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  Abstract 

The behavior of multi-material layered systems under high-velocity impact loads, 

such as impact and blast scenarios, has gained significant attention from researchers 

over the past years due to its extensive applications in the automobile and aerospace 

industries, and ballistic armor and blast resilient structures. The focus is being 

shifted to multi-material systems over monolithic systems due to their superior 

characteristics in stress attenuation and energy absorption, and high preference for 

lightweight structures. 

In this research, an attempt has been made to investigate the impact-induced stress 

wave propagation through a multi-metallic layered system that is subjected to high-

velocity impact loads. This study consists of two major components. 1) Elastic wave 

propagation and 2) Shock wave propagation. For the elastic wave propagation, four 

different test cases including a steel monolithic target, steel-titanium and steel-

aluminium bi-metallic targets, and a steel-titanium-aluminium tri-metallic target, 

were considered. They were subjected to a low-velocity (180 ms-1) impact where 

only elastic waves are anticipated to be generated in the target. For shock wave 

propagation, only a steel monolithic target was considered which was subjected to 

an impact velocity of 350 ms-1. For both cases, numerical and analytical frameworks 

were developed to simulate the material response. The LS-DYNA finite element 

package was used to develop two-dimensional axisymmetric numerical models, and 

it was validated against the existing experimental results obtained from a single-

stage gas gun test which were in good agreement. 

The analytical models which were the main focus of the present research were 

implemented in MATLAB which monitors and resolves the interaction of each 

propagation wave and then provides the overall response of the flyer-target system. 

The analytical model was validated against the results obtained from the validated 

numerical models considering stress-time histories.  

The outputs acquired from the analytical model for elastic wave propagation agree 

with that of the numerical model with reasonable accuracy. However, the developed 

analytical model for shock wave propagation gives reasonable results only up to the 

separation of the flyer and multi-material target where a significant variation can be 

identified between results after the separation. The developed models can be used to 
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find the most optimum configuration in terms of stress attenuation for a given set of 

metallic materials which reduces the time and cost associated with high-velocity 

impact tests. Also, they can be used to find the required bonding strength to avoid 

debonding at material interfaces that cannot be obtained from experiments. 

Keywords: elastic waves, shock waves, multi-metallic, numerical modeling, wave 

interaction, analytical modeling 
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1 INTRODUCTION 

1.1 Overview 

Due to the immense usage of multi-material systems in the automobile and 

aerospace industries, and ballistic armor and blast resilient structures, researchers 

are struggling to develop more effective and optimized systems to mitigate the 

adverse effects of intentional and accidental extreme loads [1]. Also, enhancing the 

safeguarding of existing and future infrastructures, especially in military-related 

structures has become a major concern for the modern structural engineer as those 

structures are usually subjected to impact and explosive loads generated due to 

vehicle and/or aircraft crashes, bombing, and accidental and intentional explosions 

[2]. 

Multi-material systems have been found more efficient over monolithic targets due 

to their inherent characteristics such as enhanced stress attenuation and robustness, 

and weight reduction. As a result, distinct multi-material forms ranging from non-

metallic materials to metallic alloys including foams, polymers, and ceramics have 

been taken into account in previous studies. A careful arrangement of various 

materials has been employed to achieve the desired properties in functionally graded 

multi-material systems [3]. 

Broadly stress waves can be divided into two categories: elastic waves and shock 

waves. When a stress wave's magnitude is greater than the material's HEL (Hugoniot 

Elastic Limit) value, there would be a shock wave along with a foregoing elastic 

wave. Otherwise, there would be only an elastic wave. Usually, when the developed 

strain rates are in the region 102 - 104/s, high-pressure dynamic loads are generated 

inside the material, causing elastic wave propagation through metallic materials. 

When it exceeds 104/s, there will be shock waves [4]. 

The conventional stress-strain curve which is for static loads does not represent the 

relationship between stress and strain at high strain rates. The associated material 

properties with those conventional curves such as elastic modulus, yield strength, 

ultimate strength, and elongation are inappropriate to characterize the dynamic 

behavior of materials [5]. Therefore, representative stress-strain curves have been 

developed to simulate the behavior of materials during high strain rates considering 
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that there are no lateral strains and deformation is limited to one dimension. 

A uniaxial strain state arises during high strain rate phenomena where the material 

is not given enough time to deform laterally. Later on, stresses will diminish and a 

state that is close to uniaxial stress may arise as relief waves from the lateral surfaces 

arrive and lateral deformations start to occur [5]. 

Numerous studies have been conducted on stress wave propagation in multi-material 

systems for decades which resulted in advanced numerical models and analytical 

frameworks that are capable of simulating the complex behavior of multi-metallic 

systems under high-velocity impact loads. However, those developed models consist 

of some drawbacks which limit their applicability in real-world applications. 

The present study consists of two major components. 1) Elastic wave propagation 

and 2) Shock wave propagation. Numerical models and analytical models were 

developed for both cases separately. 

1.2 Importance of having a realistic analytical and/ or numerical model 

Exploring the behavior of multi-metallic targets under extreme loads by only 

conducting trial and error physical tests consists of some major drawbacks such as 

associated cost and time. 

Further, to characterize the deficiencies involved with multi-metal targets such as 

debonding at interfaces and spalling failures, it would be beneficial to have an 

alternative method other than physical testing because of the extremely fast nature 

of the impact. 

Also, the required bonding strength to avoid any debonding at the interfaces is one 

of the crucial outputs of this study. However, it is almost impossible to get it through 

a physical test and can be only obtained by an analytical or numerical model. 

The effectiveness of multi-material systems in attenuating stress waves varies with 

the arrangement of materials and to identify the most effective order for a given set 

of materials, the same test should be repeated for each test case that is not 

economically feasible. So, it is necessary to have a realistic analytical or numerical 

model to simulate the complex behavior of metallic targets at high strain rates. 
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1.3 Problem Statement 

Even though several analytical and numerical models have been developed to 

simulate the propagation of stress waves within a multi-material system in previous 

studies, they are only applicable to some specified cases (not generalized models). 

Most of the analytical models are based on assumptions that are far away from the 

real applications and therefore they are only applicable to specified hypothetical 

cases. 

Chen and Chandra [6] developed an analytical solution to study wave propagation 

with high amplitudes within layered heterogeneous material systems, which is 

restricted only to periodic laminates and, semi-infinite impactors and targets. 

Composite materials have been idealized to periodical laminates due to the 

difficulties met in characterizing engineering composites. Also, in some research, 

homogenization techniques have been incorporated to simplify the analysis of shock 

wave propagation. Vinamra and Bhattacharya [7] idealized that the materials are 

elastically homogenous (same yield strength, Young’s modulus, and density) and 

only heterogenous for shock waves. In that model, transmission as well as reflection 

of elastic waves at material interfaces are not accounted which is not realistic. 

Gazons et al. [8] derived the exact solutions for the stress and velocity time histories 

of plate impact tests. However, it is applicable only for Goupillaud type (each layer 

consists of equal wave travel time) multi-material targets. Also, in some already 

developed models, the separation of target materials and flyer is not allowed even 

though tensile stresses are generated at the interfaces. To study how a layered, 

heterogeneous system responds to a one-dimensional effect, Satyendra and Singh 

[1] developed a more realistic analytical model. This is a generalized model that can 

be used for finite non-periodic, non-Goupillaud flyer and target systems. However, 

the separation of target materials is not allowed which cannot be used to obtain the 

required bonding strength to avoid debonding, the time of separation, and the 

response of target materials after the separation. 

As discussed above, the existing analytical models do not work for arbitrary multi-

material systems and only work for some specified cases. Also, the existing 

numerical models are not efficient in terms of required computational power while 

some Lagrangian-based numerical models result in excessive mesh deformations 



4 

 

under extreme loads. So, the primary objective of this study is to come up with a 

realistic analytical and numerical model that is applicable to any given case. 

1.4 Scope of the Study 

The present work on multi-metallic targets is limited to the prediction of material 

response under high-velocity impacts where the impactor travels along the direction 

of the axis of the target (uniaxial). The developed models are not capable of 

predicting the material behavior under oblique impacts. Further, these studies are 

confined to flyers and target materials with the same diameter. Also, for the elastic 

wave propagation study, both monolithic and multi-metallic targets were considered 

while for the shock wave propagation study, only monolithic targets were 

considered. 

1.5 Aim and Objectives 

While the broad aim of this research is focused on developing a numerical model 

and an analytical model for predicting stress wave propagation through multi-

metallic systems under high-velocity impacts, the following specific objectives were 

addressed. 

• Identify the shortcomings and limitations of existing analytical and 

numerical models when applying to multi-metallic systems. 

• Develop realistic analytical and numerical models to simulate the elastic 

wave propagation and shock wave propagation through multi-metallic 

systems and validate the models using experimental results available in the 

literature. 

1.6 Methodology 

Initially, a thorough literature review was carried out on stress wave propagation 

theories, governing equations for stress wave interactions, constitutive material 

models to simulate the behavior of metals at high strain rates, and numerical 

modeling techniques. 

The limitations and shortcomings of the existing analytical and numerical models 

were identified. As the first step, a realistic analytical and numerical model was 
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developed to simulate the elastic wave propagation. By idealizing the 3D model into 

a 2D axisymmetric model, a computationally efficient numerical model was 

developed in the LS-DYNA finite element package. 

The developed numerical model was validated by comparing its output with the 

experimentally obtained free surface velocity profiles. Then an analytical model was 

implemented in MATLAB to track each wave propagation and solve the 

corresponding wave interactions. The analytical model was validated by comparing 

stress-time histories with the outputs obtained from the already validated numerical 

model. Eventually, the numerical and analytical models that were developed were 

extended to simulate shock wave propagation in multi-metallic systems. 

1.7 Chapter Organisation 

This research thesis consists of 6 Chapters. Following the present introductory 

Chapter, Chapter 2 begins with a literature review, explaining state of the art of 

protective mechanisms against impact loads, numerical modeling techniques, and 

analytical frameworks carried out in previous studies to simulate the response of 

multi-material systems under high-velocity impact loads. 

Chapter 3 describes the method followed to develop the 2D axisymmetric numerical 

model in LS-DYNA. Initially, it describes the incorporated constitutive material 

model along with the Equation of State (EOS). Following that, the idealization of 

the 3D model into a 2D axisymmetric model is present. Then, the imposed boundary 

conditions and keywords used to define the interaction between the flyer and the 

target are explained. Finally, to validate, the developed numerical models were 

compared against the experimentally obtained free surface history profiles for both 

elastic and shock waves is given. 

Chapter 4 includes a comprehensive study of the fundamental theories that govern 

the stress wave propagation in a material. Following that, the governing equations 

for both elastic and shock wave propagation have been derived. It concludes with 

the validation of the developed analytical models compared against the stress–time 

variations obtained from numerical models. Chapter 5 concludes the research thesis 

with important findings of the study and necessary recommendations for future 

works.
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2 LITERATURE REVIEW 

This chapter reviews the state of the art of protective mechanisms against impact 

loads and the latest literature on recent developments in analytical and numerical 

approaches to simulate high-velocity impact events and their limitations. 

2.1 Protective mechanisms against impact loads – State of the Art 

The safeguarding of civil and military-related structures was an area of major 

concern for structural engineers over the 20th century. The catastrophic failures of 

structures caused by the extreme loads such as impact and blast generated due to 

bombing, explosions, and aircraft crashes during World War I and II motivated the 

researchers to inspire more efficient protective mechanisms [9]. As a result, a variety 

of impact and blast-resistant mechanisms have been developed over the years. In the 

1970s, nuclear power plants became popular in developed countries as the most 

efficient energy generation method. However, with the growth of intentional 

terrorist attacks, the safety of containment vessels in nuclear power plants became a 

major concern due to their potential to explode [2]. Meantime, in the automotive and 

aerospace industries, engineers struggled to develop vehicles with advanced 

crashworthiness characteristics. Employing impact resistance mechanisms in 

vehicles was found to be more effective in those cases. Likewise, the interest of the 

researchers was shifted towards introducing innovative protective mechanisms 

against impact loads because of its immense usage in a variety of industries. 

