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ABSTRACT 

Climate change plays a significant role in decision-making related to water resources 

management. Understanding the future climate of Sri Lanka is crucial for the development of 

adaptation and mitigation strategies. This study investigated the potential shifting of climate 

zones in Sri Lanka under changing climate conditions using the Köppen-Geiger Climate 

Classification system and identified the associated hydrological impacts. The research utilized 

observed daily precipitation data from 27 meteorological stations. Predictive mean matching 

(PMM) and normal imputation method (Norm) were employed using the Multiple Imputation 

by Chained Equations (MICE) algorithm to impute missing data. The performances of 15 

Global Climate Models (GCMs) from Coupled Model Intercomparison Project Phase 6 

(CMIP6) were evaluated using the Evaluation Based on Distance from Average Solution 

(EDAS) method. In distributing station data into higher spatial resolution, a linear regression 

analysis was conducted to develop a relationship between observed station data points with 

corresponding Climate Hazards Group InfraRed Precipitation with Station data (CHIRPs) grid 

cells. The calculated gradient values (m) were then utilized to distribute historical and future 

projection data from GCMs to each CHIRPs cell (0.05˚ resolution). Furthermore, a distributed 

hydrological model was used with a 0.05˚×0.05˚ grid cell resolution for calculating water 

balance and identifying hydrological impacts of future climate change on basin hydrology.  

The results depicted varied performance among the CMIP6 models in simulating the monsoon 

climate of Sri Lanka. The MPI-ESM1-2-HR, CNRM-CM6-1-HR, and CNRM-ESM2-1 

models were identified as the top performers in simulating monsoon rainfall patterns in both 

the wet and intermediate zones, while the CNRM-ESM2-1, CNRM-CM6-1-HR and MRI-

ESM2-0 models emerged as the top GCMs for the dry zone. The CNRM-CM6-1-HR and 

CNRM-ESM2-1 models were the best-performing models among the selected GCMs, with the 

high-resolution version of CNRM-CM6-1-HR being well-suited for small countries like 

Sri Lanka. When the Mean-Based method and the Quantile Mapping (QM) method were 

compared for bias correction performances, the QM method demonstrated strong relationships 

between observed data and model projections. The results of the Köppen-Geiger Climate 

Classification indicated that future climate zone influenced by climate change, particularly in 

the South-West region and the highland areas of Sri Lanka. Highland climates will be the most 

affected in all projection scenarios, with Cfb and Cwb climate zones projected to disappear 

under the SSP5-8.5 long-term (TL, 2070-2100) scenario. The outcomes of these changes in 

basin level indicated that, in the near-term (TN, 2020-2050) period, basins in the eastern side 

of the island will experience decreased runoff while the west will show an increase. Analyzing 

the Wet zone under SSP1-2.6 showed a 10% TN increase in runoff, rising to 15% in TL. Under 

SSP5-8.5, the runoff increase is more significant at 27% (TN) and 38% (TL) levels. In the Dry 

zone under SSP1-2.6, the TN projections result a 10% increase in runoff, escalating to 35% in 

the TL period. The findings of this study highlight that the potential climate shifts associated 

with global warming scenarios vary across distinct regional climate zones in Sri Lanka. This 

underscores the necessity for region-specific adaptation strategies to effectively mitigate the 

multifaceted impacts on water resources. 

Keywords: Climate Change, Data Imputation, Distributed Hydrological Model, Köppen-

Geiger Climate Classification

Potential Shifting of Climate Zones and Associated Hydrological Impacts 

under Changing Climate Conditions in Sri Lanka 
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1. INTRODUCTION 

1.1 General 

Climate change is a global phenomenon that affects the economic, social, and 

environmental well-being across every region of the earth. The South Asian region has 

been identified by the Intergovernmental Panel on Climate Change as being 

particularly subject to the effects of climate change (IPCC, 2022). These impacts 

include increased global surface temperature, intensified land monsoon precipitation 

regime, rising sea levels, declining water resources, and increased food insecurity 

(IPCC, 2022). As a result, the public, scientists, and lawmakers have all given climate 

change great attention in recent years (Abbass et al., 2022). 

A climate zone is a defined geographical area characterized by specific temperature 

patterns, precipitation, and weather conditions (Kim et al., 2022; Mondal et al., 2021; 

Roshan et al., 2022). Climate zoning is essential for identifying and categorizing 

diverse regions according to climate, enabling well-informed decisions for hydrology, 

ecology, and water resource management. Previous research has demonstrated a direct 

correlation between climate change and alternation of climate zones, both at global 

and regional scales (Buksha et al., 2021; Kim et al., 2022; Malone, 2023). 

