STUDY OF THE BEHAVIOUR OF MULTI-METALLIC SYSTEMS UNDER HIGH-VELOCITY IMPACT LOADS

KMSR Wijekoon

(228072F)

Degree of Master of Science

Department of Civil Engineering

Faculty of Engineering

University of Moratuwa Sri Lanka

October 2023

STUDY OF THE BEHAVIOUR OF MULTI-METALLIC SYSTEMS UNDER HIGH-VELOCITY IMPACT LOADS

KMSR Wijekoon

228072F

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Degree of Master of Science

Department of Civil Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > October 2023

Declaration of the Candidate and Supervisor

"I declare that this is my work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by an person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in the future.

Signature:

Date: 15/09/2023

The above candidate has carried out research for the Master's thesis under my supervision.

Name of the supervisor: Dr. Lakshitha Fernando

Signature of the supervisor:

Date: 26/01/2024

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my research supervisor, Dr. Lakshitha Fernando, for providing me the opportunity to do research under his invaluable guidance throughout. Without his support, this would have not been possible.

I would like to say my special thanks to Dr. Hasitha Damruwan for the valuable comments during the progress reviews which inspired me to think out of the box.

In addition, I would like to acknowledge all academic staff members of the Department of Civil Engineering, for their constant support throughout.

I would like to show my gratitude for the financial assistance provided by the Structural Engineering Division, University of Moratuwa.

Finally, and most importantly, I am thankful to my family and friends for their constant source of inspiration and moral support.

Abstract

The behavior of multi-material layered systems under high-velocity impact loads, such as impact and blast scenarios, has gained significant attention from researchers over the past years due to its extensive applications in the automobile and aerospace industries, and ballistic armor and blast resilient structures. The focus is being shifted to multi-material systems over monolithic systems due to their superior characteristics in stress attenuation and energy absorption, and high preference for lightweight structures.

In this research, an attempt has been made to investigate the impact-induced stress wave propagation through a multi-metallic layered system that is subjected to high-velocity impact loads. This study consists of two major components. 1) Elastic wave propagation and 2) Shock wave propagation. For the elastic wave propagation, four different test cases including a steel monolithic target, steel-titanium and steel-aluminium bi-metallic targets, and a steel-titanium-aluminium tri-metallic target, were considered. They were subjected to a low-velocity (180 ms⁻¹) impact where only elastic waves are anticipated to be generated in the target. For shock wave propagation, only a steel monolithic target was considered which was subjected to an impact velocity of 350 ms⁻¹. For both cases, numerical and analytical frameworks were developed to simulate the material response. The LS-DYNA finite element package was used to develop two-dimensional axisymmetric numerical models, and it was validated against the existing experimental results obtained from a single-stage gas gun test which were in good agreement.

The analytical models which were the main focus of the present research were implemented in MATLAB which monitors and resolves the interaction of each propagation wave and then provides the overall response of the flyer-target system. The analytical model was validated against the results obtained from the validated numerical models considering stress-time histories.

The outputs acquired from the analytical model for elastic wave propagation agree with that of the numerical model with reasonable accuracy. However, the developed analytical model for shock wave propagation gives reasonable results only up to the separation of the flyer and multi-material target where a significant variation can be identified between results after the separation. The developed models can be used to find the most optimum configuration in terms of stress attenuation for a given set of metallic materials which reduces the time and cost associated with high-velocity impact tests. Also, they can be used to find the required bonding strength to avoid debonding at material interfaces that cannot be obtained from experiments.

Keywords: elastic waves, shock waves, multi-metallic, numerical modeling, wave interaction, analytical modeling

Table of Contents

Ľ	Declaration of the Candidate and Supervisor	iii
A	Acknowledgments	iv
A	bstract	v
Т	Cable of Contents	vii
L	ist of Tables	viii
L	ist of Figures	ix
L	ist of Abbreviations	X
L	ist of Symbols	xi
1	INTRODUCTION	1
1.1	Overview	1
1.2	Importance of having a realistic analytical and/ or numerical model	2
1.3	Problem Statement	3
1.4	Scope of the Study	4
1.5	Aim and Objectives	4
1.6	Methodology	4
1.7	Chapter Organisation	5
2	LITERATURE REVIEW	6
2.1	Protective mechanisms against impact loads – State of the Art	6
2.2	Numerical Modelling Approaches	8
2.3	Analytical Modelling Approaches	12
2.4	Research Gaps	17
3	NUMERICAL MODELLING OF MULTI-METALLIC LAYERED TARGETS	19
3.1	Material Properties	20
3.1	.1 JOHNSON-COOK Constitutive Material Model	21
3.1	.2 Equation of States (EOS)	23
3.2	Development of 2D Axisymmetric Models	24
3.3	Enforcement of Boundary Conditions	25
3.4	Contact of Material Interfaces	25
3.5	Mesh Sensitivity Analysis	26
4	DEVELOPMENT OF THE ANALYTICAL MODEL	28
4.1	Material Response for Extreme Loads	28