The magnitude of the load generated during a high-velocity impact varies with the 

impactor characteristics such as size and shape, hardness or rigidity, and impact 

velocity and direction. Therefore, it has become more difficult to come up with 

efficient protective mechanisms for a given application [10]. In previous attempts, 

two major approaches to improve the structures' impact resistance can be identified. 

The former is to improve the impact resistance capacities of materials while the latter 

is to implement protective mechanisms against the impact loads ahead of the 

structures [11]. 

The ability of a material to absorb and dissipate energy during impact loads is known 

as impact resistance [12]. Multi-material layered systems were found to be more 

effective than monolithic systems in reducing the damage that occurred due to high-
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velocity impact loads. Therefore, a lot of studies have been conducted to examine 

the impact resistance of different kinds of multi-material systems made out of alloys, 

ceramics, foams, and polymers [3]. 

For example, Caminero et al. [13] conducted several studies to examine the 

resilience of carbon fiber-reinforced epoxy laminates to impact by incorporating 

low-velocity impact tests and Charpy impact tests. Experimental research was done 

on how laminate thickness and ply-stacking order affected the damage resistance of 

CFRP laminates under low-velocity impacts and concluded that thicker laminates 

absorb less energy compared to thinner laminates. Also, it was found that thicker 

laminates are more vulnerable to delamination due to their high bending stiffness. 

Also, due to their exceptional qualities such as toughness, high strength-to-weight 

ratio, and high energy dissipation capability, composite materials have been found 

as an effective medium to mitigate the effect of impact loads [12]. However, despite 

the aforementioned advantages, those composite materials have their inherent 

drawbacks too. The residual characteristics and structural integrity of composite 

materials can be dramatically reduced by the invisible damages that occur due to 

impact loads. Also, a slight misalignment between the layers of the composite could 

cause delamination, which would greatly diminish its mechanical characteristics and 

impact resistance [14]. 

Chanel et al. [15] studied the potential of elastomer coating in impact damage 

mitigation for existing infrastructures and found its capability in retrofitting concrete 

structures. Also, double-skin composite structures that consist of a concrete core in 

between two steel plates were considered as one of the most effective impact 

resistance mechanisms due to the steel plates’ tensile membrane resistance [16]. 

Rajendra [17] carried out several studies on auxetic-based structures as protective 

structures and found their superior protective performance due to high energy 

absorption capacity and lightness. Furthermore, functionally graded multi-material 

systems are also an area of interest due to their advantages such as enhancement of 

stress attenuation, robustness, and high preference for lightweight structures. 

For decades, the development of high-performance protective structures against 

impact loads was inspired by the specific mechanical characteristics of biological 
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structures. It has been found that bio-inspired structures exhibit a remarkable 

improvement in energy absorption capacity and stress attenuation over conventional 

monolithic structures [18]. In bio-inspired designs, some of the characteristics and 

functions of biological organisms are incorporated into novel materials, and 

structures to ensure the anticipated characteristics [19]. As an example, multi-

material 3D printed structures that surpass the impact-resistant capacities of 

monolithic materials have been inspired by the microarchitecture of seashell nacre 

[18]. 

In the past few years, researchers looked into the improved mechanical 

characteristics of nanoparticle-reinforced materials due to their distinctive 

properties. As an example, composites enhanced with Kevlar fabrics made out of 

high-modulus and high strength fibres have been found as a superior impact-

resistance material. Also, Kevlar composites are highly used for lightweight armor 

structures [20]. Abdel et al. [12] studied the effect on the impact resistance capacity 

of a newly designed woven Kevlar KM2Plus/epoxy resin laminated composites 

enhanced with nanoparticles and nanotubes. Drop-weight impact tests were 

conducted to assess the impact resistance of the laminated composite reinforced with 

three different nanofillers including silicon carbide, aluminium oxide, and multi-

walled carbon nanotubes. 

As mentioned above, lots of innovative protective mechanisms against impact loads 

have been developed over the recent decades to be employed in different kinds of 

applications. 

2.2 Numerical Modelling Approaches 

Due to the ability of powerful computational tools to adopt the necessary 

geometrical and material parameters and perform virtual simulations at a quick rate, 

numerical modeling techniques are frequently utilized instead of physical tests and 

analytical models. However, to capture the nonlinearities of the impact problems in 

these numerical models, a significant number of material parameters must be 

identified and usually, those parameters are found by conducting actual experiments. 

Over the years, several constitutive models have been developed to predict high-

velocity impacts [21]. The most commonly used constitutive model was created by 
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Johnson and Cook for materials that experience significant strains, rapid strain rates, 

and high temperatures. Also, two additional stress models to simulate the plastic 

deformation of ductile materials were created by Zerilli [22] and Steinberg [23]. The 

material constants associated with those constitutive models and failure models are 

mainly determined using split Hopkinson-bar methods and universal tensile tests 

[24]. 

Ramirez [25] carried out a numerical study to simulate the wave propagation and 

scattering in the Hopkinson bar test based on finite element analysis. The Hopkinson 

bar test is one of the standard techniques for examining the mechanical 

characteristics of materials at high strain rates. The wave scattering that occurs in 

the incident bar alters the form of the pulse and limits the precision of the results. 

So, to mitigate the effect of wave dispersion on the output, a finite element 

simulation was carried out using the LS-DYNA FEA package and found that a 

trapezoidal pulse along with a high rise time decreases the wave dispersion and it 

could be obtained by positioning a disk or pad that can deform between the impactor 

and incident bar. In the finite element simulation, pad material was modeled using 

the Johnson-Cook constitutive equation and carried out a parametric analysis 

varying the material of the pad, diameter, and length which resulted in optimum 

characteristics for the deformable pad. 

The utilization of sandwich structures against extreme loads has become popular due 

to their exceptional characteristics such as lightweightness and high energy 

absorption capacity compared to conventional materials. Guangyong et al. [26] did 

a combined experimental and numerical study to examine the dynamic behavior and 

failure processes of honeycomb sandwich panels that are impacted by a high-

velocity spherical steel bullet. The numerical model of the honeycomb sandwich 

panel is shown in Figure 2.1. 
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Figure 2.1 Schematic of honeycomb sandwich panel [26] 

A 3D finite element (FE) model was developed in ABAQUS/Explicit which consists 

of a sandwich panel, projectile, and adhesive layers whose outputs were in good 

agreement with experimental results. The Johnson-Cook material model was used 

to define the nonlinear behavior of metallic face sheets and honeycomb cores. The 

developed numerical model was used to determine the critical perforation energy 

and ballistic limit velocity of sandwich panels. 

Also, for the problems where conventional grid-based mesh approaches have 

difficulties due to the associated large distortions, a meshless Lagrangian numerical 

method has been developed by Gingold R. et al. [27]. This method has become a 

popular method for modeling impact-penetration issues in which large geometrical 

distortions occur. 

Recently, Wenlong Yang [28] developed a coupled smoothed particle hydrodynamic 

(SPH) – finite element modeling (FEM) method to predict the anti-penetration 

performance of multi-layer composite structures under high-speed hemispherical-

nosed projectiles as shown in Figure 2.2. 
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Figure 2.2 SPH-FEM model of composite target plates and hemispherical-nosed projectile 

[28] 

When the FEM technique is used to simulate the penetration with high deformation 

of heterogeneous composite structures, issues such as element distortion are more 

prone to happen. However, in the proposed model, the SPH approach calculates the 

large deformation and broken areas, resolving the issue of element distortion in 

FEM. The FEM is utilized in other areas to enhance the efficiency of calculations. 

The results were compared against the experimental outputs and indicated that the 

developed coupled SPH-FEM model successfully predicts the ballistic limit and 

deformation accurately. In addition, studies and discussions on the deformation of 

different configurations including single-layer, multi-layer, and sandwich target 

plates with a core layer were carried out using the developed model. The coupled 

SPH-FEM method was identified as an effective alternative to address the associated 

problems in FEM such as element distortion during heterogeneous material 

penetration modeling. 

A combined experimental and numerical study was done by Roy et al. [21] to predict 

the response of thick steel plates under hypervelocity projectile impact. The free 

surface velocity was measured experimentally using the Photonic Doppler 

Velocimetry (PDV) technique and those results were used to validate the numerical 

studies. Two different numerical approaches were developed incorporating the 

Johnson-Cook constitutive model and the MIE-Gruneisen equation of state: SPH 

and Eulerian-based hydrocode. Based on the area of physical damage and the 
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velocity histories of free surfaces, numerical simulations, and experimental results 

were compared which were found to be in good agreement. Therefore, the proposed 

numerical models were identified as a realistic alternative method for expensive 

experiments for projectile impact. 

Fernando et al. [29] developed a more computationally efficient one-directional 

wave propagation rod model to study the potential of an impedance-graded metallic 

composite system in protecting a concrete structure against high-velocity impacts. 

The effect of impedance reduction between metallic materials on stress wave 

attenuation was explored and concluded that the magnitude of the transmitted wave 

would be reduced in a greater amount with a large impedance decrease. 

Gio K et al. [30] investigated the mechanical behavior of aluminum foam sandwich 

plates under repeated impact loads by conducting both numerical and experimental 

studies. The foam core was modeled as solid elements while face sheets were as 

shell elements in ABAQUS. To define the contact between face sheets and the core, 

the numerical model shared the same nodes at the interface between them, and no 

specific contact was set. Due to the symmetry of the impact, the 3D model was 

simplified into 1/4 of the whole one. Also, to capture the large distortions in the 

impact zone, that area was refined into small finite elements compared to the rest of 

the area. To simulate the plastic crushable behavior of foam core, the Deshpande-

Fleck constitutive model is employed. 

Likewise, several attempts have been made to develop realistic numerical models to 

simulate the response of different materials under impact loads. 

2.3 Analytical Modelling Approaches 

Many studies have been carried out to develop realistic analytical models that are 

capable of simulating the behavior of different material systems under impact loads. 

Even though numerical models are found to be less complicated and easy to develop 

compared to analytical models, they also consist of some major drawbacks. For 

example, every FEA model has limited resolution even if the mesh is extremely fine. 

So, it might be an issue in this kind of study where stress waves have multiple 

interactions and reflections [7]. Also, numerical models are extremely expensive in 

terms of required computational power, compared to analytical models. Also, some 
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crucial outputs can be only obtained from analytical models and it is very difficult 

or almost impossible to obtain them from a numerical model. Therefore, several 

researchers carried out analytical studies to overcome the aforementioned 

disadvantages associated with numerical approaches. 

Shock wave interaction and propagation have been broadly examined by Davison 

[31]. Mathematical representations have been given for uniaxial nonlinear plane 

longitudinal shock wave propagation based on three fundamental theorems, the 

balance of mass, momentum, and energy. The shock was identified as a 

discontinuous transition between two states, and the state of the material behind the 

shock and ahead of the shock was characterized by nine variables including density, 

stress, strain, particle velocity, and shock wave propagating velocity. Davison 

considered a discontinuous structured shock instead of a smooth transition between 

two states that could be found in real materials as shown below. 