Climate change affects the balance of sensitive hydrological processes, including 

precipitation, evaporation, runoff, and groundwater recharge (Epting et al., 2021; 

Mensah et al., 2022). These changes can have complex implications for water 

resources, particularly in regions with shifting climate zones. Therefore, understanding 

the relationship between climate change, climate zone shifting, and subsequent 

hydrological impacts is essential to uncovering the challenges communities and 

ecosystems face in the effect of a changing climate. Furthermore, the projections of 

potential meteorological and hydrological changes allow policymakers to implement 

adaptation and mitigation measurements that serve the greater good of their 

constituents (Visweshwaran et al., 2022). 

1.2 Background 

Climate change, driven primarily by anthropogenic factors, has emerged as one of this 

generation's most pressing global challenges. Given the inevitability of climate change 

affecting planet Earth, it is evident that the consequences of these changes will have a 

substantial impact at regional and local levels (Jacob et al., 2020; Santos et al., 2020). 

One of the most noticeable effects of climate change is the shifting of climate zones. 

As global temperatures rise, various regions experience changes in their climatic 

patterns. This shift often involves the migration of climate zones towards higher 

latitudes or altitudes, leading to altered weather patterns, precipitation distribution, and 

temperature regimes (Cui et al., 2021). In parallel with climate zone shifts, the 

hydrology of these zones also changes. When precipitation and temperature patterns 

alter in a specific region, its hydrology deviates significantly, particularly in 
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mountainous areas. Mountainous regions experience climate zone shifts before low-

altitude regions are affected (Mahlstein et al., 2013). Mountain ranges are the source 

of hydrological systems. Alterations within these regions will not only affect the water 

balance within their respective basins but will also have repercussions on trans-basin 

and transboundary water management. Subcequent hydrological changes will directly 

affect aquatic ecosystems, biodiversity, water supply for irrigation, water management 

systems, hydropower generation and finally, displacement and migration of both 

people and other living species (Siddha & Sahu, 2022; Upadhyay, 2020; Sadoff & 

Muller, 2009; Dudgeon, 2000).  

The South Asia region, home to over 1.8 billion people and encompassing countries 

like India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka, is particularly 

vulnerable to the effects of climate change. By the end of the 21st century, the annual 

average temperature across South Asia is projected to rise by 1.2°C, 2.1°C, and 4.3°C 

under the Shared Socioeconomic Pathways (SSPs) known as SSP1-2.6, SSP2-4.5, and 

SSP5-8.5, respectively (Almazroui et al., 2020). Sri Lanka is no exception to these 

global and regional trends, as its unique geographical location in the Indian Ocean 

renders it vulnerable to such changes. Given the critical role of climate change in 

sustaining life, ecosystems, and economic activities, understanding the climate zone 

shifting and hydrological consequences in Sri Lanka is paramount. 

1.3 The Significance of Studying Climate-Induced Changes in Sri  Lanka 

Developing countries, such as Sri Lanka, are particularly susceptible to the adverse 

effects of climate change. These countries encounter considerable challenges in 

managing natural systems closely connected with regulating biodiversity services and 

natural resource management (Khaniya et al., 2021). Sri Lanka is exposed to a wide 

range of changes related to climate, including land and sea surface temperature change, 

shifts in rainfall frequency and distribution, increased extreme weather events, and sea 

level rise with consequent impacts directly affecting agriculture, forestry, and water 

resources (Eriyagama et al., 2010). Furthermore, due to climate change, there has been 

a notable increase in the intensity and frequency of extreme weather events in recent 

decades (Tabari, 2020). These weather events have contributed to heightened natural 

disasters, such as floods, droughts, cyclones, and landslides (Naveendrakumar et al., 

