Jentoft et al. [43] ≤ 0.80 Poor physical performance related 

to Sarcopenia 

Shaikh et al. [44] < 0.80 considered as sarcopenia 

Rathnayake et al. [45] 
≤ 0.96 

 

A cross-sectional study from Sri 

Lanka in middle-aged (20–40 

years) 

Studenski et al.  [46] ≤ 0.80 - 

EWGSOP/EWGSOP2 ≤ 0.80 - 

AWGS ≤1.00 For the 6m walk test 
 

With a focus on middle-aged people (20–40 years old), Rathnayake et al. [45] 

conducted a cross-sectional research in Sri Lanka and established a gait speed 

threshold of 0.96 ms-1. A walking speed of fewer than 0.8 ms-1 was also recognized by 

Studenski et al. [46] as symptomatic of sarcopenia. Furthermore, a gait speed of less 

than 0.8 ms-1 is advised as a diagnostic standard by the EWGSOP and its revised 

version (EWGSOP2). The 6-meter walk test has a threshold of 1 ms-1 that must be met 

to diagnose instances of sarcopenia, according to the AWGS. In clinical and research 

contexts, these gait speed cut-off values are crucial resources for evaluating and 

diagnosing sarcopenia. 
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2.4.3. Human Body Key Point Extraction Using BlazePose Algorithm  

Compared to 2-D approaches, 3-D pose estimation gives a more complete and precise 

evaluation of body motions and postures. It enables the assessment of joint angles and 

locations in three dimensions, offering a more thorough insight into an individual's 

mobility. The "Vitruvian Man" by Leonardo da Vinci and BlazePose are two separates 

but connected ideas in art and technology. Figure 2.2 shows the 33-key points 

distribution in Leonardo's Vitruvian Man. 

 

Fig. 2.2: Body landmark distribution in Leonardo's Vitruvian man 

A machine learning technique called BlazePose can be applied to pose estimation, 

which entails finding and following the locations of various body components in an 

image or video. Google created this algorithm using a Deep Neural Network (DNN) 

architecture [47]. Figure 2.3 shows the critical landmarks of the human body, inference 

pipeline, and network architecture. The head, neck, shoulders, elbows, wrists, hips, 

knees, and ankles are just a few of the 33 critical places on the human body that the 

BlazePose algorithm can estimate in 2D and 3D space. This makes it an effective tool 

for examining posture and movement in people. The examination and treatment of 

sarcopenia, a disorder marked by the aging-related decrease of muscular mass and 

strength, is one possible use for BlazePose. For proper diagnosis and therapy, it is 

essential to accurately quantify muscle mass and function because sarcopenia is a 

significant cause of frailty and impairment in older persons. 
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Fig. 2.3: Left: Body poses key landmarks, Right (top): Inference pipeline, Right 

(bottom): Network architecture. Adopted from [47] 

Human key point detectors perform poorly because existing human key point 

extraction networks, such as OpenPose, AlphaPose, and OpenPifPaf, are fragile to 

dense crowd occlusion or human self-occlusion [48]. Therefore, Google developed the 

pose estimate method known as BlazePose to accurately forecast the 2D and 3D 

postures of the human body. It uses a two-step approach composed of a body detection 

module and a posture estimation module [49]. The BlazePose body detection module 

identifies the entire human body in an image or video. It determines the bounding box 

around the human body using a single-shot detector (SSD) architecture, an object 

detection model. This detection seeks to find the whole body rather than just the 

shoulder and hip centers. The body identification module's output is sent into 

BlazePose's pose estimation module, which uses it to anticipate further the major joints 

of the human body, including the shoulders, elbows, wrists, hips, knees, and ankles. It 

is based on Leonardo's Vitruvian Man. It makes predictions about the hip midpoint, 

the radius of a circle enclosing the entire body, and the inclination angle of the line 

joining the shoulder and hip midpoints. By leveraging the superset of the points 

utilized by BlazeFace [48], BlazePalm, and Coco [50], BlazePose presents a novel 

topology employing 33 key landmark points on the human body. 

2.4.4. Summary of Literature Review 

A thorough synopsis of the literature review on the subject of sarcopenia screening is 

given in Table 2.8, with an emphasis on the evaluation techniques used by various 

writers throughout the years. The research community has shown considerable interest 

in investigating sarcopenia, a phenomenon characterized by the age-related decline in 

both muscle mass and function. The important findings and methodology of the 

research done between 2011 and 2023 are highlighted in this table. 
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TABLE 2.8: SUMMARY OF LITERATURE REVIEW 

Author(s) 
Publication 

Year 

Sarcopenia Screening Methodologies 

TUG Test 
Gait 

Speed 

Fall 

Measurements 

Stone and Skubic [51] 2011  ✕  

Martinez et al. [25] 2015 ✕   

Fillipin et al. [52] 2017  ✕  

Dubois et al. [26] 2017 ✕   

Tang et al. [53] 2018  ✕  

Bahat et al. [54] 2018  ✕  

Sanabria et al. [55] 2018   ✕ 

Sayer et al. [56] 2019   ✕ 

Ha et al. [57] 2019   ✕ 

Cruz-Jentoft et al. [27] 2019 ✕  ✕ 

Li et al. [58] 2019  ✕  

Addante et al. [37] 2019  ✕  

Phu et al. [28] 2020 ✕   

Kim and Won [29] 2020 ✕   

Lage et al. [59] 2020  ✕  

Bahat et al. [60] 2020  ✕  

Merchant et al. [61] 2020   ✕ 

Ozturk et al. [62] 2020   ✕ 

Ishida et al. [63] 2020   ✕ 

Savoie et al. [30] 2020 ✕   

Buisseret et al. [31] 2020 ✕   

Dent et al. [32] 2021 ✕   

Mo et al. [64] 2021  ✕  

Kim et al. [38] 2021  ✕  

Ko et al. [33] 2021 ✕   

Mohieldin et al. [65] 2021   ✕ 

Shin et al. [66] 2022 ✕   

Dhar et al. [35] 2022 ✕   

Dierick et al. [34] 2022 ✕   

Kim et al. [67] 2022  ✕  

Chen et al. [39] 2022  ✕  

Montemurro et al. [36] 2022 ✕   

Proposed System 2023 ✕ ✕ ✕ 
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In conclusion, creating models utilizing the TUG test, gait speed test, and fall score 

assessment remains a waiting project despite adopting new criteria by WHO, 

EWGSOP 1 and EWGSOP 2 for automating sarcopenia screening. The development 

of models for the TUG test and gait speed has made some strides, but these techniques 

have primarily relied on wearable sensor-based methods, and they haven't yet been 

thoroughly studied regarding sarcopenia monitoring. There is an urgent need for a 

home testing model, given the novelty of the subject and the fact that sarcopenia is 

predominantly assessed using clinical mobility assessment techniques. The goal of this 

study is to present a feasible remedy for this field's current shortfall. 
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CHAPTER 3 

AUTOMATING TUG AND 3M-WALK TEST USING VISION 

ATTENTIVE METHOD  

This section discusses the proposed methodology of sarcopenia screening tools 

through the functional mobility of elders using TUG and 3m Walk tests.  

3.1. TUG Activity Prediction and TUG Time Determination 

Early diagnosis of sarcopenia-related mobility problems can be aided by forecasting 

TUG activities and measuring TUG time. Adopting timely interventions and strategies 

to stop future muscle loss and functional impairment depends on early identification. 

Following the start of treatments, a person's improvement can be monitored throughout 

time by observing TUG activities and TUG timings. This enables medical practitioners 

to evaluate the success of therapies and alter them as necessary to improve outcomes 

and stop future functional deterioration. 

3.1.1. Procedure 

Researchers used a complex method to identify 2D and 3D poses of human bodies in 

pictures or videos by using the BlazePose algorithm. The result of this method was a 

complete set of coordinates that showed the exact location and orientation of the head, 

chest, arms, and legs, among other important body parts. The identification of Timed 

Up and Go (TUG) activities required taking into account a variety of body positions 

and motion paths, utilising the data these specific body markers offered. 

The body landmark throughout the various activities is depicted in Figure 3.1. The 

figure demonstrates that during TUG exercises, the knee and hip angles are more 

significantly variable. 

