POTENTIAL SHIFTING OF CLIMATE ZONES AND ASSOCIATED HYDROLOGICAL IMPACTS UNDER CHANGING CLIMATE CONDITIONS IN SRI LANKA

Chamal Jayaminda

228089M

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Sri Lanka

February 2024

POTENTIAL SHIFTING OF CLIMATE ZONES AND ASSOCIATED HYDROLOGICAL IMPACTS UNDER CHANGING CLIMATE CONDITIONS IN SRI LANKA

Kulanda Arachchige Chamal Jayaminda

228089M

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2024

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in text.

Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books)

Signatire:

Date: 2024-02-14

The above candidate has carried out research for the Master's thesis under my supervision.

Name of the Supervisor: Dr. H.G.L.N. Gunawardhana

Signature of the Supervisor:

Date: 2024-02-14

ACKNOWLEDGMENT

I extend my heartfelt gratitude to the free education system of Sri Lanka, which has been instrumental in shaping my academic journey. I am profoundly thankful to all the dedicated teachers and lecturers who have imparted their knowledge to me until now.

I would like to express my sincere appreciation to the Meteorology Department for providing valuable data, and a special thank to Dr. Panduka Neluwala for his insightful comments and guidance during the progress review evaluations.

A special mention goes to my research supervisor, Dr. H.G.L.N. Gunawardhana, whose unwavering support has been crucial to the success of this research. His patience, motivation, and guidance have played a pivotal role, and without his dedicated supervision, this thesis would not have been possible.

I am grateful to Professor R.L.H.L Rajapakse, the Centre Chairman, for his essential assistance in achieving success in the program. His kindness, guidance, and consistent encouragement, provided amidst a busy schedule, are deeply appreciated.

I extend my thanks to Late Shri Madanjeet Singh, the Founder of SAF-Madanjeet Singh Scholarship Scheme, the South Asia Foundation (SAF), and the University of Moratuwa for enabling me to pursue a Master's Degree in Civil Engineering. My gratitude also goes to Mr. Wajira Kumarasinghe, Mr. Samantha Ranaweera, Mrs. K. A. V. Kalanika, Ms. L. J. N. Silva, and all UMCSAWM staff for their support and encouragement throughout my studies at the University of Moratuwa.

Finally, I would like to express my profound gratitude to my parents and friends for their unfailing support and continuous encouragement throughout this research journey.

Potential Shifting of Climate Zones and Associated Hydrological Impacts under Changing Climate Conditions in Sri Lanka

ABSTRACT

Climate change plays a significant role in decision-making related to water resources management. Understanding the future climate of Sri Lanka is crucial for the development of adaptation and mitigation strategies. This study investigated the potential shifting of climate zones in Sri Lanka under changing climate conditions using the Köppen-Geiger Climate Classification system and identified the associated hydrological impacts. The research utilized observed daily precipitation data from 27 meteorological stations. Predictive mean matching (PMM) and normal imputation method (Norm) were employed using the Multiple Imputation by Chained Equations (MICE) algorithm to impute missing data. The performances of 15 Global Climate Models (GCMs) from Coupled Model Intercomparison Project Phase 6 (CMIP6) were evaluated using the Evaluation Based on Distance from Average Solution (EDAS) method. In distributing station data into higher spatial resolution, a linear regression analysis was conducted to develop a relationship between observed station data points with corresponding Climate Hazards Group InfraRed Precipitation with Station data (CHIRPs) grid cells. The calculated gradient values (m) were then utilized to distribute historical and future projection data from GCMs to each CHIRPs cell (0.05° resolution). Furthermore, a distributed hydrological model was used with a 0.05°×0.05° grid cell resolution for calculating water balance and identifying hydrological impacts of future climate change on basin hydrology.