2018; Cho, 2020). Several studies provide evidence suggesting that the hydrology at 

the basin level in Sri Lanka will change due to climate change. Imbulana et al. (2018) 

demonstrated the impact of climate change in the Mahaweli River Basin by projecting 

extreme precipitation events and changes in the monsoon climate of Sri Lanka using 

global climate models under different emission scenarios. Chathuranika et al. (2022) 

showed that the future annual streamflow would rise by 59.3% and 65.8% under two 

Representative Concentration Pathways (RCPs) known as RCP4.5 and RCP8.5, 

respectively, in the Nilwala River Basin. 
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The changes in temperature and precipitation play a crucial role in shaping the climate 

zones and hydrological cycles, which, in turn, significantly influence the course of 

climate change. Therefore, it is crucial to use state-of-the-art climate projections 

particularly applicable to the monsoon climate in Sri Lanka to anticipate the future 

effects. Global Climate Model (GCM) is the most widely used technique in simulating 

the global climate system and projecting future climate under various emission 

scenarios (Cai et al., 2018). The GCMs are commonly employed to assess the 

responses occurring on global or regional scales in a particular area or a limited 

geographical zone (Salimian et al., 2021).  

1.4 Problem Statement 

Sri Lanka is an island nation with a diverse range of climates, which are vulnerable to 

the influences of climate change. Recent studies have projected significant changes in 

temperature and precipitation patterns in Sri Lanka over the decades, likely to result in 

shifting the existing climate zones. However, the potential hydrological impacts of 

such shifting are not yet fully understood. The hydrological impacts of climate change 

include changes in river flow, groundwater recharge, and water availability, which are 

vital for the country's economy and survival.  

The climate in Sri Lanka experiances significant spatial and temporal variations. 

Therefore, to develop reliable climate change scenarios in Sri Lanka, GCMs must 

accurately represent seasonal climate variations across the country. Yet, there haven't 

been any comprehensive studies that thoroughly evaluate a fitting GCM specifically 

for the monsoon climate in Sri Lanka. Moreover, identifying the spatial variation of 

Sri Lanka's climatology requires high-resolution data sets. The limitted availability of 

spatially distributed data across Sri Lanka poses a significant challenge for 

hydrological and climate change studies. 

1.5 Aim of the Study 

This research aims to identify the potential shifting of climate zones in Sri Lanka 

according to the Köppen climate classification system and assess the associated 

hydrological impacts. 

1.6 Specific Objectives 

• To identify the climate zones of Sri Lanka according to the Köppen climate 

classification 

• To project potential changes in temperature and rainfall regimes in the future 

in Sri Lanka 

• To estimate the shifting of climate zones according to the projected climate 

variables in Sri Lanka. 

• To develop a hydrological model to simulate the impacts of climate shifting on 

dry and wet zones hydrology 



4 

 

2. LITERATURE REVIEW 

2.1 General 

This literature review reviewed studies relevant to observed climate change over the 

globe, observed climate trends, climate variations and impacts, and different climate 

zone classification methods. For future climate change predictions, the review covered 

GCMs, climate change projections, reliability of the climate models, selection and 

validations of the climate model, and bias correction methods. The referred studies 

also included satellite weather data and its usage for climate studies, hydrological 

modelling studies in Sri Lanka, and distributed hydrological model calibration and 

validation. 

2.2 Climate Change and Global Impact 

The Earth's atmosphere includes gases that entrap heat from the Sun, called greenhouse 

gases, which support keeping the Earth warm. According to the World Meteorological 

Organization (WMO), the primary greenhouse gases naturally occurring in the 

atmosphere are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), which 

cause the greenhouse effect. Natural processes such as decomposition, volcanic 

eruptions, and Earth's crust shifts release greenhouse gases, influencing climate over 

time (Gahlawat & Lakra, 2020). This natural greenhouse effect keeps the Earth's 

average surface temperature at 15˚C by maintaining the radiative balance of the Earth 

and the atmosphere (Maji et al., 2022). In recent years, anthropogenic activities such 

as fossil fuel burning and some agricultural and industrial processes have led to the 

escalations of the concentrations of other greenhouse gases such as nitrous oxide, 

methane, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur 

hexafluoride (SF6). For this reason, the atmospheric temperature has continously 

increased in last decades due to human activities in addition to natural causes. 

Figure 2-1 highlights the alarming rise in global net greenhouse gas emissions over the 

past three decades, underlining the urgent need for action to combat global warming 

in the coming years. 

 

Figure 2-1: Global net emissions of greenhouse gases from anthropogenic activities, 1990–2019 

(IPCC, 2022) 
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2.2.1 Observed Trend of Climate 

Over the past 65 years, the world has witnessed an unprecedented transformation of 

its climate, which will continue into the twenty-first century, resulting in 

unprecedented impacts.  