 

Fig. 3.1: Human pose extraction using landmarks 

 



21 

Figure 3.2 illustrates the body landmarks generated during the sitting activity. For this 

research, it is required to extract several body landmarks, such as shoulder (θS), hip 

(θH), and knee (θK), and the cosine rule was used to determine the Cartesian coordinates 

of each landmark. 

 

Fig.3.2: Generated body landmarks and its geometrical representation for the "sit" 

activity 

In Figure 3.3, a detailed depiction unfolds, elucidating the intricate methodology 

employed for calculating knee angles through the application of cosine rules. The 

underlying equations, denoted as Equation 1, 2, and 3, intricately articulate the 

computation of distances between pairs of joints, employing the Euclidean distance 

metric for precise measurement. 

 

Fig. 3.3: Knee angle calculation using hip, knee, and ankle landmarks 
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𝑑(𝑎,𝑘) = √(𝑥𝑎 − 𝑥𝑘)2 + (𝑦𝑎 − 𝑦𝑘)2 + (𝑧𝑎 − 𝑧𝑘)2      (1) 

𝑑(𝑎,ℎ) = √(𝑥𝑎 − 𝑥ℎ)2 + (𝑦𝑎 − 𝑦ℎ)2 +  (𝑧𝑎 − 𝑧ℎ)2     (2) 

𝑑(𝑘,ℎ) = √(𝑥𝑘 − 𝑥ℎ)2 + (𝑦𝑘 − 𝑦ℎ)2 + (𝑧𝑘 − 𝑧ℎ)2     (3) 

 

By employing the law of cosines as delineated in equations 1, 2, and 3, the knee angle 

(θK) was meticulously computed, revealing the intricate calculation process expounded 

in equation 4. 

𝜃𝐾 = cos−1 (
𝑑(𝑘,ℎ)2+𝑑(𝑘,𝑎)2−𝑑(ℎ,𝑎)2

2𝑑(𝑘,ℎ)𝑑(𝑘,𝑎)
) , 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝜃𝐾  ≤ 𝜋      (4) 

The activity and direction prediction model is depicted in Figure 3.4. Utilizing the hip 

landmark's z-coordinate (*, *, zH), the direction was established. Equation 4 was used 

to produce the model's angle computation. Angle computation results, hip (θH), and 

shoulder y-coordinates (*, yS, *) were used to determine each TUG activity.  

 

Fig. 3.4: The overall architecture of the TUG variable estimation model  
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Figure 3.5 shows the architecture of the TUG activity prediction model. The Random 

Forest (RF) machine learning (ML) algorithm was applied to a dataset with 4293 

samples and four features to predict one of three classes. While developing decision 

trees, the Gini criteria were employed to gauge splits' quality. 

 

Fig. 3.5: Architecture of the proposed activity prediction model 
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Table 3.1 shows how various body landmark components rank regarding feature 

importance. The RF feature importance was utilized to identify the most suitable 

variables for TUG activity prediction. Table 5 depicts the feature importance of the 

training model. As shown in the table, more considerable variance occurred in the knee 

angle (48%), then 18% in the hip angle, 16% in the ankle y-coordinate, and 11% in the 

shoulder y-coordinate. As a result, the RF's input features, such as θK, θH, yA, and yS, 

were chosen.   
 

TABLE 3.1: RANDOM FOREST FEATURE IMPORTANCE IDENTIFICATION 

Feature landmark Feature name 
RF Feature 

importance (%) 

θK  Knee angle 48 

θH Hip angle 18 

(*, yA, *) Ankle y- coordinate 16 

(*, yS, *) Shoulder y- coordinate 11 

- Other landmarks 7 
 

3.1.2. Results and Discussion 

This section discusses the results and analysis of the vision attentive-based TUG time 

estimation for determine the state of the functional mobility of the elders. The TUG 

activity was identified using angles (θi), x, and y-coordinates from various locations. 

The most influenced feature importance (see Table 3.1) from the input data was 

determined using the RF training model, which was then utilized to construct a new 

dataset. Initially, all θi, x, and y-coordinates were collected. Three classes 

(sitting/standing, walking, sit activity) were predicted using the created dataset. The 

improved training model used the Gini criteria and confusion matrix (see Figure 3.6), 

suggesting the proposed TUG activity prediction model achieved 91.2% accuracy in 

the RF. 

 

Fig. 3.6: Confusion matrix of the RF testing model 
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The vision attentive GUI was developed using Python for sarcopenia screening, as 

shown in Figures 3.7, 3.8, and 3.9. By utilizing the coordinates of the hip, knee, and 

ankle generated during Timed Up and Go (TUG) activities, the real-time knee angle 

for the given test case was precisely ascertained. Initially, a 3m test arena with seating 

needs to be built. The green line illustrates the 3m walk line, and the Red line shows 

the hip angle variation related to the TUG frame (fTUG). The green lines on the 3m 

arena must always be followed. 

 

Fig. 3.7: The test case executes sit-to-stand in the TUG experiment 

 

Fig. 3.8: The test case executes 3 meters forward walk in the TUG experiment 

 

Fig. 3.9: The test case executes 3 meters backward walk in the TUG experiment 
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Figure 3.10 shows the computer view of the TUG experiment (GUI). Skelton was 

generated using the BlazePose model, which is identical to the human pose activities.  

 

Fig. 3.10: Body Landmarks behavior during the experiment (Top row: Standing, 

walking forward 3m, turn 180 degrees, and Bottom row: walk reverse 3m, turn 180 

degrees, sitting)  

A detailed diagram describing the knee angle and z-direction fluctuations and criteria 

during the Timed Up and Go (TUG) test is presented in Table 3.2. 

TABLE 3.2: ANGLE CRITERIONS FOR TUG ACTIVITIES 

Knee angle (θK) 

variation 

Activity TUG movement 

identification 

115°< θK <170° Sitting down/getting up - 

115°> θK Sit Start/End TUG test 

θK >170° and ZH >0 Forward walking Chair-to-target walk 

θK >170° and ZH <0 Backward walking Target-to-chair walk 
 

Figure 3.11 describes measurements of the subject's knee angle (θK) and hip angle (θH) 

at various time intervals and associated positions such as sit, sitting, standing, and 

walking. The θK and θH values range from 90° to 180°, showing a wide range of 

mobility throughout the test time. The knee angle measurements can infer the 

participant's gait and balance since abnormal angles signify weakness or instability. 

The participant's movements and balance may be described in depth by the "sit" poses, 

which signify rest, and "walking" postures, which represent an activity. A pattern with 

a growing width appears in the graph as sarcopenia progresses in the test instances. 

This phenomenon helps us to understand how the functional deterioration linked to 

sarcopenia progresses. Interestingly, we found that people 70 years of age and older 

needed help—from an attendant or gait support—especially when they were doing sit-

to-stand and stand-to-sit exercises. 
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Fig. 3.11: Knee angle variation over TUG activities 

An illustration of the complex range of knee angle variations seen in various test 

conditions is provided in Figure 3.12. The diagnosis of sarcopenia was made in Test 

Cases #1 and #2 after thorough physical examinations that included the traditional 

Timed Up and Go (TUG) test and an experiment with hand grip strength. Interestingly, 

the results revealed prolonged TUG times for these particular individuals, which is a 

prominent sign of severe sarcopenia. The difficulties in carrying out the "sit-to-stand" 

and "stand-to-sit" exercises were clearly displayed in the graph, highlighting the 

complexities of these motions in the setting of sarcopenia. Test Cases exhibiting 

minimal task performance were characterized by more pronounced and notable 

variations in knee angles, further underscored by the graph's representation of knee 

angle variation (refer to Figure 3.12), serving as a visual portrayal of this distinctive 

phenomenon. 

 

Fig. 3.12: TUG time Vs knee angle variation 
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Figure 3.13 displays the TUG time results using the proposed methodology versus the 

clinical approach (stopwatch). TUG system was tested with 33 test cases (F-61 %, M-

39 %) in different age groups. Additionally, we saw that as Test Cases aged, their 

functional mobility decreased. As a result, TUG time increases (Test Case #10). This 

result underlines the critical influence of age on a person's capacity to carry out 

everyday tasks effectively. The lengthier TUG time in Test Case #10, as with many 

older persons, points to a reduction in functional mobility that may be impacted by 

aging-related variables such as muscular weakness, decreased joint flexibility, and 

reduced balance. The TUG time for the vision-based technique varies from 9.8 s to 

65.2 s, whereas those for the traditional way range from 10.31s to 65.14 s. The average 

variation of the proposed system with the conventional method was 13.1 (±0.35). 