4.2	Governing Equations
4.2.1	Elastic Wave Propagation
4.2.2	Shock Wave Propagation
4.3	Plain Stress Wave Interaction
4.3.1	Elastic Wave Interaction
4.3.2	Shock Wave Interaction
4.4	Modified P-V Hugoniot Curve for Shock Wave Propagation
4.5	Development of the Algorithm
5	RESULTS AND DISCUSSION
5.1	Numerical Model Validation
5.1.1	Experimental results
5.1.2	Validation of Numerical Model for Elastic Wave Propagation
5.1.3	Validation of Numerical Model for Shock Wave Propagation
5.2	Analytical Model Validation
5.2.1	Analytical Model for Elastic Wave Propagation45
5.2.2	Analytical Model for Shock Wave Propagation51
6	CONCLUSION
6.1	Important Findings and Discussion
6.2	Recommendation for Future Works
7	REFERENCES
8	APPENDICES0
8.1 interacti	Appendix A: Developed MATLAB code to identify the wave-material interface and wave-wave ion (Elastic wave propagation – Monolithic Steel (S) test case)
8.2 surface	Appendix B: Developed MATLAB code to solve the elastic wave – material interface/ free interaction (Elastic wave propagation – Monolithic Steel (S) test case)
8.3 wave pr	Appendix C: Developed MATLAB code to solve the elastic wave – wave interaction (Elastic ropagation – Monolithic Steel (S) test case)
8.4 (Shock	Appendix D: Developed MATLAB code to solve the shock wave – material interface interaction wave propagation – Monolithic Steel (S) test case)

List of Tables

Table 3.1 Test configuration for elastic wave propagation	19
Table 3.2 Test configuration for shock wave propagation	20
Table 3.3 Johnson-Cook material model parameters	22
Table 3.4 Gruneisen EOS parameters	23
Tuore of a Granerson Loo Parameters	-5

List of Figures

Figure 2.1 Schematic of honeycomb sandwich panel [26]	10
Figure 2.2 SPH-FEM model of composite target plates and hemispherical-nosed projectile [28].	11
Figure 2.3 Smooth and structured wave pulses [31]	13
Figure 2.4 Idealized piecewise affine stress-strain curve [7]	15
Figure 2.5 Distance-time plot for stress wave propagation through the layered material system [1] 16
Figure 3.1 2D axisymmetric FEM model	24
Figure 3.2 (a) 3D case (b) 2D axisymmetric model	25
Figure 3.3 Selected elements for mesh sensitivity analysis	26
Figure 3.4 Mesh sensitivity analysis	27
Figure 4.1 Intersection of right-going and left-going wave Hugoniots	31
Figure 4.2 Resultant particle velocity of a reflected wave at the free surface	31
Figure 4.3 Elastic wave interaction with an interface	32
Figure 4.4 Elastic wave interaction with another elastic wave	32
Figure 4.5 Graphical representation of the simplified shock wave propagation equation	33
Figure 4.6 P-V Hugoniots for Right-going and left-going shock waves in materials with negligib	le 34
Figure 4.7 P-V Hugoniot for a material with negligible strength (curve B) and a material with	54
strength (curve A)	35
Figure 4.8 Modified P-V Hugoniot Curve for Shock Wave Propagation	35
Figure 4.9 Modified P-V Hugoniot curve for right-going shock wave	36
Figure 4.10 Modified P-V Hugoniot curve for left-going shock wave	37
Figure 4.11 Summary of the developed algorithm	39
Figure 5.1 Single-stage gas gun	40
Figure 5.2 (a) Metallic flyer (b) Multi-metallic target	40
Figure 5.3 Free surface velocity histories comparison for SA	41
Figure 5.4 Free surface velocity histories comparison for STA	41
Figure 5.5 Free surface velocity histories comparison for SA without constraints on X direction.	43
rigure 5.6 rice surface versery instances comparison for 5 rr without constraints on r another	43
Figure 5.7 Free surface velocity histories comparison for steel monolithic target	44
Figure 5.8 Selected element at the centre of the last material (a) S (b) ST (c) SA (d) STA	45
Figure 5.9 Stress vs time variation for monolithic steel (S) test case	46
Figure 5.10 Stress vs time variation for bi-metallic steel-aluminium (SA) test case	46
Figure 5.11 Stress vs time variation for bi-metallic steel-titanium (ST) test case	47
Figure 5.12 Stress vs time variation for tri-metallic steel-titanium-aluminium (STA) test case	48
Figure 5.13 Stress wave structures (a) numerical model (b) analytical model	48
Figure 5.14 Comparison of Energy dissipation output between analytical and numerical models.	49
Figure 5.15 Generation of shock waves due to elastic wave-wave interaction	50
Figure 5.16 Stress vs time variation	51
Figure 5.17 Graphical representation of the separation of flyer and target	52

List of Abbreviations

Abbreviation	Description
EOS	Equation Of State
HEL	Hugoniot Elastic Limit
FEM	Finite Element Modeling
SPH	Smooth Particle Hydrodynamics
PDV	Photonic Doppler Velocimetry
CFRP	Carbon Fibre Reinforced Polymer

List of Symbols

Symbol	Description
$\sigma_{ m H}$	Hydrostatic stress
$\sigma_{11}, \sigma_{22}, \sigma_{33}$	Principal stresses
$\sigma_{12}, \sigma_{21}, \sigma_{13}, \sigma_{31}, \sigma_{23}, \sigma_{32}$	Inplane shear stresses
А	Yield stress
В	Strain hardening constant
n	Strain hardening coefficient
C*	Strengthening coefficient of strain rate
m	Thermal softening coefficient
Т	Temperature in Kelvin degrees
σ	Stress
ε	Strain
CB	Bulk sound speed
S1	Hugoniot slope coefficient
S2, S3	Higher order Hugoniot slope coefficients
υ	Poisson's ratio
Yd	Dynamic yield strength
ρ	Mass density
V	Particle velocity
U	Shock velocity
e	Specific internal energy
E	Young's modulus
С	Elastic wave velocity