The results depicted varied performance among the CMIP6 models in simulating the monsoon climate of Sri Lanka. The MPI-ESM1-2-HR, CNRM-CM6-1-HR, and CNRM-ESM2-1 models were identified as the top performers in simulating monsoon rainfall patterns in both the wet and intermediate zones, while the CNRM-ESM2-1, CNRM-CM6-1-HR and MRI-ESM2-0 models emerged as the top GCMs for the dry zone. The CNRM-CM6-1-HR and CNRM-ESM2-1 models were the best-performing models among the selected GCMs, with the high-resolution version of CNRM-CM6-1-HR being well-suited for small countries like Sri Lanka. When the Mean-Based method and the Quantile Mapping (QM) method were compared for bias correction performances, the QM method demonstrated strong relationships between observed data and model projections. The results of the Köppen-Geiger Climate Classification indicated that future climate zone influenced by climate change, particularly in the South-West region and the highland areas of Sri Lanka. Highland climates will be the most affected in all projection scenarios, with Cfb and Cwb climate zones projected to disappear under the SSP5-8.5 long-term (TL, 2070-2100) scenario. The outcomes of these changes in basin level indicated that, in the near-term (TN, 2020-2050) period, basins in the eastern side of the island will experience decreased runoff while the west will show an increase. Analyzing the Wet zone under SSP1-2.6 showed a 10% TN increase in runoff, rising to 15% in TL. Under SSP5-8.5, the runoff increase is more significant at 27% (TN) and 38% (TL) levels. In the Dry zone under SSP1-2.6, the TN projections result a 10% increase in runoff, escalating to 35% in the TL period. The findings of this study highlight that the potential climate shifts associated with global warming scenarios vary across distinct regional climate zones in Sri Lanka. This underscores the necessity for region-specific adaptation strategies to effectively mitigate the multifaceted impacts on water resources.

Keywords: Climate Change, Data Imputation, Distributed Hydrological Model, Köppen-Geiger Climate Classification

Table of Content

Declarat	ioni
Acknow	ledgmentii
Abstract	
List of F	iguresvii
List of T	ablesix
List of A	bbreviationsx
1. Intr	roduction1
1.1	General1
1.2	Background1
1.3	The Significance of Studying Climate-Induced Changes in Sri Lanka2
1.4	Problem Statement
1.5	Aim of the Study
1.6	Specific Objectives
2. Lite	erature Review
2.1	General4
2.2	Climate Change and Global Impact4
2.2.	.1 Observed Trend of Climate
2.2	.2 Future Climate Change
2.2.	.3 Extensive Global Ramifications of Climate Change
2.3	Climate Zone Classification7
2.4	Meteorological Data Gap Filling10
2.4	.1 The Multiple Imputation by Chained Equations
2.4	.2 Data Imputation Performance Evaluation
2.5	Global Climate Models
2.5	.1 Reliability of the Global Climate Models
2.5	.2 GCMs Used in Past Studies in South Asia
2.5	.3 Selection of an appropriate GCM for monsoon climate in Sri Lanka 15
2.5	.4 Coupled Model Intercomparison Project Phase 6
2.5	.5 Shared Socioeconomic Pathways (SSPs)17
2.6	Methods of Bias Correction17