 

Figure 2.3 Smooth and structured wave pulses [31] 

The aforementioned three conservation theorems are applicable to any material and 

contain no details on the differing responses of particular materials. So, Hugoniot 

relationships are taken into account to differentiate the material response from one 

to another. The curve that contains the achievable states by a material during a stress 

transition is known as the Hugoniot curve. It depends on the material state before 

the stress wave transition and it contains the specific characteristics of the material 
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studied. Davison L. presented a detailed explanation of different Hugoniots such as 

stress-volume, stress-particle velocity, and linear wave velocity-particle velocity. 

Also, solutions for different kinds of plane-shock interactions have been given 

including wave-boundary, wave-wave, and wave-material interface interactions. All 

shock interactions are calculated assuming that the longitudinal stress and particle 

velocity are equal on both sides of the interaction plane.  

In several studies, homogenization techniques have been employed to simplify the 

shock response of multi-material systems. Agrawal V. et al [7] developed a solution 

for shock propagation through hypothetical material systems that were 

homogeneous to elastic waves but heterogeneous to shock waves. The yield strength, 

Young's modulus, and density are all the same for each material as shown in Fig 2.4. 

So, elastic waves pass through those material interfaces without any interaction 

However, because each material consists of different compressibility values, they 

are heterogeneous in terms of shock wave propagation. The typical stress-strain 

curve of realistic materials for extreme loads is described by an elastic linear region, 

followed by the Hugoniot limit, and then a convex increasing nonlinear response. In 

this study, this behavior was idealized into a piecewise affine curve as shown which 

made the problem simple for a detailed analysis. 

Usually, the linear shock velocity vs. particle velocity Hugoniot is considered along 

with the momentum balance equation to solve the shock wave propagation. 

However, in this study, instead of that typical approach, an empirical relationship 

between stress and strain has been incorporated with a kinetic relationship that 

connects the shock speed to the rate of dissipation at the shock front which was 

developed by Knowles [32]. 
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Figure 2.4 Idealized piecewise affine stress-strain curve [7] 

Also, the structure of the shock was neglected, and it was treated as a discontinuity. 

The separation at material interfaces was not allowed as they were perfectly bonded. 

All possible wave interactions that could happen in a finite heterogeneous medium 

were cataloged along with their associated Reimann problems. Based on those 

interactions, an analytical model was implemented in MATLAB to find the response 

of the idealized heterogeneous medium. The developed model was used to study 

how the number of interfaces and their stiffness values affect the overall shock 

propagation phenomenon of a multi-material layered system and concluded that the 

amount of energy dissipation increases with the number of interactions. Also, it was 

found that material with numerous layers with gradual stiffness variation is preferred 

for stress mitigation to one with a sharp change in stiffness. 

Satyendra P. et al. [1] developed a more generalized analytical model to predict the 

behavior of a layered medium with heterogeneous materials under one-dimensional 

impact loads by advancing the previously mentioned study. A multi-linear stress-

strain curve that approximates the nonlinear stress-strain response was employed. 

However, the incorporated materials are heterogeneous for both elastic and shock 

waves. To determine the medium's response, a program was implemented that 

monitors and resolves the interactions of each wave that is propagating in the flyer-

target system for three different cases: low velocity, intermediate velocity, and high-

velocity collisions. By carrying out a finite element analysis using the ABAQUS 
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FEA package for the same problem, the impact behavior acquired from the analytical 

code was verified and agreed well for all three cases. Also, the developed model is 

capable of producing a distance vs time graph for stress wave propagation within the 

system. It gives a comprehensive idea of the wave interactions occurring as shown 

below in Fig 2.5. 

 

Figure 2.5 Distance-time plot for stress wave propagation through the layered material system  

[1] 

Compared to the other analytical models in the literature, this model can be 

identified as a more generalized one as previous models are applicable only to 

periodic laminates and semi-infinite targets, and the separation of target and flyer is 

not allowed. However, even in this model, the separation of material plates is not 

allowed. Also, the idealization of the nonlinear stress-strain curve into a multi-linear 

stress-strain relation makes the developed model hypothetical. 

Based on Floquet’s theory of ordinary differential equations with periodic 

coefficients, an analytical approach was developed to address the one-dimensional 

wave propagation with high amplitudes in multilayer heterogeneous material 

systems [6]. The formulation of the problem was based on a typical plate impact 

experiment. The analytical model’s findings are well consistent with both 

experimental data and the results of a shock wave-based finite element code. 
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Uniaxial shock wave propagation and interaction between waves and interfaces have 

been extensively studied in the book by Cooper W [33]. It includes a detailed 

description of shock waves including Rankine-Hugoniot jump equations, Hugoniot 

planes, interactions of shock waves, and rarefaction waves. 

Likewise, several comprehensive analytical studies have been carried out to solve 

the problem of stress wave propagation in different kinds of material systems. In the 

majority of them, various assumptions have been made to simplify the problem and 

make it trackable analytically. In most of them, the nonlinear stress-strain curve was 

simplified into a multi-linear relationship. Also, no study has been done on higher 

dimension wave propagation and only one-dimensional wave propagation has been 

considered. Also, it is worth mentioning that, the calculation of the amount of energy 

dissipation during wave propagation and interaction is almost impossible using the 

balance equations mentioned above. And, no analytical approaches have been 

developed to address the oblique impacts. This means that the applicability of the 

developed analytical models is very limited compared to numerical models and they 

are valid only for some idealized cases which are far away from the real-world 

scenarios. 

2.4 Research Gaps 

After conducting the above literature review, the following research gaps were 

identified. In some analytical models developed in previous studies, the non-linear 

behavior of the stress-strain curve above the HEL value has been neglected. Instead 

of that, an idealized piecewise linear stress-strain relationship has been considered 

for the convenience of analysis. However, in this study, the non-linear stress-strain 

relationship during high strain rates was taken into account. 

Also, in most of the studies,  it is not allowed to separate layered materials at 

interfaces, even though tensile stresses are generated at material interfaces. So, that 

type of model cannot be used to calculate the required bonding strength to avoid 

debonding at material interfaces. So, in the current study, the bonding strength 

between layered materials was taken as zero which allows the separation of metallic 

plates under tensile stresses. 

Furthermore, in several studies, analytical models have been developed for infinite 
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or semi-infinite heterogeneous layered systems. In those models, the effect of free 

surfaces/ boundaries on overall stress wave propagation cannot be studied. They 

only facilitate the wave interactions at material interfaces. However, in real-world 

applications, infinite or semi-infinite systems cannot be found, and therefore, in this 

study, finite multi-layered systems were taken into account. 

Also, some 3D numerical models developed in previous studies are not 

computationally efficient. As well as Lagrangian-based FEM models result in 

excessive mesh deformations under extreme loads. Therefore, a computationally 

efficient 2D axisymmetric numerical model was developed considering the 

symmetry of the impact. 

Likewise, the current study was carried out to address these research gaps and come 

up with a more generalized analytical and numerical model.
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3 NUMERICAL MODELLING OF MULTI-METALLIC LAYERED 

TARGETS 

As mentioned earlier, this study consists of two major components. 1) Elastic wave 

propagation and 2) Shock wave propagation. For both components, the specific 

metallic plate configurations were selected to match the available experimental 

results. For elastic wave propagation, four different test cases were considered 

including steel (S) monolithic target, steel-titanium (ST) and steel-aluminium (SA) 

bi-metallic targets, and steel-titanium-aluminium (STA) tri-metallic target as shown 

in Table 3.1.  

Table 3.1 Test configuration for elastic wave propagation 

Test Case 1 2 3 4 

S ST SA STA 

Impactor Diameter 60 mm 60 mm 60 mm 60 mm 

Thickness 6 mm 6 mm 6 mm 6 mm 

Material Aluminium 2 Aluminium 2 Aluminium 2 Aluminium 2 

Target Diameter 60 mm 60 mm 60 mm 60 mm 

Total 

thickness 

6 mm 6 mm 6 mm 6 mm 

Material 1 Steel Steel Steel Steel 

Thickness 6 mm 3 mm 3 mm 2 mm 

Material 2 - Titanium Aluminium 1 Titanium 

Thickness - 3 mm 3 mm 2 mm 

Material 3 - - - Aluminium 1 

Thickness - - - 2 mm 
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A flyer velocity of 180 ms-1 was selected for elastic wave propagation to be 

consistent with the available experimental results. Two different types of Aluminium 

were used for the flyer (Aluminium 2) and the target (Aluminium 1). 

However, for shock wave propagation, only a steel monolithic test case was 

considered as shown in Table 3.2. A flyer velocity of 350 ms-1 was selected for shock 

wave propagation to be consistent with the available experimental results. 

Table 3.2 Test configuration for shock wave propagation 

 Diameter Thickness Material 

Impactor 60 mm 6 mm Steel 

Target 60 mm 6 mm Steel 

 

3.1 Material Properties 

In a non-rigid body, dilatation and distortion take place as stresses build. The total 

stress generated in a material during high-strain rates can be divided into two subsets 

for the convenience of analysis; (1) Hydrostatic stress which is also known as 

dilatational stress and (2) deviatoric stress. The uniform displacement of particles 

over a solid, toward or away from one another, is known as dilation due to 

hydrostatic stress and it is mainly responsible for volume change. In contrast, 

differential particle displacement occurs across the material as a result of distortion 

due to the deviatoric stress, and it is related to shape change [24]. Deviatoric stress 

is essential to take into account when the plastic behavior of a solid is concerned as 

deviatoric stress is the kind of stress component that is responsible for yielding. 

Hydrostatic stress can be simply denoted by the average of three principal stresses 

of any stress tensor (Eq. 3.1) where σ11,σ22, and σ33 are principal stresses, and it does 

not include any shear components. 

𝜎𝐻 =
𝜎11+𝜎22+𝜎33

3
      3.1 

After deducting the hydrostatic stress from the total stress tensor, the remaining 
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stress is known as the deviatoric stress as shown by Eq. 3.2. 

[

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

] − [

σH 0 0
0 σH 0
0 0 σH

] = [

σ11−σH σ12 σ13

σ21 σ22 − σH σ23

σ31 σ32 σ33 − σH

]       3.2 

When materials are subjected to extreme dynamic loads such as impacts and blasts, 

they are anticipated that they will undergo high strain rates generating both volume 

and shape changes. In this study, the MAT_JOHNSON_COOK constitutive material 

model and the GRUNEISEN Equation of State (EOS) were used to take into account 

the deviatoric and hydrostatic stresses respectively. 

3.1.1 JOHNSON-COOK Constitutive Material Model 

Under large deformations, high strain rates, and high temperatures, the Johnson-

Cook model can be utilized to characterize the relationships between stress and 

strain in metallic materials. Due to its simple form and the ease with which the 

material constants can be estimated, it is being widely used to simulate the behavior 

of materials in both research and industrial works [24]. The stress model can be 

expressed by Eq. 3.3. σ and ɛ refer to the equivalent stress and the equivalent plastic 

strain respectively where A, B, n, C*, and m are material constants and they refer to 

the yield stress of the material under reference conditions, the strain hardening 

constant, the strain hardening coefficient, the strengthening coefficient of strain rate, 

and the thermal softening coefficient respectively [23]. T is for temperature in 

Kelvin degrees. 