 

Fig. 3.13: TUG time measurement with both vision system and clinical method 

The proposed approach demonstrated excellent results with an accuracy of 93.7 (±1.9) 

%, as seen in the graph. Overall, the data indicates that when evaluating TUG 

performance, the vision-based technique provided more reliable results than the 

conventional method. This is significant because it suggests that the vision-based 

technique can be a workable replacement for the traditional methodology, providing a 

more automated and objective means of assessing mobility. 
 

3.2. Gait Speed Estimation Using 3m Walk Test (3mWT) 

3.2.1. Procedure 

Gait speed estimation was performed using the 3m Walk Test by embedding 3m 

forward walking activity in the TUG experiment. We considered the forward and 

backward 3-meter walk activities to evaluate the gait speed. During the Timed Up and 

Go (TUG) test, the time needed to complete the forward and backward 3-meter walks 

was noted. We combined the forward and backward walking speeds to calculate the 

average gait speed to reduce error. 
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Determining the hip pixel x-coordinate precisely is made possible by extracting the hip 

coordinate from the BlazePose model, an essential step in the gait analysis procedure. 

The study manages to align the spatial data from the BlazePose model with the targeted 

region of interest within the TUG frame by calculating the pixel distance to the hip 

pixel x-coordinate concerning the TUG frame. The defined region within the TUG 

frame, indicated by the green line, where the pixel distance to the hip pixel x-

coordinate was measured, is most likely depicted in Figure 3.8. This graphic depiction 

makes it clear what the precise focus area is inside the TUG frame, guaranteeing that 

the analysis is carried out in a consistent and well-defined spatial context.  

Figure 3.14 shows the proposed methodology of the distance calculation. Accordingly, 

time was calculated using a 3m forward and backward step time during the TUG 

experiment. The distance was measured with hip x-coordinates (xH, *, *), calculated in 

the activity prediction model. 

 

Fig. 3.14: TUG test embedded gait speed estimation model 

Equation 5 represents the distance calculation mathematical model. Equation 6 

describes the gait speed measurement of the proposed gait speed estimation model. 

𝑑 = (𝑓𝑇𝑈𝐺 − 𝑝(𝑋ℎ))  × (
𝑇𝐿= 3

𝑓𝑊 – 𝐾
)        (5) 

𝑣 =  (
𝑑

𝑡3𝑚
)           (6) 
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Where, 

p(xh) – Hip x-coordinate 

TL – 3m (from 3m walk activity) 

FW – Frame width 

K – Frame length variable 

v – Gait speed 

t3m – Time taken to forward 3m walk in TUG test 

3.2.2. Results and Discussion 

The gait speed measurement results from the 3m Walk Test are shown in Figure 3.15. 

As can be seen from the graph, test cases that tested positive for sarcopenia had an 

average gait speed that was less than 1.0 m/s. On the other hand, the analysis showed 

that the healthy subjects' average gait speed was greater than 1.0 m/s, suggesting a 

significant difference between the two groups. 

Moreover, the graph indicates notable variations in the speed of gait between the 

starting and finishing points for each test case, indicating a marked instability in this 

set of data. Interestingly, Test Case #2 is an excellent example because it shows a 

person without sarcopenia whose functional abilities gradually decline over time, 

which affects their overall stability in the test. 

 

Fig. 3.15: Gait speed variation with healthy and abnormal mobilities 

Figure 3.16, which shows the presentation of gait speed measurements taken during 

the 3m Walk Test, offers essential insights into the variations in gait dynamics between 

subjects who are healthy and those who have sarcopenia. The graph presents a clear 
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and concise representation of the different gait patterns noted in these two groups, with 

significant implications for our knowledge of mobility and functional health. 

The data analysis indicates that the test cases who were diagnosed with sarcopenia, 

also known as the positive test cases, demonstrated an average gait speed that was less 

than 1.0 ms-1. This suggests that their walking speed was significantly lower than that 

of the healthy subjects. The present study highlights the influence of sarcopenia on 

gait performance, implying that the ailment plays a noteworthy role in reducing the 

affected individuals' overall mobility and walking proficiency. 

On the other hand, the average gait speed of healthy subjects, which was greater than 

1 ms-1, highlights the importance of normal muscle function and strength in preserving 

an effective gait pattern. This difference indicates that maintaining sufficient muscle 

strength is essential to sustaining a healthy gait and general functional independence, 

and it also emphasizes the critical role that muscle health plays in enabling optimal 

mobility. 

 

Fig. 3.16: Speed Vs. Distance in the 3m walk test 

The significant fluctuations between the initial and final points on the graph also shed 

light on the instability seen in the test cases' gait patterns. This variability highlights 

how difficult it is for people with sarcopenia to maintain a consistent gait, which may 

increase their risk of falling and developing associated mobility problems. This finding 

highlights the necessity of focused interventions meant to increase stability and lower 

the chance of falls in sarcopenic patients. 

Mainly, Test Case #2 provides a moving example of the intricacies involved in 

functional abilities over time. Even in the absence of sarcopenia, the person's overall 

stability during the 3m Walk Test is significantly affected by the gradual decline in 

their functional abilities. This case emphasizes the complex nature of mobility 

problems, implying that factors other than sarcopenia may also play a role in impaired 

gait dynamics and general functional decline. 
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Overall, Figure 3.7's extensive analysis of gait speed measurements illuminates the 

complex interactions between muscle health, gait performance, and overall functional 

abilities. These insights are critical for creating tailored care plans and targeted 

interventions that enhance mobility and maintain functional independence, especially 

for people who are at risk of sarcopenia and related mobility impairments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



33 

CHAPTER 4 

ESTIMATION AND MAPPING OF MUSCULAR STRENGTH 

WITH FALL SCORE   

The implementation of this novel methodology has noteworthy consequences for the 

treatment of the elderly and the avoidance of injuries since it assesses a person's muscle 

strength while also offering vital information about their vulnerability to falls. This 

method provides a comprehensive framework for addressing the complex challenges 

associated with aging and maintaining functional independence. It represents a 

promising advancement in senior care by incorporating a multifaceted assessment of 

muscular strength and fall risk. The following conversation explores the step-by-step 

evolution of fall prediction techniques, highlighting the crucial connection between 

measuring muscle strength and identifying fall-related vulnerabilities. The study aims 

to improve the efficacy of fall prevention strategies tailored to the unique needs of the 

elderly population by enhancing our understanding of fall dynamics through the 

integration of vision-attentive modeling techniques. 

A thorough understanding of the complex interactions between muscle strength, fall 

risk assessment, and stability margin identification is provided by the visual depiction 

of the proposed fall prediction and stability margin detection model in Figure 4.1. This 

graphical representation is an essential visual aid that clarifies the many moving parts 

of the suggested model and highlights how revolutionary it can be in terms of fall 

prediction and prevention in elderly care environments. 

The state-of-the-art BlazePose body landmarks, a sophisticated computer vision 

methodology, provided the basis for developing the fall prediction system described 

in the chapter "Estimation and Mapping of Muscular Strength with Fall Score." By 

utilizing this technology's accuracy and precision, the system can track and identify 

essential body landmarks and conduct a thorough analysis of the various gait patterns 

that people exhibit. 

After a thorough examination of these gait patterns, each person receives a customized 

assessment that results in the assignment of a fall score that takes into account their 

unique gait characteristics and movement dynamics. The predictive power and 

usefulness of the system were significantly increased when this fall score was paired 

with an assessment of the subject's grip strength. Interestingly, grip strength is a crucial 

measure of a person's total muscle and physical prowess, providing vital information 

about their strength and athletic potential. 
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Fig. 4.1: Stability margin prediction model 

By integrating accurate grip strength metrics with the fall score, this methodology 

provided a thorough assessment of an individual's fall risk, effectively delineating the 

complex relationship between muscle strength dynamics and fall risk. This detailed 

evaluation not only offers a comprehensive understanding of the various factors 

influencing fall incidents but also creates a robust framework for developing tailored 

interventions and targeted preventive strategies to reduce the risk of falls and improve 

overall health.  

