CHARACTERIZATION AND MODELING OF THERMO-MECHANICAL BEHAVIOR OF SOLID TIRES WITH GRAPHITE AS A HEAT TRANSFER ENHANCER

Dinelka Somaweera

198082X

Degree of Master of Philosophy

Department of Materials Science and Engineering

University of Moratuwa

Sri Lanka

January 2024

CHARACTERIZATION AND MODELING OF THERMO-MECHANICAL BEHAVIOR OF SOLID TIRES WITH GRAPHITE AS A HEAT TRANSFER ENHANCER

Liyadde Gedara Dinelka Somaweera

198082X

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Philosophy

Department of Materials Science and Engineering

University of Moratuwa

Sri Lanka

January 2024

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the MPhil thesis under my supervision.

UOM Verified Signature

Dr. A.A.G.A. Abeygunawardane

Signature of the co-supervisor: Date: 24.01.2024

Mr. V.S.C. Weragoda

Date: 24.01.2024

Dr. Sisira Ranathunga

Abstract

The solid resilient tire construction consists of three layers namely tread, cushion and base. The cushion or the middle layer provides a comfortable ride but also needs to reduce the heat buildup when the tire is subjected to heavy loads. Repeated loading on the cushion compound causes heat generation due to hysteresis and combined with the heat due to friction from tread needs to be relived promptly to reduce the risk of tire damage. The aim of the study is to enhance the thermal properties of the cushion compound of the solid tire using Sri Lankan vein graphite powder as a filler.

This study reports mechanical, chemical and thermal properties of vein graphite powder sourced from Bogala mines, Sri Lanka. Five varieties of graphite powder samples were chosen to investigate their potential for application and each were characterized through Thermal Constant Analyzer, Differential Scanning Calorimetry, and Ultrasonic pulse-echo method. The ultrasonic method was adopted to obtain measurements of the Poisson's ratio (9), Young's modulus (E), and Shear modulus (G) of the graphite powder samples. Highest value of thermal conductivity, volumetric heat capacity, and thermal diffusivity was reported from the grade of graphite powder possessing larger particle size.

The study also focused on the improvement of the mechanical, curing, and thermal properties of vein graphite filled cushion compounds. The results showed a decrease in tensile strength with the graphite powder content. Maximum torque and the cure time were not significantly changed with the graphite particle content. Furthermore, results revealed a 66% of increase in thermal conductivity at the 10% of graphite particle addition to the compound relative to the unfilled cushion compound. It was observed that tensile strength decreased (with increased hardness) due to low interfacial adhesion and air gaps present between graphite particles and the compound. Furthermore, Dynamic mechanical analysis was performed on the vein graphite filled solid tire compounds to investigate the interaction between graphite and the polymer matrix.

Next, an empirical equation, derived from the relationship between theoretical and experimental thermal conductivity values, was established to model the for graphite-

filled solid tire compound. This equation is a valuable tool for estimating thermal conductivity within the 0-10% graphite filler loading range. Then, a comprehensive tensile test and thermal conductivity test simulations were carried out using Abaqus software and compared the obtained results with experimental data, which was observed to have reasonable correlation.

Dedication

To my loving husband Hashira 💙

Acknowledgements

First and foremost, I am deeply indebted to my principal supervisor, Dr. Gayan Aravinda Abeygunawardane, for his unwavering guidance, expertise, and support throughout this research journey. His valuable insights and encouragement has been instrumental in shaping this work to successful ending.

I extend my sincere appreciation to my co-supervisor, Mr. S. Weragoda, for his valuable contributions, feedback, and mentorship. A special thanks to Dr. Sisira Ranathunga from Elastomeric Pvt Ltd, my external supervisor, for providing valuable industry perspectives and contributing to the practical aspects of this study.

I would like to acknowledge Mr. V. Sivahar, the Head of the Department of Materials Science and Engineering, University of Moratuwa, for providing a conducive environment and resources for conducting this research. My sincere appreciation also goes to Prof. Asha Sewvandi, the research coordinator of the department, and Dr. Kalyani Liyanage, the previous research coordinator, for their support and guidance throughout this academic endeavor.

I extend my thanks to all the academic and non-academic members of the Department of Materials Science and Engineering for their assistance and cooperation during my studies. I am grateful to the Senate Research Committee of the University of Moratuwa for awarding the grant (Grant No. SRC/LT/2019/11) that supported this research financially.