σ = (A + Bɛn)(1+C* lnɛ*)(1-T*m)    3.3 

The three main components of Eq. 3.3; (A + Bɛn), (1+C* lnɛ*), and (1-T*m) represent 

the strain hardening effect, the strain rate strengthening effect, and the temperature 

effect respectively that affect significantly the stress values [34]. In the model, ɛ* 

represents (Eq. 3.4) the dimensionless strain rate and T*m (Eq. 3.5) is the homologous 

temperature. 
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ɛ* = (Strain rate/ reference strain rate)   3.4 

T*m = 
(𝑇 − 𝑇𝑟𝑒𝑓)

(𝑇𝑚𝑒𝑙𝑡 − 𝑇𝑟𝑒𝑓)⁄     3.5 

Tmelt is the temperature at which melt occurs of that particular material considered 

and Tref can be selected according to the problem. However, the previously 

mentioned material models should be selected in accordance with the reference 

conditions. Numerous experiments have been carried out using Split Hopkinson-bar 

tests and universal tensile tests at elevated temperatures and strain rates to identify 

the Johnson-Cook material model parameters for various materials. In this study, 

material parameters for steel, titanium, and aluminium were extracted from previous 

experimental studies. 

Table 3.3 Johnson-Cook material model parameters 

Material 

Parameter 

Steel [35] Titanium [36] Aluminium 2 

[37] 

Aluminium 1 

[38] 

A (MPa) 1500 900 270 520 

B (MPa) 1965 510 154 477 

n 0.4 0.506 0.222 0.520 

C* 0.003 0.03 0.13 0.0025 

m 1 1 1.34 1.61 

Reference 

strain rate (/s) 

1 1 600 0.0005 

In this study, two different Aluminium types were incorporated; 6061-T6 

(Aluminium 2) and 7075-T651(Aluminium 1). Therefore, Johnson-Cook material 

model parameters vary from one to another. 
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3.1.2 Equation of States (EOS) 

An equation of state is a mathematical relationship that expresses how a physical 

system will behave in terms of its thermodynamic characteristics such as 

temperature, volume, and pressure. It is mainly used to describe the response of a 

material under different physical conditions. In this study, GRUNEISEN EOS was 

used to take into account the hydrostatic pressure with the parameters CB and S1 for 

bulk sound speed and linear Hugoniot slope coefficient respectively. S2 and S3 are 

higher-order coefficients of the Hugoniot that are used to obtain highly accurate 

predictions. However, in this study, a simplified linear relationship was used without 

considering higher-order coefficients. 

In the analysis of shock compression in several common solids within the pressure 

range of several hundred GPa, the Gruineisen equation of state is frequently used 

[31]. It relates the pressure and volume of a solid at a given temperature and is used 

to calculate the pressure in a solid that has been compressed by a shock [39]. 

Parameters of EOS are generally found through plate impact experiments at different 

flyer velocities. 

Table 3.4 Gruneisen EOS parameters 

Material 

Parameter 

Steel [35] Titanium [36] Aluminium 2 

[37] 

Aluminium 1 

[38] 

CB (m/s) 4569 5130 5240 5240 

S1 1.490 1.028 1.400 1.400 

S2 0 0 0 0 

S3 0 0 0 0 

Gruneisen 

parameter 

2.17 1.23 1.97 1.97 
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3.2 Development of 2D Axisymmetric Models 

To reduce the required computational power, the actual 3D case was idealized into 

a 2D axisymmetric model since the impact event is symmetric in terms of loads and 

geometry about the center line of the target plates. It facilitated to obtain a significant 

mesh refinement that ensured the accuracy of the captured stress variations. To 

ensure the idealized 2D model represents the actual 3D model, the flyer and target 

materials were modeled using the shell element SECTION_SHELL with the use of 

element formulation 14 [40]. It is an ‘axisymmetric solid–area weighted’ model and 

the global y-axis is taken as the axis of symmetry for axisymmetric element 

formulations in LS_DYNA by default. Even though it is a 2D model the effect of 

the transverse waves which get reflected at the perimeter and propagate back into 

the target can be simulated. The idealization is shown in Fig. 3.1. 

 

Figure 3.1 2D axisymmetric FEM model 

 

 

3D model 

Axis of symmetry 

2D axisymmetric 

models 

S - Monolithic target 

 

 

STA (Tri-metallic target) 

 

0.05 mm 

0.5 mm 

Flyer 

Flyer 

Flyer 

ST, SA - Bi-metallic target 
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3.3 Enforcement of Boundary Conditions 

Because of the exceptional speed of the impact, only the uniaxial state of strain 

behavior was expected along the Y-axis. Also, no inplane (about the Y axis) or out-

of-plane rotations (about the X or Z axes) can be expected due to the rigidity of 

metallic plates. Since the metallic target was kept within a steel ring during the 

experiment, the target was assumed to be radially fixed. So, the translation along the 

X axis was constrained. In that way, all the rotations, and translations along the X 

and Z axes were constrained. Even though the constraint on translation along the X-

axis might affect the stress generation along the X direction, only one-dimensional 

stress variation along the Y-axis is the topic of interest. 

 
Figure 3.2 (a) 3D case (b) 2D axisymmetric model 

The keyword ‘BOUNDARY_SPC_SET’ was used to define the boundary 

conditions.  

3.4 Contact of Material Interfaces 

In LS_DYNA, the keyword ‘CONTACT’ is used to define the interaction between 

disjoint parts. Based on the type of interaction, different kinds of contacts have been 

given for 3D contacts and 2D contacts. ‘CONTACT_2D’ is the general contact 

algorithm for 2D cases.  

Generally, the automatic contact options are employed when predetermination of 

contact that takes place is difficult or impossible. Automatic contacts are non-

oriented and they can identify penetration coming from either side of a shell element. 

Therefore, in this study, the ‘CONTACT 2D AUTOMATIC SURFACE TO 

 

(a) (b) 
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SURFACE’ contact card was employed to guarantee the transfer of stress between 

different parts in the multi-metallic targets including the flyer. 

Mainly there are two different contact types based on the process of checking slave 

nodes for penetration. 1) One-way treatment of contact and 2) Two-way treatment 

of contact. In the former, penetration through the master segments is checked for 

only the user-specified slave nodes. However, in the second one, the penetration is 

checked for both slave nodes and master nodes through the master segment and slave 

segment respectively. Therefore, the treatment is symmetric and the slave node and 

master node can be defined arbitrarily. The contact card ‘CONTACT 2D 

AUTOMATIC SURFACE TO SURFACE’ is a two-way treatment contact and 

therefore, in the current study, the metallic plates and flyer can be defined randomly 

for slave and master segments. 

3.5 Mesh Sensitivity Analysis 

A mesh sensitivity analysis was carried out to find the required mesh refinement to 

have the mesh size smaller than the wavelengths of the stress waves [40]. The steel-

titanium (ST) test case was considered and the initial incident stress, the reflected 

and transmitted stresses at the steel-titanium interface were considered as shown in 

Fig 3.3. The initial incident stress and reflected stress were measured at an element 

at the center of the steel plate while the transferred stress was measured at an element 

at the center of the titanium plate. 

 

Figure 3.3 Selected elements for mesh sensitivity analysis 

The initial mesh size of the finite elements in both flyer and target plates was 0.6 
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mm and gradually reduced up to 0.02 mm. Consequently, the number of elements in 

the entire flyer-target system increased from 1000 to 0.9 million. It was shown that 

the stress values become constant for mesh sizes smaller than 0.05 mm as shown in 

Fig. 3.4. Hence, for all the numerical models, a mesh size of 0.05 mm × 0.05 mm 

was used. Here the efficiency of a two-dimensional model in terms of required 

computational power is obvious since a three-dimensional model with this level of 

mesh refinement would consist of a large number of elements which leads to a high 

computational cost. To obtain a smooth variation in stress-time histories, the time 

interval between outputs was selected as 20 ns. 

 

Figure 3.4 Mesh sensitivity analysis 

As shown in Fig. 3.4, the stress values for the incident, transmitted, and reflected 

waves remain steady at a constant value of 2.1, 1.6, and 0.9 GPa respectively for 

mesh sizes smaller than 0.05 mm.
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4 DEVELOPMENT OF THE ANALYTICAL MODEL 

4.1 Material Response for Extreme Loads 

High-velocity impacts result in high pressures and strain rates in materials, which 

generate stress waves (elastic and/or shock waves). When a stress wave travels 

through a heterogeneous medium, it interacts with the boundaries and material 

interfaces, changing the state of the system [31]. In high-velocity impact events, 

materials operate in the hydrodynamic domain when the strain rate is equal to or 

higher than 104/s [41]. Materials that are in a hydrodynamic regime behave like 

compressible viscous fluids and cause stress waves to propagate through them. 

The type of stress waves propagating through a material during a high-velocity 

impact depends on the HEL of that material and the magnitude of the stress wave. 

The HEL is given by the Eq. 4.1 where Үd refers to the dynamic yield strength under 

uniaxial stress conditions, and v is Poisson’s ratio of the material. When the 

magnitude of a generated wave exceeds the material’s HEL value, there would be a 

shock wave along with a foregoing elastic wave. Otherwise, there would be only an 

elastic wave. 

HEL =  
1−𝑣

1−2𝑣
 Үd      4.1 

Simply, a stress wave can be identified as a moving surface where the displacement 

is continuous while other field variables such as mass density, particle velocity, 

stress, and strain are discontinuous. A stress wave splits the material in which it is 

traveling into two parts [31]. (1) Upstream material (2) Downstream material. The 

material’s upstream state can be described by the four variables S1 = (σ1, ɛ1, υ1, ρ1) 

while S0 = (σ0, ɛ0, υ0, ρ0) for downstream material. σ, ɛ, υ, ρ represent stress, strain, 

particle velocity, and density respectively. The description of the wave is complete 

once the shock velocity (U) is known. 

4.2 Governing Equations 

The mechanical behavior of a material under extreme loads is governed by the 

fundamental principles of energy conservation, mass conservation, and momentum 

conservation [31]. The mass, momentum, and energy balance equations yield the 

jump equations Eq. 4.2, Eq. 4.3, and Eq.4.4 respectively in the Lagrangian form that 
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relate the aforementioned field variables. In Eq. 4.4, ‘e’ is referred to specific 

internal energy and it can be denoted as the addition of strain energy per unit mass 

and kinetic energy per unit mass as shown in Eq. 4.5. 

      (ɛ1-  ɛ0)U + υ1 – υ0 = 0            4.2 

(σ 1-  σ 0) + ρU(υ1 – υ0) = 0      4.3 

ρ(e1 – e0) – 
1

2
(𝜎1 + 𝜎0 ) (

1

ρ0
 –

1

ρ1
 )  = 0    4.4 

e = ʃ ρ(ɛ + 
𝜐2

2
 )du       4.5 

Usually, the state ahead of a stress wave (S0) is known, and then there will be only 

five unknowns. The three jumping equations reduced it to two unknowns and the 

stimulus which produces the stress wave is usually defined by a boundary condition 

(one of the upstream variables). An additional equation is required to determine the 

remaining unknown field variable and that is where Hugoniot constitutive relations 

come into play. 

For simplicity, the problem is assumed as isothermal. Therefore, the temperature in 

the system remains constant and the thermal equilibrium is maintained because the 

system's heat transmission occurs so slowly. Hence, the energy balance equation 

(Eq. 4.4) does not need to be considered. Hence, the governing equations reduce to 

the jumping equations Eq. 4.2 and Eq. 4.3. However, due to this assumption, it does 

not allow to calculate the energy dissipation that occurred during wave propagation. 

This study mainly considered the stress and particle velocity variation over time 

under the given impact event. Therefore, Eq. 4.3 which describes the relation 

between stress and particle velocity was taken into account along with the shock and 

particle velocity Hugoniot. There is no specific information in the aforementioned 

three jump equations that characterizes the differing responses of the material 

considered. However, the Hugoniot contains the characteristics of the considered 

material and it varies with that specific material. Also, it depends on the initial state 

(S0). Eventually, the governing equations can be reduced to the Eq. 4.3 and Eq. 4.6 

where CB is referred to the material’s bulk wave speed and S is the linear Hugoniot 

slope coefficient. 
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U = CB + S(υ1 – υ0)      4.6 

 

4.2.1 Elastic Wave Propagation 

However, when it comes to elastic wave propagation, longitudinal wave velocity (U) 

is constant for a given material. So, the elastic wave propagation can be solved by 

using only Eq. 4.7 as shown. The longitudinal elastic wave propagation velocity is 

given by the fundamental Eq. 4.8 where E refers to Young’s modulus of the material. 