The BlazePose model was utilized to analyze body landmarks and posture, as 

illustrated in Figure 4.1. The study successfully evaluated the subject's overall body 

balance and weight distribution using the Centre of Mass's x and y-coordinates, 
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determined using body landmarks and body segment weight. Section 4.1 provides an 

in-depth explanation of the exact methodology used to calculate body segment weight.  

4.1. Body Balance Estimation Using Inverted Pendulum 

Mechanism 

Based on the body landmark data from BlazePose, the inverted pendulum model, a 

simplified depiction of the human body, may be utilized to simulate balance and 

forecast fall risk. The model presupposes that the body may be seen as an inverted 

pendulum, with the center of mass at the top and the feet at the base. To calculate the 

center of mass's location and pendulum's angle—all of which can be used to predict 

the likelihood of falling—the model uses the BlazePose body landmark data. Figure 

4.2 shows the BlazePose body landmarks model used to predict falls. 

 

Fig. 4.2: BlazePose body landmarks model for fall detection 

Using the BlazePose body landmark data, which offers the coordinates of many body 

landmarks, such as the hip joints and ankle joints coupled with body component 

weights, the location of the Centre of Mass (CoM) was determined. Assuming that the 

body can be represented as a collection of discrete point masses, the center of mass 

may be determined by averaging the locations of each body part, with each body part's 

weight being proportional to its mass. Equation 7 and 8 shows the x and y-coordinates 

of the center of mass. 
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𝑥𝐶𝑜𝑀 =  
(𝑊𝐿𝐹×𝑥28)+(𝑊𝑅𝐹×𝑥27)+(𝑊𝐻×(

𝑥24−𝑥23
2

))

(𝑊𝐿𝐹+𝑊𝑅𝐹+𝑊𝐻)
    (7) 

𝑦𝐶𝑜𝑀 =  
(𝑊𝐿𝐹×𝑦28)+(𝑊𝑅𝐹×𝑦27)+(𝑊𝐻×(

𝑦24−𝑦23
2

))

(𝑊𝐿𝐹+𝑊𝑅𝐹+𝑊𝐻)
    (8) 

The pendulum's length, or L, equals the distance between the feet from the center of 

mass. L's value might change based on a person's height, weight, and other physical 

features. The distance between the center of mass and the feet was calculated using 

anthropometric parameters like leg length and the distance from the pelvis to the feet. 

Equation 9 describes the Center of Mass (CoM) position (xCoM). 

𝑥𝐶𝑜𝑀 = 𝐿 × sin(𝜃𝑝)       (9) 

Equation 10 describes the pendulum angle to the vertical plane. 

𝜃𝑝 = tan (
𝑦28−𝑦27

𝑥28−𝑥27
)        (10) 

Equation 11 describes the distance between proper ankle body landmarks and the left 

ankle body landmarks.  

𝑑 = √(𝑥28 − 𝑥27)2 + (𝑦28 − 𝑦27)2     (11) 

The distance between the center of mass's projection (Xprj) into the ground and the 

midpoint between both feet was considered the stability margin (SM). Equation 12 

describes the Xprj of the pendulum. 

𝑋𝑝𝑟𝑗 = 𝑥𝐶𝑜𝑀 − ((
𝑦28+𝑦27

2
) × sin 𝜃𝑝 )     (12) 

Equation 13 describes the stability margin of the model. A smaller stability margin 

indicates a higher risk of falling. 

𝑆𝑀 = 𝑋𝑝𝑟𝑗 −
𝑑

2
                   (13) 

Where; 

𝜃𝑝 − 𝑃𝑒𝑛𝑑𝑢𝑙𝑢𝑚 𝑎𝑛𝑔𝑙𝑒 

𝐿 − 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 

𝑥𝐶𝑜𝑀, 𝑦𝐶𝑜𝑀 − 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 

𝑥23, 𝑦23 − 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 ℎ𝑖𝑝 

𝑥24, 𝑦24 − 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 ℎ𝑖𝑝 

𝑥27, 𝑦27 − 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑓𝑜𝑜𝑡 

𝑥28, 𝑦28 − 𝑥 𝑎𝑛𝑑 𝑦 𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑓𝑜𝑜𝑡 

𝑑 − 𝑚𝑖𝑑 𝑝𝑜𝑖𝑛𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑒𝑓𝑡 𝑎𝑛𝑑 𝑟𝑖𝑔ℎ𝑡 𝑓𝑜𝑜𝑡 

𝑋𝑝𝑟𝑗 − 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 

𝑆𝑀 − 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑟𝑔𝑖𝑛 
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𝑊𝐿𝐹 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 𝑓𝑜𝑜𝑡 

𝑊𝑅𝐹 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡 𝑓𝑜𝑜𝑡 

𝑊𝐻 − 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑖𝑝 

4.2. Estimation of Body Segment Mass 

Anthropometric data and standard tables of body segment masses can be used to 

estimate the mass and weight of each body part, which are necessary to calculate the 

weights of the left foot, right foot, and hip joint. The International Society for the 

Advancement of Kinanthropometry (ISAK) provides a standard protocol for 

measuring body composition and anthropometric dimensions, including body segment 

lengths and circumferences. This data can be used to estimate segment masses using 

regression equations developed from cadaver studies. The National Institute for 

Occupational Safety and Health (NIOSH) has published a set of equations for 

estimating segment masses based on body height and weight, as well as age and 

gender. These equations are based on data from a large sample of the US population 

and are commonly used in ergonomics and workplace design. The International 

Commission on Radiological Protection (ICRP) has developed a set of reference 

values for organ masses and tissue densities, which can be used to estimate segment 

masses based on medical imaging data. Figure 4.3 shows the body segment numbering. 

 

Fig. 4.3: Human body mass segment numbering (Adopted from [68])  
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The tables developed by Zatsiorsky and Seluyanov [68] provide segment masses for 

adults based on cadaver studies, as well as equations for estimating segment masses 

based on body height and weight. These tables are commonly used in biomechanics 

and can provide a reasonable estimate of segment masses for individuals with non-

average body proportions. They also developed a set of regression equations to 

estimate the segment masses of the human body based on total body mass and body 

height. Moreover, Kaynakli et al. [69] introduced body segment mass fraction of total 

body mass. Table 4.1 shows the fraction of body segment mass proposed in [69]. 
 

TABLE 4.1: FRACTIONS OF BODY SEGMENT MASS 

Body segments Segment number Fraction of total body mass (%) 

Foot 1-2 1.45 

Fibula 3-4 4.65 

Thigh 5-6 10.0 

Pelvis 7 8.48 

Head 8 8.10 

Hand 9-10 0.60 

Forearm 11-12 1.60 

Upperarm 13-14 2.8 

Trunk 15-16 41.2 

With the help of the mass of the previously mentioned body segments, this 

research was able to precisely calculate the Centre of Mass (CoM) for the participating 

human subjects. Utilizing this accurate body segment mass information, the proposed 

vision-based attentive methodology improves the ability to provide a non-invasive 

method of assessing and mapping muscle strength and fall risk. The potential of this 

approach to transform the assessment and mapping of critical health parameters while 

reducing the need for invasive procedures is highlighted by the significant 

advancement it makes in non-invasive assessment techniques. 

4.3. Muscular Strength Vs. Fall Score Estimation 

Within aging and mobility, grip strength and the risk of falling are closely related 

factors. They are maintaining one's ability to walk securely and confidently as one age 

becomes of the utmost importance. The crucial part that grip strength plays in 

determining and reducing the risk of falls in older adults has been acknowledged by 

several well-known health organizations, including the WHO, the AWGS, and the 

European Working Group on Sarcopenia in Older People (EWGSOP/2). These 

organizations routinely claim that a reduced grip strength among this population 

significantly increases the danger of falling. 
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4.4. Results and Discussions 

Understanding and evaluating the stability of human locomotion heavily relies on the 

measurement of stability margins in various gait patterns. From regular, healthy gait 

to numerous aberrant patterns that neurological or musculoskeletal problems may 

cause, each gait pattern illustrates a distinct aspect of human mobility. Researchers and 

healthcare providers may learn much about the dynamic balancing and control 

processes of each gait pattern by examining stability margins across this range. Given 

that it gives precise data on how well someone can maintain their stability while 

walking, this information is essential for identifying and treating people with gait-

related problems. Such assessments may also be used to develop rehabilitation plans 

and targeted therapies customized to specific gait abnormalities, enhancing the quality 

of life for persons with these illnesses. In general, the evaluation of stability margins 

in a variety of gait patterns is a crucial step in improving our comprehension of human 

locomotion and developing the gait analysis and rehabilitation area. 