I would also like to acknowledge the Department of Physics at The Open University of Sri Lanka, the Rubber Research Centre at Rathmalana, the Instrument Centre at the University of Sri Jayewardenepura, Bogala Graphite Lanka PLC, and Elastomeric Engineering Company Ltd in Horana, for their support and resources.

Finally, I want to express my heartfelt gratitude to my loving husband Hashira and my dear friends for their unwavering support, understanding, and encouragement throughout this challenging but rewarding journey.

Table of Content

Declarationi
Abstractii
Dedicationiv
Acknowledgementsv
List of Figuresx
List of Tablesxiii
List of Abbreviationsxiv
CHAPTER 01
1 INTRODUCTION TO RESEARCH
1.1 Background and Research Problem2
1.2 Literature Review
1.2.1 Graphite as a filler material
1.2.2 Graphite oxide as a filler material
1.2.3 Expanded graphite as a filler material
1.2.4 Exfoliated graphite as a filler material
1.2.5 Coated graphite as a filler material
1.2.6 Graphite plates as a filler material9
1.3 Objectives and Methodology12
CHAPTER 02
2 ANALYSIS OF GRAPHITE POWDER SAMPLES
2.1 Introduction
2.1.1 Natural Graphite
2.1.2 Synthetic Graphite

2.1.3	Properties of Graphite
2.1.4	Applications of graphite
2.2 Sri	Lankan Vein Graphite Powder26
2.3 Ch	aracterization of Sri Lankan Vein Graphite Powder
2.3.1	Literature Review
2.3.2	Experimental Methodology
2.3.3	Theoretical Background
2.3.4	Results and Discussion
2.3.5	Conclusion
CHAPTER	03
3 CHAR	ACTERIZATION OF VEIN GRAPHITE POWDER FILLED SOLID
TIRE COM	POUNDS
3.1 So	lid Tires and Its Applications62
3.2 Ex	perimental Methodology64
3.2.1	Materials64
3.2.2	Compound Preparation
3.2.3	Particle Dispersion Analysis67
3.3 Ch	aracterization Techniques70
3.3.1	Mechanical Properties70
3.3.2	Vulcanization Properties75
3.3.3	Dynamic Properties
3.4 Re	sults and Discussion
3.4.1	Mechanical Properties79
3.4.2	Vulcanization Properties
3.4.3	Dynamic Properties
3.5 Co	nclusion

CHAPTER 04
4 ANALYSIS OF THERMAL CHARACTERISTICS IN GRAPHITE FILLED
SOLID TIRE COMPOUND
4.1 Introduction
4.2 Experimental Procedure
4.2.1 Materials
4.3 Compound Preparation
4.3.1 Characterization Techniques 126
4.4 Results and Discussion 127
4.5 Theoretical Approach
4.5.1 Introduction
4.5.2 Literature Works
4.5.3 Theory of Thermal Conductivity
4.5.4 Validation of Rule of Mixture 135
4.6 Conclusion
4.6 Conclusion
 4.6 Conclusion
4.6 Conclusion 143 CHAPTER 05 145 5 MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA 146
4.6 Conclusion 143 CHAPTER 05 145 5 MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA 146 5.1 Introduction 146
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRECOMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test147
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test1475.2.1Methodology147
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test1475.2.1Methodology1475.2.2Results and Discussion153
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test1475.2.1Methodology1475.2.2Results and Discussion1535.3Modeling of Thermal Conductivity Test157
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test1475.2.1Methodology1475.2.2Results and Discussion1535.3Modeling of Thermal Conductivity Test1575.3.1Methodology157
4.6Conclusion143CHAPTER 051455MODELING AND VALIDATION OF GRAPHITE-FILLED SOLID TIRE COMPOUND USING FEA1465.1Introduction1465.2Modeling of Tensile Test1475.2.1Methodology1475.2.2Results and Discussion1535.3Modeling of Thermal Conductivity Test1575.3.1Methodology1575.3.2Results and Discussion162

CHAPTER 06	
6 SUMMARY AND FUTURE WORKS	
6.1 Summary	
6.1.1 Effect of Thermal Properties in Solid Tire Compound	171
6.2 Future Works	
References	174