(σ 1-  σ 0) + ρC(υ1 – υ0) = 0     4.7 

    C = √𝐸 𝜌⁄           4.8 

 

4.2.2 Shock Wave Propagation 

When shock waves propagate through a material, the wave velocity also varies with 

the initial conditions. By substituting Eq. 4.6 into Eq. 4.3, the following governing 

equation, Eq. 4.9 that describes the shock wave propagation can be obtained. 

(σ 1-  σ 0) + ρC(υ1 – υ0) + ρS(υ1 – υ0)2 = 0    4.9 

 

4.3 Plain Stress Wave Interaction 

When a stress wave propagates through a multi-material system, there might be three 

different types of interactions; (1) wave-interface, (2) wave-free surface, and (3) 

wave-wave interaction. An interaction at a free surface generates only a reflected 

wave while wave-wave or wave-interface interactions generate both transmitted and 

reflected waves. The foundational concept of calculation of all stress wave 

interactions is that the stress and particle velocity components are the same on both 

sides of the plane of interaction which is known as compatibility. Therefore, the 

equilibrium state at the plane of interaction can be determined by obtaining the 

intersection of the corresponding stress vs. particle velocity Hugoniots as shown 

below. 
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Figure 4.1 Intersection of right-going and left-going wave Hugoniots 

When a stress wave interacts with a boundary/ free surface, the reflected wave takes 

the material into a stress-free state. The resultant particle velocity at the free surface 

depends on both the particle velocity of the free surface before the interaction and 

the particle velocity of the interacted wave as shown below. 

 

Figure 4.2 Resultant particle velocity of a reflected wave at the free surface 

4.3.1 Elastic Wave Interaction 

The interaction of elastic waves can be easily solved analytically as the wave 

velocity does not vary with the stress magnitude. This section describes the 

associated Reimann problems for elastic wave interaction with an interface formed 

by two different materials and elastic wave interaction with another elastic wave as 
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shown in Fig 4.3 and Fig. 4.4 respectively. 

 

Figure 4.3 Elastic wave interaction with an interface 

(σ3-  σ1) + ρBCB(υ3 – υ1) = 0   4.10 

(σ3-  σ2) – ρACA(υ3 – υ2) = 0   4.11 

 

 

Figure 4.4 Elastic wave interaction with another elastic wave 

(σ3-  σ1) + ρACA(υ3 – υ1) = 0   4.12 

(σ3-  σ2) – ρACA(υ3 – υ2) = 0   4.13 

As shown in Fig. 4.3 and Fig. 4.4, equilibrium stress states are denoted by 1,2 and 3 

after propagating corresponding stress waves. By compatibility, both materials are 

in the same stress state with the same particle velocity at the plane of interactions. 

σ3 and υ3 are variables in the set of equations. As shown in Fig. 4.3, the forward 
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elastic wave changes the equilibrium state of material B from state 1 to state 3 and 

is represented by Eq. 4.10. The backward elastic wave takes the equilibrium state of 

material A from state 2 to 3 and is represented by Eq. 4.11. It is worth mentioning 

that, since wave-wave interaction occurs inside a material, ‘ρ’ and ‘C’ should be the 

same for both equations for a wave-wave interaction. In this notation, compressive 

stresses and right-going wave speeds are considered positive. 

4.3.2 Shock Wave Interaction 

Compared to elastic wave analysis, shock wave analysis is slightly more challenging 

as the wave velocity varies with the stress generated. Therefore, as mentioned 

earlier, an empirical equation of wave velocity vs. particle velocity (Hugoniot) 

should be combined with the equation obtained from the momentum conservation. 

Eq. 4.9 which describes the shock wave propagation can be simplified further to Eq. 

4.14 if the particle velocity (υa) corresponding to zero stress is known. 

 

Figure 4.5 Graphical representation of the simplified shock wave propagation equation 

σ1  = ρC(υ1 – υa) + ρS(υ1 – υa)2   4.14 

So, by the compatibility, it is known that both pressure and particle velocity will be 

the same at the interaction plane if the two materials remain in touch after the 

interaction. So, the solution can be found simply by setting to be equal the Hugoniots 
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of right-going (Eq. 4.15) and left-going (Eq. 4.16) waves as shown where υa and υb 

are the particle velocities of right-going and left-going Hugoniots corresponding to 

zero stress. 

σ1  = ρACA(υ1 – υa) + ρASA(υ1 – υa)2    4.15 

σ1  = ρBCB (υb – υ1) + ρBSB(υb – υ1)2   4.16 

 

Figure 4.6 P-V Hugoniots for Right-going and left-going shock waves in materials with 

negligible strength 

However, the aforementioned equations have been developed for a material with 

negligible strength. In these materials, the stress is equivalent to only the 

hydrodynamic pressure where deviatoric pressure is not taken into account. 

However, real materials consist of their inherent strength. Therefore, beyond the 

HEL, the actual pressure vs. particle velocity Hugoniot (Curve A) should lie 2/3 Y 

above the hydrodynamic curve (Curve B), which describes the response of a material 

with negligible strength [42] as shown in Figure 4.7. 
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Figure 4.7 P-V Hugoniot for a material with negligible strength (curve B) and a material with 

strength (curve A) 

Accordingly, the governing equations for shock wave propagation can be modified 

as shown below. 

σright-going  = ρACA(υ1 – υa) + ρASA(υ1 – υa)2 + 
2

3
𝑌1  4.17 

σleft-going  = ρBCB(υb – υ1) + ρBSB(υb – υ1)2 +  
2

3
𝑌2  4.18 

4.4 Modified P-V Hugoniot Curve for Shock Wave Propagation 

 

Figure 4.8 Modified P-V Hugoniot Curve for Shock Wave Propagation 
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The region below the HEL (region 1), which is known as the Elastic region can be 

simply defined by Eq. 4.19. 

σ1 = ρC(υ1 – υ0)     4.19 

However, region 2 in the stress-strain curve cannot be represented by the previously 

mentioned Eq. 4.17 which is for shock wave propagation and is only valid for region 

3. Therefore, an alternative quadratic function that represents region 2 should be 

developed. However, there are only two known points (P and Q). Therefore, only a 

linear function can be derived instead of a quadratic function. 

By following the above procedure, the governing equations for all three regions were 

derived for both right-going and left-going stress vs. particle velocity Hugoniots. Eq. 

4.20, Eq. 4.21, and Eq.4.22 represent regions 1,2, and 3 of the right-propagating 

wave respectively in steel. 

 

Figure 4.9 Modified P-V Hugoniot curve for right-going shock wave 

σ1  = 0.041(υ1 – υa) GPa      4.20 

σ1  = 0.084(υ1 – υa) – 2.8644 GPa     4.21 

                           σ1 = 0.036(υ1 – υa) + 1.1697× 10-5 ×(υ1 – υa)2+ 0.93 GPa     4.22 

Eq. 4. 23, Eq.4. 24, and Eq.4. 25 represent regions 1,2 and 3 of the left-propagating 

wave respectively in steel. 
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Figure 4.10 Modified P-V Hugoniot curve for left-going shock wave 

σ1  = -0.041(υ1 – υa) GPa     4.23 

σ1  = -0.084(υ1 – υa) – 2.8644 GPa    4.24 

σ1 = -0.036(υ1 – υa) + 1.1697× 10-5 ×(υ1 – υa)2+ 0.93 GPa 4.25 

 

4.5 Development of the Algorithm 

The developed algorithms for elastic wave propagation and shock wave propagation 

are almost similar and only the wave interaction solving approach varies from one 

to another. 

The developed algorithm tracks each wave and stores the corresponding stress, 

particle velocity, the material wherein the wave is traveling, wave propagating 

velocity and direction, and the starting and ending points of each wave. Then the 

program identifies the possible wave-wave, wave-interface, and wave-boundary 

interactions and chooses the interaction that occurs at the earliest time. Then the 

algorithm solves the selected interaction and adds newly generated waves to the 

system while removing the interacted waves. After each interaction, the state 

parameters are updated. Likewise, the algorithm repeats until all the possible 

interactions are solved or until the given number of loops are completed. 
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When a tensile stress is generated at an interface due to a wave-interface interaction, 

two materials get separated as the bonding stress of the interface is zero which results 

in two additional free surfaces in the system. Then, the main algorithm is not valid 

anymore. To address this specific scenario, several sub-algorithms were developed 

in each test case. When the program identifies a separation at an interface, it 

automatically terminates the main algorithm and executes the corresponding sub-

algorithm. For example, 7 different algorithms (main algorithm and 6 sub-

algorithms) were developed for the tri-metallic steel-titanium-aluminium test case 

as there are totally 3 different material interfaces. 

The summary of the developed algorithms for both elastic and shock wave 

propagation is described in the following flowchart. Only the ‘Solving Interactions’ 

step varies from one to another. 
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Figure 4.11 Summary of the developed algorithm
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5 RESULTS AND DISCUSSION 

The outcomes from the numerical and analytical models for both elastic and shock 

wave propagation are presented and discussed in the following sub-sections. 

5.1 Numerical Model Validation 

As it was mentioned earlier, the study consists of two major components. 1) Elastic 

wave propagation and 2) Shock wave propagation. The method followed to develop 

the numerical models for both components was the same and only the flyer velocities 

varied (180 ms-1 and 350 ms-1 for elastic and shock wave studies respectively). In 

both cases, the free surface velocity history profiles of the last material of the target 

obtained from the numerical models were compared with available experimental 

results. 

5.1.1 Experimental results 

The experimental results for elastic wave propagation were extracted from a 

previously done study [40] using a single-stage gas gun test. During the tests, a 

VMS-2000B Velocimeter was used to measure the flyer velocity, and a PDV to 

record the velocity history profiles at the target's back-free surface. 

 

Figure 5.1 Single-stage gas gun 

 

Figure 5.2 (a) Metallic flyer (b) Multi-metallic target 
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The experimental results for shock wave propagation were also extracted by a 

similar study [43]. The metallic target was kept inside a steel ring which can be 

considered as a radially fixed condition. The flyer was also fixed to a sabot. 

5.1.2 Validation of Numerical Model for Elastic Wave Propagation 

The free surface velocity history profiles of the last material of the target obtained 

from the numerical models were compared with the aforementioned experimental 

results. Bi-metallic steel-aluminium (SA) and tri-metallic steel-titanium-aluminium 

(STA) test cases were considered for the validation process. 

Figure 5.3 Free surface velocity histories comparison for SA

 

Figure 5.4 Free surface velocity histories comparison for STA 
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It can be identified that the results obtained from the numerical models are well 

consistent with the experimental results. However, some minor variations in stress 

magnitudes and corresponding time can be identified. Also, the tri-metallic steel-

titanium-aluminium (STA) test case consists of more oscillations compared to the 

bi-metallic (SA) one because of its less thickness. 

Even though an initial flyer velocity of 180 ms-1 was selected for the elastic wave 

propagation test cases, in the experiment, the velocities of the aluminium flyer just 

before the impact were slightly varied. It has been mentioned a velocity of 173 ms-1 

for the SA bi-metallic test case and 171 ms-1 for the STA tri-metallic test case. So, 

those flyer velocities were incorporated into the numerical models to purely match 

the experiments. 