Figures 4.4 through Figure 4.8 illustrates the stability margin variation of different gait 

patterns of sarcopenia patient. A stable and balanced gait is characterized by a stability 

margin that is less than or equal to 0.3, which denotes a healthy state. People within 

this range have a low risk of falling and show steady, firm control over their 

movements. People who have a stability margin of between 0.3 and 0.7 are considered 

to need gait support because they have a moderate risk of falling. To avoid and reduce 

fall-related events and accompanying injuries, this group requires constant observation 

and potential intervention. The urgent need for thorough and quick actions was 

highlighted by a stability margin of 0.7 or above, which indicates a severe fall risk. 

People who fit into this group are at a high risk of suffering severe fall-related injuries. 

Thus, they need urgent care and help to keep them safe. 

 

Fig. 4.4: Stability margin of the healthy gait pattern 
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Fig. 4.5: Stability margin of the abnormal gait pattern 

 

Fig. 4.6: Stability margin of the diplegic gait pattern 
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Fig. 4.7: Stability margin of the high stepping gait pattern 

 

Fig. 4.8: Stability margin of the myopathic gait pattern 

Figure 4.9 shows the relationship between the stability margin and prominent grip 

strength. This graph unequivocally shows that a more excellent SM score is associated 

with a higher chance of falling. On the other hand, a weaker grasp indicates a more 

significant chance of falling. The graphical illustration highlights the crucial role that 

grip strength plays in predicting falls in aging populations. It also provides valuable 

information for determining thresholds for fall risk assessment. Notably, a vital 

criterion for diagnosing an increased fall risk is an SM score over the 0.3 level. When 

SM rises beyond 0.7 after this time, the danger of falling is considered significant. The 

association between grip strength and fall risk is further supported by the fact that these 

higher SM scores also frequently correspond with lower grip strength readings. These 
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findings highlight the value of grip strength testing as a critical tool for supporting 

older people's safe and independent movement. 

 

Fig. 4.9: Relationship between stability margin (SM) and prominent grip strength 

The method enables healthcare professionals and patients to proactively assess and 

reduce fall risks by setting these separate levels. Such a comprehensive approach to 

evaluating fall risk is essential for encouraging early interventions and specialized 

preventative measures to safeguard people, especially those at risk for falls, such as 

the elderly and people with specific medical problems. 
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CHAPTER 5 

VISION ATTENTIVE-ENABLED SARCOPENIA SCREENING 

MODEL  

The development of the Sarcopenia screening tool/GUI will be discussed in this 

section. Its objective is to make sarcopenia evaluation in a domestic setting easier. The 

procedure of measuring and evaluating functional mobility assessments using a visual 

method will be simplified by integrating the proposed tool. 

5.1. Development of TUG Test, 3m-Walk Test, and Fall Prediction 

Enabled Sarcopenia Screening Tool 

To provide real-time evaluation and analysis of human motions, the Python-based 

health monitoring system described above integrates several technologies. This system 

showed a complex usage of OpenCV, MediaPipe, and TensorFlow to monitor 

particular health measures and assess stability levels by leveraging Python's powerful 

robust and the PyCharm IDE. 

Python, a flexible and popular programming language, is the system's basis. A 

productive and well-organized workflow is made possible by the flexibility of Python 

and the PyCharm Integrated Development Environment (IDE). The system makes use 

of several libraries, including OpenCV, MediaPipe, Numpy, Datetime, Time, Joblib, 

Math, TensorFlow, and Tkinter, which together allow the system to collect, handle, 

and examine health-related data. 

The starting phase gets the environment ready for the subsequent steps. It is necessary 

to import the appropriate libraries, machine learning models, and variables. The 

system's ability to employ machine learning to make precise predictions was 

demonstrated using Artificial Neural Networks (ANN) and Support Vector Machines 

(SVM). The videos were captured using OpenCV, which was required for extracting 

test subject video samples for analysis. The MediaPipe library's Blaze posture detector 

was given specific detection and tracking confidence levels. 

Figure 5.1 displays the GUI created for entering demographic data. The operator must 

enter crucial information into the system, such as gender, age, height, and weight. 

These particular variables were used directly as features for the ANN's input features. 

Notably, the weight information was used to determine the mass of the body segments, 

which was necessary to determine the stability margin (SM). This interactive interface 

acts as a vital entry point for incorporeity, pointing significant participant data into the 

system providing a thorough and expedited assessment of numerous health metrics 

and risk factors. 
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Fig. 5.1: Demographic information feed GUI 

The developed vision system for calculating gait speed and duration Up and Go (TUG) 

duration is shown in Figure 5.2. The figure presents a selection of test scenarios from 

the TUG trials, some of which included applying gait assistance equipment. The green 

line represents the TUG arena, while the red lines show the hip coordinate about TUG 

frame reference points. 

Because the BlazePose model removes noise from the source picture, it provides stable 

results even in low light. This makes it an excellent choice for the TUG time estimate. 

Nevertheless, in this case, keeping the lighting constant is seen to be the practice for 

ensuring accuracy and peak system performance. 
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Fig. 5.2: TUG time and gait speed estimation during the experiment 

Figure 5.3 shows the test case experimenting on the fall score test to estimate the 

stability margin. As shown in the image, when a person performs the TUG test, the 

Graph shows the -1 to+1 range. Figure 5.4 shows the different stability margins for 

several test trials. As can be seen from the figure, negative values indicate a propensity 

for patients to lean left, while positive values indicate a tendency to lean right. It is 

imperative to acknowledge that the validity of this inference is contingent upon the 
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stability margin (SM) surpassing 0.5. On the other hand, SM values less than 0.5 

suggest that although the patient may not have a fall risk score at this moment, one 

may eventually arise.   

 

Fig. 5.3: Stability margin (SM) estimation during the experiment 
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Fig.  5.4: Different stability margin criterions 

The analytical dashboard created using Python is seen in Figure 5.5. Eight graphs were 

designed to evaluate the functional mobility of the elderly, as the photos demonstrate. 

A graph illustrating distance fluctuation with TUG time is presented. We can 

determine whether the patient completed the TUG test by using this.   The patient's hip 

and knee angles showed whether or not their aberrant gait pattern was causing them 

difficulty walking.  When a patient has an irregular gait, back discomfort is likely the 

cause. Additionally, the TUG test reveals the patient's changing gait through the 

forward and backward speed variations. We can lessen the inaccuracy in gait speed by 

averaging the values. The stability margin indicates whether the patient is stable 

throughout the examination. These instabilities were mapped with notable grip 

strength, which measures an individual's muscular strength. 
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Fig. 5.5: Functional mobility analysis dashboard (Top: a: Distance variation graph, b: Hip angle variation graph, c: Knee angle variation, Middle: 

a: Forward speed variation, b: Hip y-coordinate variation, c: Stability margin variation, Bottom: a: Reverse speed variation, b: Shoulder y-coordinate 

variation)  
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The proposed sarcopenia screening tool's functional mobility analysis dashboard is 

shown in Figure 5.4. The distance graph, as seen in the figure, demonstrates how the 

distance varied throughout the TUG test. If someone follows the proper instructions 

and does a TUG test, the shape must resemble the one in the figure. The average gait 

speed was determined by averaging the forward and reverse 3m walks. The critical 

values are displayed in the redline margin. A person cannot walk at a healthy speed if 

the continuous speed is below the red line. The functional acceptability of the TUG 

test was assessed by hip and knee angle variation. The 3m walk range needs to remain 

consistent during the TUG test. If the variance is more significant, the person cannot 

do the sit-to-stand, stand-to-sit, and 180-degree TUG activities. The caretaker in this 

situation must be cautious of the patient since they could require gait help. To 

determine if a person has the proper body posture, the hip angle and shoulder y-

coordinate are employed. y-coordinates cannot fluctuate at a high phase for the 

appropriate body position. The stability margin about the fall score finally represents 

the muscular strength. 

5.2. Experiment Method and Data Collection  

This experiment aims to evaluate the functional mobility and performance of 

sarcopenia patients during the TUG test. To achieve this, we will design a randomized 

controlled trial with two groups: an experimental group and a control group. To 

evaluate functional mobility, we collected TUG time, Gait Speed (using 3mW-T), and 

fall score. 