Figure 1.1: Structure of Methodology	15
Figure 2.1: Classification of graphite	18
Figure 2.3: Flake Graphite	19
Figure 2.4: Vein Graphite	20
Figure 2.5: Synthetic Graphite	22
Figure 2.6: Unit cell of the graphite	24
Figure 2.7: Structure of the graphite	24
Figure 2.8: Penetration of longitudinal wave	34
Figure 2.9: Penetration of transverse wave	34
Figure 2.10: Olympus EPOCH 600 Ultrasonic Flaw Detector	34
Figure 2.11: Solid graphite sample	35
Figure 2.12: Hot Disk TPS 500S set-up	36
Figure 2.13: Preparing of powder samples	36
Figure 2.14: SEM image of sample A	41
Figure 2.15: SEM image of sample B	41
Figure 2.16: SEM image of sample C	41
Figure 2.17: SEM image of sample D	42
Figure 2.18: SEM image of sample E	42
Figure 2.19: SEM image of sample E (2500X)	42
Figure 2.20: Ultrasonic wave velocities and corresponding vertical penetration	n depth
for both longitudinal and transverse waves	45
Figure 2.21: Chemical compositions of the graphite powder samples without	Carbon
	49
Figure 2.22: TGA curves for graphite powder samples	53
Figure 2.23: DSC curves for graphite powder samples	55
Figure 2.24: Specific Heat Capacity curves for graphite powder samples	56
Figure 3.1: Cross section of a solid tire	63
Figure 3.2: SEM image of 10% of graphite powder filled solid tire compound	(250X)
	67
Figure 3.3: Threshold image of Figure 3.2	68

List of Figures

Figure 3.4: Particle analyzed image of Figure 3.2	68
Figure 3.5: Zwick Abrasion Tester	71
Figure 3.6: BAREISS Shore A Hardness Tester	72
Figure 3.7 : FRANK (Prüfgeräte GmbH, Germany) Resilience Meter	73
Figure 3.8: Wallace specific gravity tester with specimen weighed in air	74
Figure 3.9: Wallace specific gravity tester	74
Figure 3.10: Tensile Tester (Tinius Olsen H5KS universal testing machine, USA).	75
Figure 3.11: Moving Die Rheometer	76
Figure 3.12: Abrasion loss Vs Graphite percentage	80
Figure 3.13:Graphite particle filled natural rubber composite	81
Figure 3.14: Hardness Vs Graphite Percentage	83
Figure 3.15: Rebound resilience Vs Graphite percentage	85
Figure 3.16: Specific Gravity Vs Graphite Percentage	88
Figure 3.17: Tensile strength Vs graphite percentage	90
Figure 3.18: Elongation at break Vs Graphite percentage	94
Figure 3.19: Tear Strength (N/mm) Vs Graphite Percentage	97
Figure 3.20: Torque Vs Graphite Percentage	99
Figure 3.21: Graphite percentage Vs Cure time and Scorch time	102
Figure 3.22: Cure rate index Vs graphite percentage	103
Figure 3.23: The reinforcement factor Vs graphite Percentage	103
Figure 3.24:Complex viscosity Vs Frequency	108
Figure 3.25: Complex shear modulus Vs Frequency	108
Figure 3.26: Storage and Loss modulus Vs Frequency	111
Figure 3.27: tan Δ Vs Frequency	112
Figure 3.28:tan Δ Vs Graphite percentage	112
Figure 3.29: Dynamic complex viscosity Vs Strain %	116
Figure 3.30: tan∆ Vs Strain %	116
Figure 3.31: Storage Modulus Vs Strain %	117
Figure 4.1: Test Specimen	127
Figure 4.2: Thermal Properties Vs Graphite percentage	128
Figure 4.3: Thermal conductivity values Vs Graphite percentage	136
Figure 4.4: MATLAB code	138