When the stress magnitudes corresponding to peaks were compared, it was identified 

that the experimental results exceeded the numerical results by 5-7% for the steel-

aluminium (SA) bi-metallic test case. However, in the steel-titanium-aluminium 

(STA) tri-metallic test case the difference between stress magnitudes corresponding 

to peaks has been reduced up to 3-5%. Also, the numerical model shows a smooth 

variation while the experiment results show an arbitrary variation. This could be 

mainly due to the effect of the steel ring in which the target was kept. Even though 

the perimeter of the target was assumed to be a free surface, it was in touch with the 

ring which affected the transmission and reflection of waves. Also, the variation of 

material properties throughout the metallic plates could be attributed to these 

variations. Even though, these materials are expected to be homogeneous, in the real 

scenario they consist of some heterogeneity. 

Another significant reason for the mismatch in stress values would be the wave 

propagation velocity values used in the numerical models. The wave speeds used in 

the numerical models (in GRUNEISEN_EOS) were extracted from the previous 

studies. However, the materials used in the experiments might have different wave 

speeds. Therefore, minor variations in both stress magnitude and corresponding time 

can be identified. However, since only minor deviations were identified, the 

developed numerical model simulates the elastic wave propagation within multi-

metallic systems to an acceptable level. 
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In the experiment, the metallic plates were kept in a metallic ring as shown in Fig. 

5.2 (b). The connection between the target and the ring is neither fully fixed nor free. 

Therefore, another numerical model was developed allowing translations along the 

X direction which resulted in following free surface velocity history profiles. 

 

Figure 5.5 Free surface velocity histories comparison for SA without constraints on X 

direction 

 
Figure 5.6 Free surface velocity histories comparison for STA without constraints on X 

direction 

It can be identified that the previous model (with translational constraints along the 
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X direction) is more consistent with the experimental results compared to the latter 

one (without translational constraints along the X direction) in terms of variation 

pattern and peak velocity magnitudes. Therefore, from here onwards, the model with 

translational constraints was used to validate the analytical models. 

 

5.1.3 Validation of Numerical Model for Shock Wave Propagation 

For shock wave propagation, only the steel-steel monolithic test case was considered 

and the same procedure was followed to validate the numerical model. 

 

Figure 5.7 Free surface velocity histories comparison for steel monolithic target 

It can be identified that the mismatch between the two curves increases with time. 

The numerical results exceeded the experimental results by 4.38% at the beginning 

and 17.44% at the end. 

The particle velocity that occured due to the initial elastic wave is denoted by point 

(1) and its magnitude is equal to two times the particle velocity at which the 

Hugoniot Elastic Limit (HEL) is reached. The plateau (2) corresponds to the particle 

velocity of the right-going shock wave, which is generated after the wave-wave 

interaction between the initial shock wave and the reflected elastic wave at the free 

surface. The left-going shock wave interacts with the flyer-target interface and 

generates a tensile stress which causes the separation. The plateau (3) occurs after 

the separation of the flyer and target. After the separation, both faces of the steel 
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target become free surfaces. The plateau (3) and (4) also correspond to the particle 

velocities corresponding to the right-going stress wave generated after the wave-

wave interaction between the two remaining waves in the steel target. Due to the 

dissipation of energy occurring during the wave propagation, wave-wave, and wave-

free surface interaction, the free surface velocity decreases over time. 

5.2 Analytical Model Validation 

5.2.1 Analytical Model for Elastic Wave Propagation 

The analytical model was validated by comparing the stress-time histories against 

the results obtained from the already validated numerical model. The stress vs. time 

variation of an element at the center of the last material was considered for each test 

case as shown in Fig. 5.6. 

 

 

 

 

Figure 5.8 Selected element at the center of the last material (a) S (b) ST (c) SA (d) STA 

 

5.2.1.1 Monolithic Steel (S) Test Case 

Fig 5.7 shows the stress vs. time variation obtained from numerical and analytical 

models for monolithic steel (S). The initial peak stress obtained by the analytical 

model exceeds that of the numerical model by 6.5%. It is shown that the outputs 

from the numerical model agree well with that of the analytical model in the 

remaining part. 

(a) 

(b) 

(c) 

(d) 
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Figure 5.9 Stress vs time variation for monolithic steel (S) test case 

 

5.2.1.2 Bi-metallic Steel-Aluminium (SA) Test Case 

Fig 5.8 shows the stress vs. time variation obtained from numerical and analytical 

models for the bi-metallic steel-aluminium (SA) test case. Even though the initial 

peak stress values obtained from both models are almost the same, in the remaining 

section, minor differences can be identified in the variation pattern between the two 

outputs. The numerical output consists of some additional minor stress peaks 

compared to that of the analytical model which needs to be studied further. 

 

Figure 5.10 Stress vs time variation for bi-metallic steel-aluminium (SA) test case 
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5.2.1.3 Bi-metallic Steel-Titanium (ST) Test Case 

Fig 5.9 shows the stress vs. time variation obtained from numerical and analytical 

models for the bi-metallic steel-titanium (ST) test case. The peak stress values 

obtained from both models agree well with each other with a maximum difference 

of 22%. However, the difference between the two outputs increases with the time.  

 

Figure 5.11 Stress vs time variation for bi-metallic steel-titanium (ST) test case 

 

5.2.1.4 Tri-metallic Steel-Titanium-Aluminium (STA) Test Case 

Fig 5.10 shows the stress vs. time variation obtained from numerical and analytical 

models for the tri-metallic steel-titanium-aluminium (STA) test case. The difference 

between the two outputs corresponding to the initial peak is as high as 9.3%. Also, 

a significant difference can be identified in the remaining part. 
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Figure 5.12 Stress vs time variation for tri-metallic steel-titanium-aluminium (STA) test case 

The stress wave structure reveals the main difference between the results of 

analytical and numerical models. In the analytical study, stress waves are idealized 

as a discontinuity that does not define the intermediate stresses but only the starting 

and ending stresses. However, in the real scenario, it consists of a structure where 

the state of stress changes instantly but smoothly across a region to connect the 

starting and ending stresses. Time-dependent inelastic processes such as 

viscoelasticity, viscoplasticity, and twinning cause to generate that specific shaped 

wave structure [7]. 

Also, the developed analytical model is incapable of finding the wave rise time. As 

a result, the exact time interval in which the peak stress remains cannot be found by 

the analytical model. 

 

Figure 5.13 Stress wave structures (a) numerical model (b) analytical model 

 

 

(a)  (b)  
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Also, stress peaks are shifted with time in all four cases. This is mainly due to the 

decrease of the wave rise time along the time axis in the numerical output. Due to 

the dissipation of the energy, the peak stresses of the numerical output decrease over 

time. As a result, the corresponding wave rise time also decreases simultaneously. 

Therefore, with time, stress peaks in the numerical output are shifted slightly. 

Another reason would be differences in elastic wave propagation velocities used in 

the analytical and numerical models. In the numerical model, bulk wave speed (CB) 

was considered which was converted into longitudinal wave speed by the software 

itself. However, in the analytical model, the theoretically derived longitudinal wave 

speeds were considered that could be different from those wave speeds used in the 

numerical models. 

Also, some minor variations can be identified in the magnitude of peak stresses. The 

maximum stress magnitude difference was identified at the first peak of the tri-

metallic test case and it is 9.3%. The other variations are in between 3-8%. Also, in 

the outputs obtained from the numerical model, it is shown that the magnitude of the 

peak stresses decreases with time because of the dissipation of energy. However, in 

the analytical results, the peak stresses remain constant over time as shown in Fig. 

5.12. 

 

Figure 5.14 Comparison of Energy dissipation output between analytical and numerical 

models 
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This is mainly due to the isothermal assumption that was considered in deriving 

analytical solutions. The energy conservation theorem suggests that the rate of 

energy increase within the system is balanced by four components; (1) Energy 

provided by forces acting on the surface (2) Heat transferred out of the system (3) 

External forces applied within the the volume of the body, and (4) Heat transferred 

into the system [31]. However, under the isothermal assumption, the temperature in 

the system is constant and the thermal equilibrium is maintained because the 

system's heat transmission occurs so slowly. Therefore, the dissipation of the energy 

during the wave propagation, which results in a reduction in both specific strain 

energy and specific kinetic energy cannot be simulated analytically. 

Also, the fundamental energy balance equation does not address the energy 

dissipation that occurred during the wave-wave interaction and wave-interface 

interaction. Because of these two major drawbacks, the analytically obtained peak 

stresses remain constant over time. Consequently, the accuracy of the stress-time 

variation given by the analytical model reduces with time. 

One of the major findings of this study is that there might be shock waves generated 

inside the target materials due to the elastic wave-wave interactions. In previous 

studies, it has been concluded that there will not be shock waves generated inside 

the target system if the initial incident stress wave that was generated in the first 

target material is lower than its’ HEL. However, it was found that there might be 

shock waves generated inside the target materials due to the wave-wave interactions 

even though both waves are elastic waves. It can be simply proved as follows. 

 

Figure 5.15 Generation of shock waves due to elastic wave-wave interaction 
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When two elastic waves interact with each other whose particle velocities are far 

away from each other, the intersecting point of the two Hugoniots (equilibrium state) 

would be above the HEL value, as shown above, which results in a shock wave. 

5.2.2 Analytical Model for Shock Wave Propagation 

To validate the developed analytical model, only a steel monolithic test case was 

considered. The stress vs. time variation of an element at the center of the steel target 

was considered for the validation as shown in Fig. 5.8 (a). 

 

Figure 5.8 (a) Selected element at the center of the last material 

 

 

Figure 5.16 Stress vs time variation 

The small plateau denoted by (1) is due to the foregoing elastic wave before the 

initial shock wave whose magnitude is equal to the HEL limit of the material. The 

plateau (2) represents the arrival of the incident shock wave. Then the right-going 

shock wave and left-going reflected elastic wave interact with each other and result 

in two newly generated waves. Those waves take the entire material into a stress 



52 

 

state of 5.23 GPa as shown by the plateau (3). Then the left-going wave interacts 

with the material interface and generates a tensile stress which causes the separation 

of the target and the impactor which is shown by point (4). 

It is shown that, even though the analytical model is capable of predicting the stress 

vs. time variation before the separation of the target and impactor, it does not predict 

the response accurately after the separation. A significant variation can be identified 

in both the peak stress magnitude and the variation pattern. 

Just after the separation, both the left side surface of the target and the right side 

surface of the flyer become free surfaces. The stress generated at the interface which 

caused the separation is about 5.17 GPa. However, with the separation, the stress at 

the free surfaces becomes 0 GPa immediately. Accordingly, the corresponding 

particle velocity also varies along the Hugoniot. This scenario can be graphically 

represented as shown below. 

 

Figure 5.17 Graphical representation of the separation of flyer and target 

Even though this concept is theoretically accurate, it does not fully represent the 

actual behavior at the separation. As a result, the following stress peaks deviate 

slightly from the numerical outputs. Therefore, an alternative approach should be 

developed to predict the particle velocity at the free surface just after the separation. 

Even in this model, an isothermal condition was assumed. So, it does not give any 

sense about the amount of energy dissipated during shock propagation and 

interaction.



53 

 

6 CONCLUSION 

A research study on developing a numerical and analytical model to predict the 

elastic and shock wave propagation through a multi-metallic system subjected to 

high-velocity impact loads has been presented in this dissertation. It consists of two 

major parts. (1) Development of a numerical and analytical model for elastic wave 

propagation and (2) Development of a numerical and analytical model for shock 

wave propagation. The developed numerical models were validated against the 

existing experimental results and those validated numerical models were used to 

verify the analytical models. The major accomplishments and problems are 

summarised here and future research directions are presented. 