Participants: 

We recruited 348 participants (218 in the experimental group and 116 in the control 

group) from the local community. The inclusion criteria for this study are as follows: 

• Participants must be 60 years or older 

• Participants must be able to walk independently with or without the aid of 

an assistive device (e.g., cane, walker) 

• Participants must be able to follow instructions and perform the TUG test 

Procedure: 

• Pre-test Assessment: Before experimenting, each participant will be 

assessed for their baseline mobility and cognitive function using a 

standardized assessment tool. 

• Experimental Group: Participants in the experimental group will perform 

the TUG test using the computerized system. The system will consist of a 

motion sensor attached to the subject's waist to detect movement and time 

their performance automatically. Additionally, a video recording of the 

TUG test will be taken for later analysis. 
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• Control Group: Participants in the control group will perform the TUG test 

using a stopwatch to measure their performance manually. Additionally, a 

video recording of the TUG test will be taken for later analysis. 

• TUG Test: Participants in both groups will be directed to don their usual 

footwear and utilize any customary gait aids employed during ambulation, 

while refraining from seeking assistance from another individual. Upon the 

instructor's prompt of "GO," subjects will commence the experiment, 

navigating through the tasks at a pace that aligns with their perceived sense 

of safety and comfort. The ensuing sequence of activities will unfold as 

follows: 

1. Initiate the experiment by rising from the chair, with the option for 

the subject to utilize the support of the chair arms if needed. 

2. Traverse a 3-meter (10 feet) distance, marked by masking tape 

indicating the destination. 

3. Execute a precise 180-degree turn upon reaching the designated 

destination. 

4. Retrace the 3-meter path back to the initial starting point. 

5. Perform another 180-degree turn upon returning to the starting 

location, allowing the subject to use the chair arms for support if 

necessary. 

6. Finish the sequence by smoothly and safely sitting back down in 

the chair. 

Throughout the aforementioned sequence of activities, meticulous time measurements 

will be conducted. Specifically, we will calculate T1 for Activity 1, T2 for Activities 

2, 3, 4, and 5 collectively, and T3 for Activity 6. These time calculations will be 

executed using both the computerized system and a traditional stopwatch, ensuring 

comprehensive and accurate data collection. 

• Post-Test Assessment: After completing the TUG test, participants will be 

assessed for their mobility and cognitive function using the same 

standardized assessment tool as the pre-test. 

• Data Analysis: The data collected from the TUG test will be analyzed to 

compare the performance of the experimental group and the control group. 

We will use the following statistical methods: 

The proposed experimental configuration for the sarcopenia screening approach is 

shown in Figure 2. Two cameras, as seen in the image, were mounted to obtain video 

feeds of both the front and sagittal views. The sagittal camera is 4 m from the TUG 

arena's midpoint, with the camera set to 2 m from the destination. The 3m TUG arena 

served as the site of the TUG experiment. 
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Fig. 5.6: Domestic sarcopenia screening vision-attentive experimental setup 

Data labelling: After the data collection process was over, we classified all of the 

collected data thoroughly, making a distinction between the cases that showed signs 

of sarcopenia and the cases that showed signs of healthy (non-sarcopenia). Based on 

their medical histories, the records of 130 test cases revealed that the participants were 

experiencing problems with functional mobility. We used a number of criteria, such 

as the TUG time (>13 s) and conventionally measured gait speed, (1 ms-1), together 

with prominent grip strength levels for males (<27 kg) and females (<16 kg), to 

demonstrate the presence of sarcopenia. 

When we found cases in which the grip strength levels matched the defined thresholds 

for sarcopenia, we labelled them as “sarcopenia” cases. On the other hand, those with 

better grip strength ratings and strong functional mobility were considered to be 

“healthy” subjects. In order to verify the precision of our categorization, a medical 

officer reviewed the complete dataset, leading to the removal of fourteen records 

pertaining to test cases with unrecorded medical history, and abnormal functional 

mobility behaviors (further clinical testing required to consider for dataset). For the 

ensuing experimental analysis, the control group consisted of the remaining 116 data 

points. 

5.3. Sarcopenia Prediction Through ANN Model 

Researchers frequently utilise the t-test, a statistical analysis technique that examines 

the statistical significance of observed differences, in their search to identify 

significant variations between the means of two groups or samples. When comparing 

the means of two groups, researchers can apply this test to see if an observed difference 

is likely the result of a natural effect or if it might have happened by chance. Table 5.1 

shows the independent sample t-test of the collected data. Age, Gender, Height, 

Weight, TUG Time, Gait Speed, and Fall Score all had p-values that were below the 

crucial cut-off of 0.05 in our comprehensive statistical study. This persuasive data 

suggests that these characteristics and the existence of Sarcopenia are related in a 

statistically meaningful way. These results highlight how crucial these factors are for 

comprehending and forecasting Sarcopenia outcomes. 

However, when we looked at BMI, its corresponding p-value was 0.227, exceeding 

the 0.05 cut-off. This particular outcome suggests that the available data do not support 
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the claim that there is a strong relationship between BMI and sarcopenia. Given this 

result, it was wise to decide against using BMI as an input variable in our Artificial 

Neural Network (ANN) model because, according to our dataset, it makes little 

difference in predicting sarcopenia. 

TABLE 5.1: INDEPENDENT SAMPLE T-TEST OF DATASET 

Variables p-value 

Age 0.002 (<0.05) 

Gender 0.006 (<0.05) 

Height 0.002 (<0.05) 

Weight 0.001 (<0.05) 

BMI 0.227 (>0.05) 

TUG time 0.001 (<0.05) 

Gait speed 0.015 (<0.05) 

Fall score 0.003 (<0.05) 
 

Figure 5.7 shows the proposed ANN model to predict sarcopenia. 

 

Fig. 5.7: Proposed sarcopenia prediction ANN model 

We developed an exact system with Python, OpenCV, and MediaPipe library using 

the mathematical model above. We then used an ANN to determine if the test 

individual had sarcopenia after obtaining the TUG time, gait speed, and hip and knee 

angle data. A total of 165 data were collected, of which 80% were used to train the 

system and 20% to test it. Each ANN node was activated using a Sigmoid activation 

function (f(x) = 1/ (1 + e−x)). Age, gender, TUG time, and gait speed were employed 

as the ANN's input features; if the output value (Oi) is less than 0.5 (Oi<0.50), 
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sarcopenia is considered to be less prevalent. If the output value (Oi) is more than or 

equal to 0.5 (Oi≥0.50), sarcopenia is deemed to be more prevalent. Severe sarcopenia 

was recorded in those with greater Oi values than 0.75 (Oi≥0.75). 

5.3.1. Results and Discussion 

In this section, we examine in extensive detail the results and analysis obtained from 

the Artificial Neural Network (ANN) model. Figure 5.8 shows the model loss and 

model accuracy of the ANN model. The ANN model evaluation produced encouraging 

results, as evidenced by a test accuracy of 90.91% and a test loss 0.21. These metrics 

highlight the model's promise as a dependable tool for classification and predictive 

analytics jobs by demonstrating its strong performance and capacity to generalize to 

previously unknown data. 

A test loss of 0.21 indicates a significant convergence toward ideal parameter choices, 

indicating that the model can minimize mistakes during the validation process. The 

model's ability to effectively identify the underlying patterns in the dataset is 

demonstrated by the low loss value, which facilitates the generation of more precise 

forecasts and well-informed decisions. 

Moreover, the impressive test accuracy of 90.91% supports the model's ability to 

classify data points accurately, indicating that it can recognize and distinguish between 

distinct data points with a high degree of accuracy. This degree of precision is 

necessary to guarantee that the model may successfully generalize to real-world 

situations, increasing its relevance and practical use across various areas. 
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Fig. 5.8: ANN training, validation, and accuracy curves 

In the study of machine learning and classification, a confusion matrix is a crucial tool. 