	2.6.1	Empirical Statistical Bias Correction	. 17
	2.6.2	2 Quantile Mapping Bias Correction	. 18
	2.7	Methods of Developing Gridded Meteorological Data Sets	. 18
	2.7.1	Satellite Weather Data	. 19
	2.7.2	2 The CHIRPs Dataset	. 20
	2.8	Hydrological Modelling	. 20
	2.8.1	Objectives of Hydrological Modelling	. 21
	2.8.2	2 Types of Hydrological Models	. 22
	2.8.3	B Distributed Hydrological Model	.23
	2.8.4	Calibration of Hydrological Model	. 23
3.	. Data	and Methodology	. 25
	3.1	General	. 25
	3.2	Methodology Flow Chart	. 26
	3.3	Study Area	. 27
	3.4	Data Collection	. 27
	3.5	Data Source and Resolution	. 29
	3.6	Data Checking and Missing Data Imputation	. 30
	3.7	Imputing Missing Daily Meteorological Data	. 32
	3.8	Evaluation Based on Distance from Average Solution	.33
	3.9	Development of a High-Resolution Meteorological Dataset	.35
	3.9.1	CHIRPs Data Bias Correction	35
	3.9.2	2 Development of Relationship between CHIRPs and Observe Data	. 36
	3.9.3	B Distribution of Temperature Data for CHIRPs Grid Cells	. 37
	3.10	Distributed Hydrological Model	. 38
	3.10	.1 Methodology Flowchart for the Hydrological Model	41
4.	. Resi	Ilts and Discussion	.42
	4.1	Imputation of Missing Data	.42
	4.1.1	Comparison of MICE Data Imputation Methods	. 42
	4.1.2	2 Double Mass Curve	.44
	4.2	Global Climate Model Selection	.45
	4.2.1	Objective Functions Performance over the Historical Period	.45

4.2.2 Solution (GCM Selection based on Evaluation Based on Distance from Average (EDAS)
4.2.3	Comparison of Measured and Modelled Data by Climate Zones 50
4.2.4	Comparison of Measured and Modelled Monthly Precipitation 50
4.2.5 Variation	Comparison of Measured and Modelled Precipitation with Seasonal 52
4.3 Bias	Correction of GCM Data
4.3.1	Mean Based Method
4.3.2	Empirical Quantile Mapping Method56
4.3.3	Relationship between CHIRPs and Observe Data 58
4.4 Köp	pen-Geiger Climate Classification63
4.5 Köp Classificatio	pen-Geiger Climate Classification Comparison with Traditional Climate
4.5.1	Rainfall zones classification
4.6 Spat	ial Changes of Shifting Climate Types67
4.6.1	Temporal Changes of Shifting Climate Types70
4.7 Hyd	rological Model74
4.7.1	Model Calibration
4.7.2	Changes in Annual Runoff76
5. Conclusio	on
Reference List	
Appendices	
Appendix A	: Stripplots of imputed datasets with PMM and Norm method91
Appendix B	3: Double Mass Curve for the data imputation groups
Appendix C	: Observed vs model monthly normalized precipitation108
Appendix I	D: Selected models comparison for monsoon seasonal variation 123
Appendix I precipitation	E: CDF curves between observed vs mean-based corrected model
Appendix F using the qu	CDF curves between observed vs bias corrected precipitation data antile mapping method
Appendix C using the qu	6: CDF curves between observed vs bias corrected temperature data bantile mapping method

LIST OF FIGURES

Figure 2-1: Global net emissions of greenhouse gases from anthropogenic activities, 1990–2019 (IPCC, 2022)
Figure 2-2: Temperature anomaly relative to 1880-1920 (Hansen et al., 2022) 5
Figure 2-3: Changes in global surface temperature with greenhouse gas emission scenarios for the period 2081 - 2100 compared to the period 1850 – 1900 (IPCC, 2021)
Figure 3-1: Methodology flowchart
Figure 3-2: Selected Gauging Stations
Figure 3-3: Single-mass curve
Figure 3-4: Main steps in multiple imputation
Figure 3-5: Precipitation Thiessen Polygons
Figure 3-6: Temperature Thiessen Polygons
Figure 3-7: Conceptual Model 40
Figure 3-8: Methodology flowchart of the distributed hydrological model
Figure 4-1: Strip plot of three stations in the original data and the five imputed data sets (PMM method) – [Blue- Original data, Red- Imputed data]
Figure 4-2: Strip plot of three stations in the original data and the five imputed data sets (Norm method) – [Blue- Original data, Red- Imputed data]
Figure 4-3: Double mass curve for wet zone-1 group
Figure 4-4: Normalised decision matrix values
Figure 4-5: Monthly precipitation value distribution over the climate zones
Figure 4-6: Observed vs model normalise monthly precipitation
Figure 4-7: Box plot of observed vs model seasonal variation
Figure 4-8: Scattered plots between observed data vs uncorrected and corrected GCM data for the Mean-Based method
Figure 4-9: CDF curves between observed vs mean-based corrected model precipitation data
Figure 4-10: CDF Curves between Observed vs Bias Corrected Precipitation Data Using the Quantile Mapping Method
Figure 4-11: CDF curves between observed vs Quantile Mapping Method corrected model temperature data