6.1 Important Findings and Discussion 

One of the major findings of this study is that there might be shock waves generated 

inside the target materials due to the elastic wave-wave interactions. It was 

thoroughly explained in Section 5. 

The governing equations employed in both analytical models (elastic and shock) 

have been derived based on the 1D wave propagation. They do not address the effect 

of transverse/ radial waves which get reflected at the perimeter and propagate back 

into the target system. But in the real scenario, the longitudinal waves get affected 

and degraded with time by the radial waves which cannot be tracked analytically. 

Therefore, the stress vs. time variations obtained from the analytical model would 

be accurate only for a limited period (until the effect of transverse waves is 

negligible). 

The experimentally obtained free surface velocity history profiles corresponding to 

elastic wave propagation show an arbitrary behavior with some abrupt changes in 

stress-time variation as opposed to the smoothly varied profiles obtained from the 

numerical models. These slight differences occur mainly due to the material’s 

heterogeneity. Even though the metallic plates used in the experiment were 

considered to be homogeneous, their material properties vary throughout the target 

materials. However, those minor variations in the material properties cannot be 

incorporated into the numerical model. 

 It is worth mentioning that in both cases, the numerical models are capable of 
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simulating the free surface velocity variation with reasonable accuracy. In terms of 

elastic wave propagation, the difference between experimental and numerical 

outputs varies between 3-7% where it increases up to 4.38-17.44% when it comes to 

shock wave propagation. So, the idealization of the 3D numerical model into a 2D 

model can be justified.  

The developed analytical model for elastic wave propagation is capable of predicting 

the stress time histories with a variation of 3-10% when compared to the numerical 

outputs. Hence, it indicates that the developed algorithm is capable of identifying 

the correct wave interaction and associated Reimann problem, and then solving it 

accurately. However, the developed analytical model for shock wave propagation 

provides accurate results only up to the separation. A significant variation can be 

identified in both the peak stress magnitude and the variation pattern after the 

separation of the target and the flyer. This is mainly due to the incapability of the 

developed analytical model to find the particle velocity at the free surface just after 

the separation. 

Also, the developed analytical models for both cases are incapable of predicting the 

amount of energy dissipated during stress wave propagation and wave interaction 

due to the assumption of isothermal behavior. Therefore, the accuracy of the 

magnitude of peak stresses given by the analytical models reduces with time. 

Even though the analytical model consists of some drawbacks as discussed above, 

it can be used to obtain some crucial outputs that cannot be obtained from finite 

element analysis (FEA). The debonding stress or the required bonding stress to avoid 

debonding at material interfaces is the most important thing that is tedious to find 

from an FEA. It can be easily found with the corresponding time of separation using 

the analytical model. Also, the analytical model tracks each interaction with the 

corresponding time which is almost impossible to do in an FEA. As well as the 

algorithm stores the attributes of each wave including starting point, ending point, 

travel time, wave speed and direction, corresponding particle velocity, and stress and 

strain generated after the wave. Further, every FEA model has limited resolution 

even if the mesh is extremely fine. So, it might be an issue in this kind of study where 

a stress wave has multiple interactions and reflections. The analytical model is 

efficient compared to the numerical model in terms of required computational 
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power. So, the analytical model can be found as a more effective alternative, which 

can be used for future studies involving multi-metallic target systems. 

6.2 Recommendation for Future Works 

One of the major drawbacks of the developed analytical models in this study is that 

they do not give any sense of the amount of energy dissipated during stress wave 

propagation and interaction. So, the amount of heat transferred into or out of the 

system can be considered in future studies for better accuracy of results. 

Also, the energy dissipation that occurs when a wave interacts with a material 

interface or with another wave is not described by the aforementioned energy 

balance theorem. It only gives the amount of energy dissipated during the wave 

propagation. So, an alternative energy balance theorem can be developed to account 

for the energy dissipation during wave interactions. 

In this study, the development of the wave structure was neglected. Instead of that a 

discontinuous wave pulse was incorporated. Therefore, it does not give an idea about 

the wave rise time and the actual time interval in which peak stress remains. So, a 

detailed study can be carried out to find the development of smooth continuous wave 

pulses during wave propagation. 

The variation of particle velocity at the free surface just after the separation is not 

fully captured by the proposed model. So, an alternative approach can be considered 

to predict it. 

Also, no higher dimension wave propagation or oblique impacts can be captured by 

the proposed analytical model. It is only valid for a symmetric one-dimensional 

plane wave propagation. So, future work could involve the extension of the current 

study for oblique impacts and higher-dimension wave propagation. 

Also, in this study, the comparison between analytical and numerical models was 

limited to only the stress-time variation. However, energy is one of the main 

parameters that should be taken into account in the comparisons that can be 

considered in future works.
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8 APPENDICES 

8.1 Appendix A: Developed MATLAB code to identify the wave-material interface and 

wave-wave interaction (Elastic wave propagation – Monolithic Steel (S) test case) 

%Wave_material_interface interaction 

t1 = 10; 

II_I =[]; JJ_I = []; tt_I = []; 

for i = 1:length(Active) 

for j = 1:3 

     if MI(j) ~= X0(i) 

          if MI(j)-X0(i)>0 && C(i)>0 || MI(j)-X0(i)<0 && C(i)<0 

              t = (MI(j)-X0(i))/C(i); 

                    tt_I = [tt_I, t]; II_I =[II_I, i]; JJ_I = [JJ_I,j]; 

                    if t < t1 

               t1 = t; 

              end 

               end 

           end 

      end 

end 

%Check multiple wave-interface interaction at the same time 

a = 0; 

I_I = []; J_J = []; 

for b = 1:length(tt_I) 

if abs(t1 - tt_I(b)) < 1e-12 

     a = a+1; 

          I_I = [I_I,II_I(b)]; J_J = [J_J,JJ_I(b)]; 

     end               

end 

%Wave_wave interaction 

t2 = 10; 

II_W =[]; JJ_W = []; tt_W = []; R_W = []; C_W = []; 

for i = 1:length(Active) 

for j = 1:length(Active) 

      if i~=j 

            if (0<= X0(i)) && (X0(i)< X0(j)) && (X0(j)<=0.006) && (C(i)>0 && 

C(j)<0) 

                  t = (X0(j)-X0(i))/(C(i)-C(j)); 

                        II_W =[II_W, i]; JJ_W = [JJ_W, j]; tt_W = [tt_W, t]; 

                        R_W = [R_W,R_s]; C_W = [C_W, C_s]; 

                        if t<t2 

                        t2 = t; 

                        end 

                  elseif (-0.006<= X0(i)) && (X0(i)< X0(j)) && (X0(j)<=0) && (C(i)>0 && 

C(j)<0) 

                        t = (X0(j)-X0(i))/(C(i)-C(j)); 

                        II_W =[II_W, i]; JJ_W = [JJ_W, j]; tt_W = [tt_W, t]; 

                        R_W = [R_W,R_a]; C_W = [C_W, C_a]; 

                        if t<t2 

                         t2 = t; 

  

                        end 

                   end 

             end 

        end 

end 

%Check multiple wave-wave interaction at the same time 

k = 0; 

I_W = []; J_W =[]; 

R_WW = []; C_WW = []; 

for b = 1:length(tt_W) 

if abs(t2 - tt_W(b)) < 1e-12 

       k = k+1; 

            I_W = [I_W,II_W(b)]; J_W = [J_W,JJ_W(b)]; 

            R_WW = [R_WW, R_W(b)];  
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            C_WW = [C_WW, C_W(b)]; 

      end                

end 

 

 

8.2 Appendix B: Developed MATLAB code to solve the elastic wave – material interface/ 

free surface interaction (Elastic wave propagation – Monolithic Steel (S) test case) 

elseif t1 < t2 % wave-interface interaction occurs before the wave-wave interaction 

    active = []; v = []; x0 = []; t0 = []; c = []; 

    for n = 1:a 

        I = I_I(n); J = J_J(n); 

        Z2_I = Active(I); Z1_I = SI(J); V2_I = V(I); V1_I = VI(J); 

        t0_I = T0(I); D0_I = X0(I); D1_I = MI(J); t1_I = t1; 

        L =[]; T =[]; 

        L = [L,[D0_I,D1_I]]; 

        T = [T,[t0_I,t0_I+t1_I]]; 

        plot(L,T); 

  

        if C(I)>0 && MI(J)==0 

            disp('Positive Wave interacts @ "0" wave-interface'); 

            %solve linear equations 

            V3_Sol = ((R_a*C_a*V2_I)+(R_s*C_s*V1_I)+(Z1_I-Z2_I))/(R_s*C_s + R_a*C_a ); 

            Z3_Sol = Z2_I + (R_a*C_a)*(V3_Sol-V2_I); 

 

            %Stress History, Velocity History Profiles 

            if D0_I <= P && P <= 0 

                t_p = t0_I + (P-D0_I)/C(I); 

                Z_P = [Z_P, Z2_I]; T_P = [T_P,t_p]; V_P = [V_P, V2_I]; 

            end 

            %Check the tensile stress at interfaces 

            if Z3_Sol < 0 

                Wa_Se = Z3_Sol; 

                L = 1; 

                si = SI; vi = VI; si_ = SI; vi_ = VI; 

                si_(1) = Z3_Sol; vi_(1) = V3_Sol; 

            end 

  

            %Add newly generated waves 

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,C_s]; 

  

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,-C_a]; 

  

            %update the material interface stress and velocity 

            SI(1) = Z3_Sol; 

            VI(1) = V3_Sol; 

  

        elseif C(I)<0 && MI(J) == 0 

            disp('Negative Wave interacts @ "0" wave-interface'); 

            %solve linear equations 

            V3_Sol = ((R_a*C_a*V1_I)+(R_s*C_s*V2_I)+(Z2_I-Z1_I))/(R_s*C_s + R_a*C_a ); 

            Z3_Sol = Z1_I + (R_a*C_a)*(V3_Sol-V1_I); 

  

            %Stress History, Velocity History Profiles 

            if 0 < P && P <= D0_I 

                t_p = t0_I + (P-D0_I)/C(I); 

                Z_P = [Z_P, Z2_I]; T_P = [T_P,t_p]; V_P = [V_P, V2_I]; 

            end 
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            %Check the tensile stress at interfaces 

            if Z3_Sol < 0 

                Wa_Se = Z3_Sol; 

                L = 1; 

                si = SI; vi = VI; si_ = SI; vi_ = VI; 

                si(1) = Z3_Sol; vi(1) = V3_Sol; 

            end 

  

            %Add newly generated waves 

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,-C_a]; 

  

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,C_s]; 

  

            %update the material interface stress and velocity 

            SI(1) = Z3_Sol; 

            VI(1) = V3_Sol; 

  

        elseif C(I)>0 && MI(J) == 0.006 

            disp('Positive Wave interacts @ "0.006 edge" wave-interface'); 

            Z3_Sol = Z1_I; 

            V3_Sol = 2*V2_I - V1_I; 

  

            %Stress History, Velocity History Profiles 

            if D0_I <= P && P < 0.006 

                t_p = t0_I + (P-D0_I)/C(I); 

                Z_P = [Z_P, Z2_I]; T_P = [T_P,t_p]; V_P = [V_P, V2_I]; 

            end 

  

            %Add newly generated waves 

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,-C_s]; 

  

            %update the material interface stress and velocity 

            SI(2) = Z3_Sol; 

            VI(2) = V3_Sol; 

  

        elseif C(I)<0 && MI(J) == -0.006 

            disp('Negative Wave interacts @ "-0.006 edge" wave-interface'); 