It is employed to gauge a prediction model's effectiveness, notably in binary 

classification jobs. The matrix offers a concise and unambiguous overview of how 

well a model's forecasts match actual results. True Positives (TP), True Negatives 

(TN), False Positives (FP), and False Negatives (FN) are the four main categories that 
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make up this framework. Figure 5.9 shows the confusion matrix of the ANN 

prediction. The findings from the confusion matrix, together with a Test Loss of 0.21 

and an outstanding Test Accuracy of 90.91%, show the model's strong performance in 

correctly categorizing data points. This high degree of accuracy indicates that the 

model's predictions and the actual results in the test dataset are quite similar. The Test 

Loss of 0.21 suggests that the model's predictions are not only consistently correct with 

little error but also accurate overall. These outcomes demonstrate the model's 

dependability and efficiency in its categorization tasks. 

 

Fig. 5.9: Confusion matrix of the ANN prediction 

Figure 5.10 shows the Receiver Operating Characteristic (ROC) of the experiment 

results. The performance of our model demonstrated an astounding 93.9% accuracy, 

according to the ROC curve study. When we looked more closely at the statistics, we 

saw that the calculations for sensitivity and specificity produced excellent outcomes, 

with sensitivity clocking in at 88.9% and specificity climbing to 97.1%. In-depth ROC 

analysis revealed that the fitted ROC region had a fantastic accuracy rate of 98.1%, 

highlighting the strength of our model's predictive skills. Notably, the empiric ROC 

area retained a high degree of accuracy although being significantly lower at 97.6%, 

confirming the validity of our strategy in this crucial examination. 
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Fig. 5:10: ROC curve of the experiment 

The most critical factors affecting sarcopenia status and their corresponding means are 

shown in Table 5.2. In the adverse scenario, when people do not have sarcopenia, the 

mean age is 62. In contrast, the mean age is much higher in sarcopenia-positive 

patients, at 76 years, indicating that sarcopenia tends to be more common in older 

people. Additionally, the average TUG test time is 12.37 seconds in negative instances 

as opposed to 23.07 seconds in positive ones, a substantial difference. Similar patterns 

can be seen in gait speed, assessed in meters per second (m/s), with negative instances 

showing a quicker average speed of 0.97 ms-1 compared to positive patients' slower 

0.41 ms-1. Additionally, grip strength in negative instances is 22.46 kg compared to 

the lower average of 8.57 kg reported in those with sarcopenia, which is a significant 

increase. These results show that people with and without sarcopenia significantly vary 

in these factors. 

TABLE 5.2: VARIABLE MEANS FOR HEALTHY AND SARCOPENIA CASES 

Variable Sarcopenia Status Mean Value 

Age / (Yrs.) 
Negative Case 62 

Positive Case 76 

TUG Time (s) 
Negative Case 12.37 

Positive Case 23.07 

Gait Speed (ms-1) 
Negative Case 0.97 

Positive Case 0.41 

Prominent Grip Strength (kg) 
Negative Case 22.46 

Positive Case 8.57 

Figure 5.11 shows the TUG time variation between the proposed vision system and 

the clinical method. Compared to conventional stopwatch techniques, vision systems 

have been shown to produce Time Up and Go (TUG) time readings that are noticeably 
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more accurate. This significant increase in accuracy has the potential to completely 

change how we measure time for a variety of tasks, especially when it comes to 

evaluating mobility and functional performance. Furthermore, recent evaluations have 

shown the TUG system's total accuracy is 96.89%. This high degree of accuracy 

highlights the vision system's potential to be an essential tool in healthcare settings and 

other contexts, reaffirming its dependability and resilience. 

The capacity of the vision system to remove mistakes resulting from human reading is 

one of its main features. The technology reduces the possibility of errors resulting from 

human interpretation while also streamlining the data-gathering process by precisely 

detecting and evaluating TUG operations. This is a significant advancement in 

improving the impartiality and dependability of our evaluations, which will eventually 

lead to better decision-making and individualized treatment for both patients and 

clients. 

 

Fig.  5.11: TUG time comparison of vision system vs. clinical method 

It is critical that we keep investigating the visual system's full capability in the future 

in order to our measuring methods and improve our comprehension of human 

movement and performance. By making use of this cutting-edge technology, we have 

the chance to uncover fresh viewpoints and insights that can spur innovation in the 

fields of healthcare and rehabilitation, thereby raising people's quality of life regardless 

of their background. 

Figure 5.12 shows the gait speed variation between the proposed vision system and 

the clinical method. The proposed approach has demonstrated that the vision system's 

use has produced excellent results in assessing gait speed, with an astounding accuracy 

of 91.1%. This is a significant development in health monitoring technologies, 

especially for gait analysis. The methodology comprised the systematic evaluation of 

the mean walking speed, which was ascertained using the 3 m forward and backward 

walk segments of the Timed Up and Go (TUG) examination. We could guarantee 
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consistency and dependability in our measurements because of this standardized 

approach, which gave our study a firm basis. Furthermore, incorporating wearable 

sensor devices and smartphones has shown to be crucial in our data-collecting 

procedure. By utilizing these contemporary instruments, we managed to circumvent 

the constraints linked to traditional methods of gauging stride velocity. This improved 

the quality and precision of our results and expedited the data-collecting process, 

allowing us to get previously impossible levels of knowledge. 

 

Fig.  5:12: Gait speed comparison of vision system vs. clinical method 
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CHAPTER 6 

DISCUSSION AND CONCLUSION  

Within the context of an aging demographic, the prevalence of sarcopenia emerges as 

a notable health concern, marked by the discernible decline in both muscle mass and 

functional capabilities. Effective intervention and management depend on early 

diagnosis and reliable screening technologies. For older people, traditional clinical 

exams for sarcopenia are less convenient and frequently require invasive procedures 

or specialized equipment. A viable alternative, however, is provided by a revolutionary 

strategy called the vision-attentive paradigm. The advantages of utilizing a vision-

attentive model to assess functional mobility in a real-world household context as a 

more trustworthy screening tool for sarcopenia in older persons are explored in this 

debate. The vision-attentive paradigm uses inconspicuous cameras to document and 

assess the functional mobility of older people. This strategy may be applied in common 

living areas and is non-intrusive and affordable. The vision-attentive approach 

captures a more realistic portrayal of seniors' functional mobility, frequently impaired 

in sarcopenia, by watching their everyday activities within their homes. To adequately 

screen for sarcopenia, the WHO has acknowledged the necessity for numerous 

evaluations. 

Sarcopenia, a disorder marked by the progressive loss of muscle mass and function, is 

becoming more and more of a global health problem, especially in older people. 

Although wearable sensor-based technologies have gained ground in health 

monitoring, extensive sarcopenia screening is challenging to deploy due to the 

aversion of many older people to such devices. As a result, the creation of a vision-

attentive-based system, as described in this study, offers a significant improvement in 

locating people who are at risk and permitting early intervention techniques.  

The TUG test, 3-meter Walk Test (3mW-T), and fall score model was all integrated 

into the vision-attentive system, which not only permits successful screening but also 

contributes to a thorough evaluation of functional mobility in older persons. The use 

of these criteria has shown a clear relationship between sarcopenia and age, TUG time, 

gait speed, fall score, and other variables. The dependability of the vision-attentive 

system in correctly diagnosing sarcopenia in old people is further supported by the 

statistical significance of these relationships, as shown by the p-values. Age, gender, 

height, weight, TUG time, gait speed, stability margin, and prominent grip strength 

were the many variables collected for this study. It is noteworthy that the stability 

margin is associated with grip strength, underscoring the need to evaluate functional 

mobility thoroughly. Artificial Neural Networks (ANNs) were used in the study to 

analyze the data and forecast sarcopenia. To make sure the most important aspects 

were taken into account, input variable selection was carried out using an independent 

sample test (t-test). The ANN's outstanding accuracy rate of 90.91% demonstrated how 

effective a prediction tool it is. The vision-attentive model's promise as a trustworthy 

sarcopenia screening tool was further supported by Receiver Operating Characteristic 
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(ROC) analysis, which showed that the proposed method had an astounding 93.9% 

accuracy. 

The primary benefit of the vision-attentive system is that it is non-invasive, which 

increases older people's acceptance of it. The technology enables early sarcopenia 

identification without intrusive technologies by utilizing visual clues and easy mobility 

tests, encouraging a more patient-friendly approach to treatment. Furthermore, the 

system's excellent accuracy rates demonstrate its dependability and efficiency in 

detecting at-risk people, enabling prompt intervention and customized care programs. 