Figure 4-12:	The gradient values derived from the CHIRPs dataset with respective observed data stations
Figure 4-13:	Köppen-Geiger zone distribution for the historical period (1975-2014) and future projections (2015-2100)
Figure 4-14:	Köppen-Geiger climate scheme percentage area values for the historical period (1975-2014) and future projections (2015-2100)
Figure 4-15	: Köppen-Geiger climate zone classification comparison with the wet, driand intermediate zone classificatio for historical (1975-2014)66
Figure 4-16:	Köppen-Geiger zone distribution for near-term (2020-2050) and long-term (2070-2100) Periods
Figure 4-17:	The spatial changing areas in TN (2020-2050) and TL (2070-2100) due to climate change compared to TB (1975-2014)
Figure 4-18:	Temporal changes in mean precipitation and temperature with shifting climate for the historical period (1975-2014) and future projections (2015-2100)
Figure 4-19:	Landuse cover (2014) and soil map of Sri Lanka
Figure 4-20:	Projected mean runoff change percentage in TN (2020-2050) and TL (2070-2100) compared to TB (1975-2014) period

LIST OF TABLES

Table 2-1: Summary of climate zones classification systems 8
Table 2-2: Description of Köppen- Geiger Climate Symbols and Defining Criteria (Peel et al., 2007)
Table 2-3: Summary of existing missing data imputation methods 11
Table 2-4: Details of the CMIP6 GCMs Assessed in this Study
Table 2-5: Overview of Shared Socioeconomic Pathways 17
Table 2-6: Empirical statistical bias correction methods 18
Table 2-7: Quantile mapping bias correction methods 18
Table 2-8: Summary of gridded dataset development methods 19
Table 2-9: Key features of satellite rainfall data sources 20
Table 2-10: Summary of different types of hydrological models 22
Table 2-11: Summary of different methods of hydrological model calibration24
Table 3-1: Coordinates of Meteorological Stations 28
Table 3-2: Data Sources and Availability 30
Table 3-3: Additional Data Stations 30
Table 3-4: Data Imputation Groups
Table 3-5: Additional data used in the distributed hydrological model
Table 4-1: RMSE and MAE obtained for the wet zone 43
Table 4-2: RMSE and MAE obtained for the dry zone
Table 4-3: Values of performance indicators in the wet zone 45
Table 4-4: Values of performance indicators in the intermediate zone
Table 4-5: Values of performance indicators in dry zone
Table 4-6: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in the wet zone 48
Table 4-7: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in the intermediate zone
Table 4-8: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in dry zone 49
Table 4-9: Calibrated manning roughness coefficients 76
Table 4-10: Calibrated infiltration coefficient