Figure 4.5: Theoretical Vs Experimental thermal conductivity values	. 139
Figure 4.6:Matlab code	141
Figure 5.1: Abaqus opening user interface	148
Figure 5.2: ASTM D Type C Tensile specimen	148
Figure 5.3: Tensile specimen model in Abaqus	. 148
Figure 5.4: Meshed tensile specimen	149
Figure 5.5: Selection of graphite particles in the specimen	149
Figure 5.6: Adding Properties of Graphite	. 150
Figure 5.7: Adding properties of graphite	. 150
Figure 5.8: Mooney Rivlin model fitting to test data	151
Figure 5.9: Aruda Boyce model fitting to test data	151
Figure 5.10: Van Dar Waals model fitting to test data	151
Figure 4.11: Clamping and setting boundary conditions	152
Figure 5.12; Selection of element type	153
Figure 5.13: Unfilled solid tire compound	. 154
Figure 5.14: 2% of graphite filled solid tire compound	. 154
Figure 5.15: Force-Displacement curves of simulation	156
Figure 5.16; Force-Displacement curves of experimental data	. 156
Figure 5.17: Graphite selection and 2D thermal model	158
Figure 5.18: Insertion of material properties	. 159
Figure 5.19: Boundary conditions	160
Figure 5.20: Insertion of element type	162
Figure 5.21: Temperature distribution of solid tire compound	. 163
Figure 5.22: Temperature distribution of 5% graphite filled solid tire compound .	163
Figure 5.23: Temperature Vs Time graph for 3 specimens	164

List of Tables

Table 1.1: Testing methods for graphite filled/unfilled solid tire compound	14
Table 2.1: Differences between amorphous, flakes, and vein graphite	20
Table 2:2: Differences between natural and synthetic graphite	
Table 2.3: Properties of the graphite	24
Table 2.4: Types of graphite powder samples	
Table 2.5: Particle sizes and purities of the graphite powder samples	
Table 2.6: Analyzed data of the UT test	
Table 2.7: XRD analysis of the graphite powder samples	49
Table 2.8: Thermal properties of the graphite powder samples	
Table 2.9: Calculated Specific heat capacity values	
Table 3.1: Formulations for graphite filled solid tire compound	
Table 4.1: Theoretical and experimental thermal conductivity values	135
Table 4.2: Theoretical data and practical data	137

List of Abbreviations

Abrasion Resistance Index	ARI
Aluminum Nitride	AIN
American Society for Testing and Materials	ASTM
Carbon Black	CB
Carbon Fiber	CF
Carbon Nanotubes	CNT
Coarse Flakes of Radial	CFR
Coarse Striated-Flaky	CSF
Conductive Graphite	GT
Cure Rate Index	CRI
Definitions of Differential Thermal Analysis	DTA
Degree of Graphitization	DG
Deutsches Institut für Normung	DIN
Differential Scanning Calorimetry	DSC
Electrically Conductive Adhesive	ECA
Energy Dispersive X-Ray	EDX
Energy Dispersive X-Ray Spectroscopy	EDS
Expanded Graphite	EG
Finite Element Analysis	FEA
Force – Displacement	F-D
Four-Node Linear Heat Transfer Quadrilateral Element	DC2D4
Full Width at Half Maximum	FWHM
Graphene Oxide	GO
Graphite Nanoplatelets	GNP
Graphite Nanoplatelets	GNP
Graphited Fiber	GF
Liquid Crystal Polymer	LCP
Moving Die Rheometers	MDR
Multiwalled Carbon Nanotubes	MWCNT

Natural Rubber	NR
Needle-Platy Graphite	NPG
Negative Temperature Coefficient	NTC
Non-Destructive Testing	NDT
Oscillating Disc Rheometers	ODR
Poly (Vinyl Alcohol)	PVA
Polydimethylsiloxane	PDMS
Polyester Resin	PR
Polyimide	PI
Polymeric Matrix Composites	PMC
Polystyrene Sulfonate	PSS
Polyvinylidene Fluoride	PVDF
Radial Single-Walled Carbon Nanotube	RSWCN
Reduced Graphene Oxide	RGO
Rubber Process Analyzer	RPA
Scanning Electron Microscope	SEM
Shiny-Slippery-Fibrous	SSF
Specific Gravity	SG
Specific Heat Capacity	SHC
Styrene Butadiene Rubber	SBR
Thermally Reduced Graphite Oxide	TRGO
Thermally-Exfoliated Graphite Oxide	TEGO
Thermo Gravimetric Analysis	TGA
Three Dimensions 8-Node Brick Element	C3D8
Three Dimensions 8-Node Brick Hybrid Element	C3D8H
Ultra-High Molecular Weight Polyethylene	UHMWPE
Ultrasonic Testing	UT
Urethane Acrylate Non-Ionomer	UAN
Vinyl Acetate	VA
X-Ray Diffraction	XRD