Global warming, a key driver of this transformation, has left an indelible mark on our 

planet, and the observed and projected climate changes of the era have affected the 

complex interplay of atmospheric variables beyond temperature rise and precipitation 

trends such as pressure and humidity (Abbass et al., 2022).  

Atmospheric pressure, humidity levels, and other climate parameters contribute to this 

complex transformation, creating a more holistic understanding of the shifting 

dynamics of the climate.  

Temperature is a pivotal factor in the climate change phenomena. In 2021, the global 

surface temperature rose by 1.12°C compared to the average from 1880-1920 

(Figure 2-2), as Hansen et al. (2022) reported. Figure 2 reveals a notable temperature 

increase after 1970, attributed to industrialization. Over the past four decades, there 

has been a significant trend, with temperatures rising by 0.18°C per decade. These 

findings underscore the profound impact of human activities on our planet's climate. 

 

Figure 2-2: Temperature anomaly relative to 1880-1920 (Hansen et al., 2022) 

Global warming has caused an increase in atmospheric moisture content, causing 

precipitation events to become more frequent (Tabari, 2020). Climate change, driven 

by global warming, is responsible for altering global precipitation patterns (Raihan, 

2023). Observational data and climate models consistently indicate that precipitation 

patterns are shifting, with many regions experiencing alterations in the timing and 

distribution of rainfall (Dore, 2005). These changes have profound implications for 
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ecosystems, agriculture, and human societies, requiring adaptive strategies to mitigate 

their impacts. 

2.2.2 Future Climate Change 

Future climate change is primarily driven by anthropogenic factors, particularly the 

increase in greenhouse gas emissions. Projections from climate models and scientific 

assessments suggest that if emissions continue to rise at current rates, global 

temperatures will increase by 1.5°C to 4.5°C by the end of the 21st century (IPCC, 

2022). Figure 2-3 illustrates the anticipated temperature changes under various 

greenhouse gas emission scenarios by the end of the 21st century. Global climate 

change will become a critical issue in the future as natural resources, including water 

resources, decrease due to the effects of climate change, and the global population is 

expected to surge by over 30% by 2050 (Mikhaylov et al., 2020). 

 

Figure 2-3: Changes in global surface temperature with greenhouse gas emission scenarios for the 

period 2081 - 2100 compared to the period 1850 – 1900 (IPCC, 2021). 

South Asia, a region characterized by its diverse topography, including the Himalayas 

and the Indian subcontinent, is particularly vulnerable to future climate change 

impacts. Projections indicate that South Asia may experience higher-than-average 

temperature increases and changes in precipitation patterns, potentially increasing by 

4-25% in the long term (Krishnan et al., 2019). The region is also at risk of glacial 

retreat in the Himalayas, which could affect the hydrological system in the major river 

basins from these mountains. The results reveal that the total area of glaciers is 

retreating at a rate of 12 myr-1 due to the impact of climate change in the Himalayas 

area (Kaushik et al., 2020). The hydrological cycle of the South Asian region, as a 

near-equatorial area, is exceptionally vulnerable to changes in rainfall patterns, rising 

temperatures, and glacial retreat. 

2.2.3 Extensive Global Ramifications of Climate Change 

Climate change has led to many of the most prominent impacts, including rising global 

temperatures, increased frequency and severity of extreme weather events, and 

changing precipitation patterns (Dore, 2005; Mondal et al., 2021). The increased 
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incidence of extreme weather events, such as hurricanes, droughts, and wildfires, can 

have catastrophic consequences for human societies and ecosystems. This change has 

far-reaching consequences, including melting polar ice sheets and glaciers, which 

contribute to rising sea levels threatening coastal communities and ecosystems (Kumar 

et al., 2021).  

Climate zones, which define geographic regions with temperature and precipitation 

patterns, are not immune to the effects of climate change. As temperatures rise, climate 

zones shift to higher latitudes and altitudes, and this movement has extreme 

consequences in polar and mountainous regions (Cui et al., 2021). It can lead to the 

displacement and extinction of plant and animal species adapted to specific climate 

zones, disrupting ecosystems and biodiversity (Elsen et al., 2022). Furthermore, these 

shifts can impact agriculture and food security as traditional crop regions may become 

less suitable for cultivation. Changes in climate zones can also exacerbate water 

scarcity as precipitation patterns shift, affecting the availability of freshwater resources 

and exacerbating conflicts over water access in regions already facing water stress.  