List of Abbreviations

ACCESS	- Australian Community Climate and Earth-System Simulator
Af	- Tropical Rainforest Climate
AIM/CGE	- Asia-Pacific Integrated Model with Computable General Equilibrium
Am	- Tropical Monsoon Climate
AMIP	- Atmospheric Model Inter-comparison Project
ARCCSS	- Australian Research Council Centre of Excellence for Climate System Science
ASTER GDEM	- Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model
Aw	- Tropical Savanna
BCC	- Beijing Climate Center
CAMS	- Chinese Academy of Meteorological Sciences
CAS	- Chinese Academy of Sciences
CDF	- Empirical CumulativeDensity Function
CERFACS	- Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (European Centre for Research and Advanced Training in Scientific Computation)
CESM	- Community Earth System Model
Cfb	- Subtropical Highland Climate without a Dry Season
CHIRPs	- Climate Hazards Group InfraRed Precipitation with Station
CMA	- China Meteorological Administration
CMCC	- Centro Euro-Mediterraneo sui Cambiamenti Climatici (Euro- Mediterranean Center on Climate Change)
CMIP	- Coupled Model Intercomparison Project
CNRM	- Centre National de Recherches Météorologiques (National Center for Meteorological Research)
Csb	- Warm-Wummer Mediterranean Climate
CSIRO	- Commonwealth Scientific and Industrial Research Organisation

Cwb	- Subtropical Highland Climate with a Dry Season
DEM	- Digital Elevation Model
ECDF	- Empirical Cumulative Distribution Function
EDAS	- Evaluation Based on Distance from Average Solution
ERA	- European Reanalysis
ESGF	- Earth System Grid Federation
ESM	- Earth System Model
ET	- Evaporation
FGOALS	- Flexible Global Ocean-Atmosphere-Land System
FIM	- First Inter Monsoon
GCM	- Global Climate Model
GFDL	- Geophysical Fluid Dynamics Laboratory
GHG	- Green Hosue Gas
GLOBIOM	- Global Biosphere Management Model
GPCC	- Global Precipitation Climatology Centre
GPCP	- Global Precipitation Climatology Project
HR	- High Resolution
IIASA	- International Institute for Applied Systems Analysis
INM	- Institute of Numerical Mathematics
IPCC	- Intergovernmental Panel on Climate Change
MAE	- Mean Absolute Error
MAgPIE	- Model of Agricultural Production and its Impact on the Environment
MAP	- Mean Annual Precipitation
MAT	- Mean Annual Temperature
MESSAGE	- Model for Energy Supply Strategy Alternatives and their General Environmental Impacts
MICE	- Multiple Imputation by Chained Equations
MPI-M	- Max Planck Institute for Meteorology

MRI	- Meteorological Research Institute
NCAR	- National Center for Atmospheric Research
NDA	- Negative Distance from the Average Solution
NEM	- North East Monsoon
NIES	- National Institute for Environmental Studies
NOAA	- National Oceanic and Atmospheric Administration
Norm	- Normal Imputation Method
NRMC	- Natural Resources Management Centre
PBIAS	- Percentage Bias
PBL	- Planetary Boundary Layer
PDA	- Positive Distance from the Average Solution
P _{dry}	- precipitation of the driest month
PERSIANN	- Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
PMM	- Predictive Mean Matching Method
Psdry	- precipitation of the driest month in summer
Pswet	- precipitation of the wettest month in summer
P _{wdry}	- precipitation of the driest month
P _{wwet}	- precipitation of the wettest month in winter
QM	- Quantile Mapping
R	- Correlation Coefficient
RCM	- Regional Climate Model
RCP	- Representative Concentration Pathways
REMIND	- Regionalized Model of Investments and Development
RMSE	- Root Mean Square Error
RRI	- Rainfall-Runoff-Inundation
SIC	- Sea Ice Concentrations
SIM	- Second Inter Monsoon
SS	- Taylors Skill Score

SSP	- Shared Socioeconomic Pathways
SST	- Sea Surface Temperatures
SWAT	- Soil and Water Assessment Tool
SWM	- South West Monsoon
TB	- Historical Period
T_{cold}	- Temperature of the Coldest Month
T _{hot}	- Temperature of the Hottest Month
TL	- Long-Term Period
T _{mon10}	- Number of Months Where the Temperature is Above 10
TN	- Near Term Period
TRMM	- Tropical Rainfall Measuring Mission
WaPOR	- Water Productivity Open-access portal
WMO	- World Meteorological Organization
μ	- Mean
σ	- Standard Deviation