            Z3_Sol = Z1_I; 

            V3_Sol = 2*V2_I - V1_I; 

  

            %Stress History, Velocity History Profiles 

            if -0.006 < P && P <= D0_I 

                t_p = t0_I + (P-D0_I)/C(I); 

                Z_P = [Z_P, Z2_I]; T_P = [T_P,t_p]; V_P = [V_P, V2_I]; 

            end 

  

            %Add newly generated waves 

            active = [active,Z3_Sol]; 

            v = [v,V3_Sol]; 

            x0 = [x0,D1_I]; 

            t0 = [t0,t0_I+t1_I]; 

            c = [c,C_a]; 

  

            %update the material interface stress and velocity 

            SI(3) = Z3_Sol; 

            VI(3) = V3_Sol; 
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        end 

    end 

8.3 Appendix C: Developed MATLAB code to solve the elastic wave – wave interaction 

(Elastic wave propagation – Monolithic Steel (S) test case) 

elseif t1>t2 % wave-wave interaction occurs before the wave-interface interaction 

    active = []; v = []; x0 = []; t0 = []; c = []; 

    for n = 1:k 

        I = I_W(n); J = J_W(n); R_W = R_WW(n); C_W = C_WW(n); 

        Z2 = Active(J); V2 = V(J); D0_2 = X0(J); t0_2 = T0(J); 

        Z1 = Active(I); V1 = V(I); D0_1 = X0(I); t0_1 = T0(I); 

        D1 = X0(I) + C_W*t2; 

  

        %Stress History, Velocity History Profiles 

        if D0_1 <= P && P <= D1 

            t_p = t0_1 + (P-D0_1)/C_W; 

            Z_P = [Z_P, Z1]; T_P = [T_P,t_p]; V_P = [V_P, V1]; 

        elseif D1 <= P && P <= D0_2 

            t_p = t0_2 + (P-D0_2)/(-1*C_W); 

            Z_P = [Z_P, Z2]; T_P = [T_P,t_p]; V_P = [V_P, V2]; 

        end 

  

        %Identify the location 

        if (-0.006 < D1) && (D1 < 0) 

            disp('Wave-wave interaction in Aluminium flyer') 

        elseif (0 < D1) && (D1 < 0.006) 

            disp('Wave-wave interaction in Steel target') 

        end 

  

        % First Wave 

        L =[]; T =[]; 

        L = [L,[D0_1,D1]]; 

        T = [T,[t0_1,t0_1+t2]]; 

        plot(L,T); 

  

        %Second wave 

        L =[]; T =[]; 

        L = [L,[D0_2,D1]]; 

        T = [T,[t0_2,t0_2+t2]]; 

        plot(L,T); 

  

        %solve linear equations 

        V3_Sol = ((R_W*C_W*V1)+(R_W*C_W*V2)+(Z2-Z1))/(R_W*C_W + R_W*C_W); 

        Z3_Sol = Z1 + (R_W*C_W)*(V3_Sol-V1); 

  

        %Add newly generated waves 

        active = [active,Z3_Sol]; 

        v = [v,V3_Sol]; 

        x0 = [x0,D1]; 

        t0 = [t0,t0_1+t2]; 

        c = [c,C_W]; 

  

        active = [active,Z3_Sol]; 

        v = [v,V3_Sol]; 

        x0 = [x0,D1]; 

        t0 = [t0,t0_2+t2]; 

        c = [c,-C_W]; 

  

    end 

8.4 Appendix D: Developed MATLAB code to solve the shock wave – material interface 

interaction (Shock wave propagation – Monolithic Steel (S) test case) 

active = []; v = []; x0 = []; t0 = []; c = []; stf = []; 

for n = 1:a 

I = I_I(n); J = J_J(n); 

Z2_I = Active(I); Z1_I = SI(J); V2_I = V(I); V1_I = VI(J); 
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t0_I = T0(I); D0_I = X0(I); D1_I = MI(J); t1_I = t1; 

L =[]; T =[]; 

L = [L,[D0_I,D1_I]]; 

T = [T,[t0_I,t0_I+t1_I]]; 

plot(L,T); 

  

if C(I)>0 && MI(J)==0 

    disp('Positive Wave interacts @ "0" wave-interface'); 

    %solve linear equations 

    %Find 'xb' value 

    if Z2_I <-ST 

        FP1 = [-1.1697e4 -0.036e9 -0.93e9-Z2_I]; 

        xf2 = roots(FP1); %negative value 

        xf = max(xf2(1), xf2(2)); 

        xb = V2_I - xf; 

    elseif (-ST<= Z2_I) && (Z2_I <-HEL) 

        FP1 = [0 -0.084e9 2.8644e9-Z2_I]; 

        xf = roots(FP1); %negative value 

        xb = V2_I - xf; 

    elseif (-HEL<= Z2_I) && (Z2_I <HEL) 

        FP1 = [0 -0.041e9 -Z2_I]; 

        xf = roots(FP1); %negative value 

        xb = V2_I - xf; 

    elseif (HEL <= Z2_I) && (Z2_I <= ST) 

        FP2 = [0 -0.084e9 -2.8644e9-Z2_I]; 

        xf = roots(FP2); 

        xb = V2_I - xf; 

    elseif ST < Z2_I 

        FP3 = [1.1697e4 -0.036e9 0.93e9-Z2_I]; 

        xf2 = roots(FP3); 

        xf = min(xf2(1), xf2(2)); 

        xb = V2_I - xf; 

    end 

  

    %Find 'xa' value 

    if Z1_I <-ST 

        FP3 = [-1.1697e4 0.036e9 -0.93e9-Z1_I]; 

        xf2 = roots(FP3); 

        xf = min(xf2(1), xf2(2)); 

        xa = V1_I - xf; 

    elseif (-ST<= Z1_I) && (Z1_I <-HEL) 

        FP1 = [0 0.084e9 2.8644e9-Z1_I]; 

        xf = roots(FP1); %negative value 

        xa = V1_I - xf; 

    elseif (-HEL<= Z1_I) && (Z1_I <HEL) 

        FP1 = [0 0.041e9 -Z1_I]; 

        xf = roots(FP1); 

        xa = V1_I - xf; 

    elseif (HEL <= Z1_I) && (Z1_I <= ST) 

        FP2 = [0 0.084e9 -2.8644e9-Z1_I]; 

        xf = roots(FP2); 

        xa = V1_I - xf; 

    elseif ST < Z1_I 

        FP3 = [1.1697e4 0.036e9 0.93e9-Z1_I]; 

        xf2 = roots(FP3); 

        xf = max(xf2(1), xf2(2)); 

        xa = V1_I - xf; 

    end 

  

%Implement solver 

St0L = Z2_I; St0R = Z1_I; 

  

%Fundemental Interaction Solving Equations 

F1 = [0 2*R_S*C_L -R_S*C_L*(xa+xb)]; 

F2 = [0 2*0.084e9 -0.084e9*(xa+xb)]; 

F3 = [0 2*R_S*(C_B+S*xb-S*xa) R_S*(S*(xa^2)-S*(xb^2)-C_B*(xa+xb))]; 

FT3 = [0 2*R_S*(C_B+S*xa-S*xb) R_S*(S*(xb^2)-S*(xa^2)-C_B*(xa+xb))]; 
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%Find the correct interaction 

  

% 1. Check for F1 

x = roots(F1); 

St = R_S*C_L*(x-xa); 

if (0<=St) && (St<HEL) || (-HEL<=St) && (St<0) 

    SW = St; 

    u_p = x; 

    if St <=0 

        disp('Negative Stress 1'); 

    end 

end 

  

% 2. Check for F2 

x = roots(F2); 

St = 0.084e9*(x-xa)-2.8644e9; 

if (HEL<=St) && (St<ST) 

    SW = St; 

    u_p = x; 

    UR = C_B + S*(u_p - VI(1)); 

    UL = -C_B + S*(u_p - u_f); 

end 

  

% 3. Check for FT2 

x = roots(F2); 

St = 0.084e9*(x-xa)+2.8644e9; 

if (-ST<=St) && (St<-HEL) 

    disp('Negative Stress 2'); 

    SW = St; 

    u_p = x; 

    UR = C_B + S*(u_p - VI(1)); 

    UL = -C_B + S*(u_p - u_f); 

end 

  

% 4. Check for F3 

x = roots(F3); 

St = R_S*C_B*(x-xa)+R_S*S*(x-xa)^2+0.93e9; 

if (ST<=St) 

    SW = St; 

    u_p = x; 

    UR = C_B + S*(u_p - VI(1)); 

    UL = -C_B + S*(u_p - u_f); 

end 

  

%5. Check fot FT3 

x = roots(FT3); 

St = R_S*C_B*(x-xa)-R_S*S*(x-xa)^2-0.93e9; 

if (St<-ST) 

    disp('Negative Stress 3'); 

    SW = St; 

    u_p = x; 

    UR = C_B + S*(u_p - VI(1)); 

    UL = -C_B + S*(u_p - u_f); 

end 

  

%Check the seperation 

if SW<=0 

    f=1; 

end 

  

%Forward wave in target 

if (St0R< HEL && SW > HEL) || (St0R> HEL && SW < HEL) 

  

     

    %Foregoing Shock Wave  

    active = [active,SW]; 

    c = [c,UR]; 

    v = [v,u_p]; 
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    x0 = [x0,D1_I]; 

    t0 = [t0,t0_I+t1_I]; 

    stf = [stf, St0R]; 

     

elseif (St0R>= HEL && SW >= HEL) 

   %Foregoing Shock Wave  

    active = [active,SW]; 

    c = [c,UR]; 

    v = [v,u_p]; 

    x0 = [x0,D1_I]; 

    t0 = [t0,t0_I+t1_I]; 

    stf = [stf, St0R]; 

     

elseif (St0R< HEL && SW < HEL) 

   %Foregoing elastic Wave 

   if abs(SW-St0R)>= 1e-9*HEL 

       active = [active,SW]; 

       c = [c,C_L]; 

       v = [v,u_p]; 

       x0 = [x0,D1_I]; 

       t0 = [t0,t0_I+t1_I]; 

       stf = [stf, St0R]; 

   end 

end 

  

%update the material interface stress and velocity 

SI(1) = SW; 

VI(1) = u_p; 

  

%Backward wave in target 

if (St0L< HEL && SW > HEL) || (St0L> HEL && SW < HEL) 

     

    

    %Foregoing Shock Wave  

    active = [active,SW]; 

    c = [c,UL]; 

    v = [v,u_p]; 

    x0 = [x0,D1_I]; 

    t0 = [t0,t0_I+t1_I]; 

    stf = [stf, St0L]; 

     

elseif (St0L>= HEL && SW >= HEL) 

   %Foregoing Shock Wave  

    active = [active,SW]; 

    c = [c,UL]; 

    v = [v,u_p]; 

    x0 = [x0,D1_I]; 

    t0 = [t0,t0_I+t1_I]; 

    stf = [stf, St0L]; 

     

elseif (St0L< HEL && SW < HEL) 

   %Foregoing elastic Wave 

   if abs(SW-St0L)>= 1e-9*HEL 

       active = [active,SW]; 

       c = [c,-C_L]; 

       v = [v,u_p]; 

       x0 = [x0,D1_I]; 

       t0 = [t0,t0_I+t1_I]; 

       stf = [stf, St0L]; 

   end 

end 

  

    %Stress History, Velocity History Profiles 

    if D0_I <= P && P <= 0 

        t_p = t0_I + (P-D0_I)/C(I); 

        Z_P = [Z_P, Z2_I]; T_P = [T_P,t_p]; V_P = [V_P, V2_I]; 

    end 