Several restrictions must be taken into account, however. The emphasis may impact 

the screening process's consistency and objectivity on visual evaluation, which might 

add subjectivity and unpredictability. Furthermore, the system's application in real-

world settings, where environmental conditions might fluctuate, may be constrained 

by the requirement for a controlled environment for precise vision-based analysis. 

Additionally, the lack of a standardized technique for performing the TUG and 3mW 

tests may compromise the repeatability of findings in various healthcare environments. 

Despite this, the research opens up new possibilities for investigation and progress in 

geriatric care. The combination of machine learning and artificial intelligence 

algorithms may be one of the research avenues taken in the future to improve the 

accuracy and dependability of the vision-attentive system. By using these 

technologies, it is possible to create predictive models that might be used to predict 

future functional decline and fall in older persons and diagnose sarcopenia. A more 

thorough assessment of sarcopenia could also be possible with the addition of further 

variables like muscular strength and body composition analyses. Clinicians can better 

comprehend a patient's musculoskeletal health by including these characteristics in the 

current vision-attentive system, which will make it easier to conduct focused and 

specialized therapies. 

Future research should standardize the evaluation methodologies and build a thorough 

validation process for the vision-attentive system across various groups to solve the 

existing shortcomings. Demonstrating its dependability and efficacy in multiple 

clinical contexts would encourage its wider acceptance and inclusion into standard 

geriatric care. 

In conclusion, creating a vision-attentive system for sarcopenia screening marks a 

significant advancement in the early recognition and treatment of this debilitating 

condition among the elderly. Although the system has several drawbacks, such as 

possible subjectivity and environmental limits, its non-invasive design and high 

accuracy rates make it a viable tool for enhancing older people's healthcare results and 

quality of life. 

The integration of cutting-edge technology and the extension of evaluation criteria will 

be crucial in improving the vision-attentive system and expanding its usefulness in 

many healthcare settings as we look to the future. This method can potentially 

revolutionize geriatric care by resolving the present constraints and adopting a more 
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thorough approach, permitting proactive treatments and promoting healthy aging 

internationally. 
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APPENDIX A  

CONSENT FORM 

Research Title: Vision Attentive Model for Early Recognition of 

Sarcopenia with Limited Mobility of Elders in Domestic Environments 

Prof. A.G.B.P. Jayasekara 

Dr. B.G.D.A. Madhusanka 

Ethics Declaration Number: ERN/2023/013 

 

Consent by the participant 

I have read and understood the Information Statement and the Consent Form, and 

any questions I have been asked, have been answered to my satisfaction. I agree 

voluntary participation in the study described in the Information Statement, realizing 

that I may withdraw at any time.   

I agree that research data provided by me or with my permission during the study may 

be published in theses, conferences and in journals on the condition that anonymity is 

preserved and that I cannot be identified.  

      

Name of Participant : …………………………………. 
  

Signature  : …………………………………. 
 

Date   : …………………………………. 

 

Statement by the researcher/person taking consent 

I have accurately read out the information sheet to the potential participant, and to the 

best of my ability made sure that the participant understands the research procedure. I 

confirm that the participant was given an opportunity to ask questions about the study, 

and all the questions asked by the participant have been answered correctly and to the 

best of my ability. I confirm that the individual has not been coerced into giving 

consent, and the consent has been given freely and voluntarily. 

 

Name of Researcher : …………………………………. 
  

Signature  : …………………………………. 
 

Date   : …………………………………. 
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APPENDIX B 

EVALUATION FORM 

Research Title: Vision Attentive Model for Early Recognition of 

Sarcopenia with Limited Mobility of Elders in Domestic Environments 

 

Experiment #: ………….     Date: ………………… 

Test Case #: ……………. 

Age (Yrs.) :  

Gender : Male                   Female  

Weight (kg) :  

Height (cm) :  

BMI :  

Grip Strength Measurements 

Left Grip Strength (kg) :  

Right Grip Strength (kg) :  

Prominent Grip Strength 

(kg) 
:  

Experiment Readings 

Methodology Proposed System Conventional Method 

TUG Time (s) :   

Gait Speed (m/s) :   

Fall Score (Stability 

Margin) 
:   

Sarcopenia Status 

Sarcopenia Score :  

 

Name and Signature of the Instructor: …………………… 

Date: ……………………
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APPENDIX C 

SAMPLE DATASET 

TABLE A1: SAMPLE DATASET COLLECTED 

Gender (Female 0, 

Male 1) 
Age/(Yrs.) Height/(cm) Weight/(kg) 

Prominent 

GS/(kg) 

TUG 

Time/(s) 

(System) 

TUG 

Time/(s) 

(Stopwatch) 

Gait 

Speed/(m/s) 
SM 

1 95 135.5 33.1 8 31.1 29 0.27 0.46 

1 67 149.6 43.7 12 13.9 14.3 0.65 0.5 

1 74 149.7 54.1 2 16.6 16.1 0.4 0.35 

1 75 143.5 45.5 10 13.9 12.7 0.56 0.36 

1 60 160.8 69.3 4 22.8 21.2 0.25 0.43 

1 80 132 33 8 14.9 15.4 0.51 0.31 

0 75 162.5 46.9 16 44.5 43.82 0.13 0.42 

1 72 137.6 48.5 2 19.2 19.75 0.29 0.33 

1 92 138.5 32.2 5 38.3 38.8 0.18 0.51 

0 80 158.5 52.2 15 17.1 17.45 0.33 0.41 

0 80 147 39.9 9 16.4 17.17 0.25 0.4 

0 63 152.5 47.2 18 14.2 15.6 0.76 0.31 

0 72 154.3 45.3 18 16.4 15.92 0.63 0.34 

1 72 132.8 52.6 5 14.7 14.16 0.35 0.39 

0 82 150.5 45 2 35.2 34.32 0.19 0.55 

0 63 164.6 65.8 25 13.5 13.9 1.1 0.27 



73 

0 81 161 61.6 25 13.9 14.3 0.98 0.21 

1 77 140 42 4 20.3 18.55 0.41 0.53 

1 80 140.7 34.2 2 32.5 31.69 0.26 0.67 

0 76 160.3 52.2 15 17.2 16.78 0.45 0.49 

1 76 144.6 32.2 4 19.1 19.88 0.41 0.42 

1 78 143 42.9 11 31.48 31.03 0.35 0.49 

0 60 159.7 51.3 12 14.2 14.76 0.67 0.51 

1 66 141.5 54.9 7 17.1 17.8 0.46 0.35 

1 65 146.6 57.5 8 22.8 21.2 0.23 0.62 

1 60 148.2 90.2 21 8.9 8.67 1 0.2 

1 75 137.2 39.4 10 16.8 17.2 0.41 0.39 

0 75 140.1 38.2 2 20.4 19.67 0.58 0.69 

0 60 156.1 57.1 18 15.2 14.26 0.78 0.37 

1 79 137.8 54 4 31.6 31.56 0.21 0.63 

1 84 139.4 57.4 5 27.1 27.78 0.26 0.59 

0 93 151.2 40 5 29.8 29.13 0.33 0.61 

1 60 140 40 2 31.3 32.7 0.23 0.54 

0 76 156.5 49 18 16.3 17.2 0.62 0.27 

1 69 145.7 53.5 15 14.1 14.9 0.89 0.28 

0 68 168 60.1 17 13.3 14.12 0.66 0.29 

1 80 137.6 32.3 0 30.8 31.1 0.19 0.66 

0 80 155.9 47.3 21 17.1 17.6 0.72 0.3 

0 65 164 48.2 16 15.9 16.1 0.54 0.35 

1 80 138 32.3 0 34 33.2 0.19 0.8 

1 73 132.9 58.4 10 25.8 25.63 0.28 0.46 
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1 62 145.5 45 7 14.9 14.3 0.51 0.38 

1 85 139 55.8 2 34.5 34.96 0.24 0.44 

1 84 143.5 36.6 7 14.8 34.46 0.18 0.5 

1 82 151.6 59.3 8 17.8 27.12 0.31 0.56 

1 69 147.1 58.5 4 26.1 26.9 0.27 0.53 

1 65 144.2 37.7 8 14.4 12.7 0.38 0.28 

1 82 147.2 40.4 7 18.2 17.86 0.57 0.38 

1 74 147.3 46.9 8 37.3 38.07 0.34 0.56 

1 80 142.8 39.9 7 19.1 19.7 0.69 0.31 

 

 

 

 