Climate change profoundly impacts the hydrological cycle, affecting the distribution 

and availability of water resources (Yang et al., 2021). Rising temperatures increase 

evaporation rates, altering the balance between surface water and atmospheric 

moisture. This phenomenon can result in more intense and variable precipitation 

patterns, contributing to droughts and floods in different regions. Changes in the 

hydrological cycle can disrupt ecosystems, threaten water supplies, and exacerbate 

conflicts over access to water resources, especially in arid and semi-arid regions 

(Stringer et al., 2021).  

Climate variations driven by climate change have a profound global impact, affecting 

climate zones, the hydrological cycle, and numerous ecosystems and human societies. 

As climate change continues, understanding and mitigating its consequences remains 

a critical challenge for the global community, with far-reaching implications for future 

generations. 

2.3 Climate Zone Classification 

Climate zone classification is a fundamental aspect of climate science, serving as the 

basis for understanding and characterizing the diverse climatic conditions on Earth. 

Climate zones are geographical regions that share similar patterns of temperature, 

precipitation, and other climatic variables (Kim et al., 2022; Mondal et al., 2021). 

These zones are defined based on long-term weather data, allowing scientists to 

systematically categorize and study the Earth's diverse climates. Climate zones provide 

a framework for understanding regional differences in climate and help researchers 

predict and interpret climatic changes. 

Factors such as latitude, topography, proximity to oceans, and atmospheric circulation 

patterns drive climate zones. Latitude plays a crucial role in determining temperature 

patterns, with regions closer to the equator generally experiencing warmer climates 
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and those closer to the poles experiencing colder climates. The presence of oceans and 

large bodies of water moderates temperature extremes, leading to more moderate 

climates near coastlines. Topography, such as mountain ranges, can influence local 

climate patterns, creating rain shadows and temperature gradients (Laignel et al., 2023; 

Cui et al., 2021).  

Climate zones are paramount for various fields, including agriculture, ecology, urban 

planning, and climate modelling. They help determine the suitability of an area for 

specific crops and ecosystems, guide decisions on building design and infrastructure, 

and assist in the development of climate change adaptation strategies. Understanding 

climate zones is essential for predicting climate change's potential impacts, as 

temperature and precipitation changes can have far-reaching consequences for 

ecosystems and human societies (Demuzere et al., 2019; Masson et al., 2020).  

Several widely recognized climate zone classifications are commonly used in climate 

studies. The most notable classifications are the Köppen climate classification system, 

Thornthwaite climate classification, Trewartha climate classification, Bergeron 

climate classification, and Koppen-Geiger climate classification, shown in Table 2-1. 

Each system has unique characteristics and methodologies for categorizing climates, 

making them valuable tools for researchers in different contexts. 

Table 2-1: Summary of climate zones classification systems 

Classification 

System 
Summary Reference 

Köppen Climate 

Classification 

Developed by climatologist Wladimir 

Köppen, this system is one of the most 

widely recognized and used climate 

classification systems. It categorizes 

climates based on temperature and 

precipitation patterns. The major 

Köppen climate types include tropical 

(A), arid (B), temperate (C), polar (E), 

and highland (H) climates, with further 

subdivisions based on seasonal 

variations and temperature regimes. 

(Köppen,1931) 

Trewartha Climate 

Classification 

This system, developed by American 

geographer Glenn Thomas Trewartha, 

modifies the Köppen system and 

divides the world into five main climate 

types: tropical, dry, temperate, polar, 

and polar tundra. It incorporates 

additional factors such as humidity and 

vegetation and provides a more 

detailed classification of climate 

regions. 

(Trewartha & 

Horn ,1980) 
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Classification 

System 
Summary Reference 

Thornthwaite 

Climate 

Classification 

The Thornthwaite Climate 

Classification is a system that 

categorises climate types based on 

moisture availability and temperature. 

Developed by climatologist C.W. 

Thornthwaite, it divides climates into 

five main categories: arid, semi-arid, 

temperate, subarctic, and tropical. This 

classification helps in understanding 

and studying regional climate patterns. 

(Thornthwaite 

,1948) 

Bergeron Climate 

Classification 

The Bergeron Climate Classification is 

a system used to categorize climates 

based on temperature and precipitation 

patterns. This classification was 

developed by climatologist and 

meteorologist Emile Bergeron. This 

classification scheme divides climates 

into five primary types: tropical, arid, 

temperate, cold, and polar, providing a 

framework for understanding and 

comparing various climate regions 

worldwide. 

(Bergeron Jr 

,1928) 

Koppen-Geiger 

Climate 

Classification 

The Köppen-Geiger Climate 

Classification, developed by Wladimir 

Köppen and modified by Rudolf 

Geiger, categorizes the world's climates 

based on temperature and precipitation 

patterns. It uses letters and symbols to 

represent climate types, such as tropical 

(A), arid (B), temperate (C), polar (E), 

and more. This system aids in 

understanding and comparing global 

climate diversity. 

(Köppen,1936)  

The Köppen Climate Classification is a widely used classification developed by 

Russian-German climatologist Wladimir Köppen in 1931 to classify climates based on 

temperature and precipitation patterns (Peel et al., 2007). The global vegetation map 

of Grisebach inspires the Köppen Classification published in 1866 and Köppen’s 

background in plant sciences (Wilcock, 1968). Wladimir Köppen and Rudolf Geiger 

developed the Geiger Climate Classification System, first published in 1936, based on 

five major climate types and several subtypes defined based on temperature and 

precipitation patterns.  
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Table 2-2: Description of Köppen- Geiger Climate Symbols and Defining Criteria (Peel et al., 2007) 

1st 2nd 3rd Description Criterion 

A     Tropical 𝑇𝑐𝑜𝑙𝑑 ≥ 18   

  f   
- Rainforest  𝑃𝑑𝑟𝑦 ≥ 60 

  m   
- Monsoon 

Not (Af) & 𝑃𝑑𝑟𝑦 ≥

100 − 𝑀𝐴𝑃/25 

  w   
- Savannah 

Not (Af) & 𝑃𝑑𝑟𝑦 <

100 − 𝑀𝐴𝑃/25 

B     Arid 𝑀𝐴𝑃 <
10 ×  𝑃𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑  

  w   
- Desert 

𝑀𝐴𝑃 <
5 ×  𝑃𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑   

  s   
- Steppe 

𝑀𝐴𝑃 ≥
5 ×  𝑃𝑡h𝑟𝑒𝑠h𝑜𝑙𝑑  

    H 
-  Hot  MAT ≥ 18 

    K 
- Cold MAT < 18 

C     Temperature 𝑇h𝑜𝑡 >
10 & 0 <  𝑇𝑐𝑜𝑙𝑑 < 18  

  s   
- Dry Summer 

𝑃𝑠𝑑𝑟𝑦 <

40 & 𝑃𝑠𝑑𝑟𝑦 <  𝑃𝑤𝑤𝑒𝑡/

3  

  w   
- Dry Winter 𝑃𝑤𝑑𝑟𝑦 <  𝑃𝑠𝑤𝑒𝑡/10  

  f   
- Without dry season  Not (Cs) or (Cw) 

    a 
- Hot Summer 𝑇h𝑜𝑡 ≥ 22  

    b 
- Warm Summer Not (a) & 𝑇𝑚𝑜𝑛10 ≥ 4 

    c 
- Cold Summer 

Not (a or b) & 

1 ≤  𝑇𝑚𝑜𝑛10 < 4 

D     Cold 𝑇h𝑜𝑡 > 10 & 𝑇𝑐𝑜𝑙𝑑 ≤
0  

  s   
- Dry Summer 

𝑃𝑠𝑑𝑟𝑦 <

40 & 𝑃𝑠𝑑𝑟𝑦 <  𝑃𝑤𝑤𝑒𝑡/

3  

  w   
- Dry Winter 𝑃𝑤𝑑𝑟𝑦 <  𝑃𝑠𝑤𝑒𝑡/10  

  f   
- Without dry season  Not (Ds) or (Dw) 

    a 
- Hot Summer 𝑇h𝑜𝑡 ≥ 22  

    b 
- Warm Summer Not (a) & 𝑇𝑚𝑜𝑛10 ≥ 4 

    c 
- Cold Summer Not (a, b, or d) 

    d 
- Very Cold Winter 

Not (a or b) & 

 𝑇𝑐𝑜𝑙𝑑 < −38 

E     Polar 𝑇h𝑜𝑡 < 10  

  T   
- Tundra 

𝑇h𝑜𝑡 >  0  

  F   
- Frost 

𝑇h𝑜𝑡 ≤  0  

 

2.4 Meteorological Data Gap Filling 

Observed meteorological data are the core of climate change and hydrological analysis 

(Costa et al., 2021). A network of meteorological or climate observations consists of 

an array of weather stations strategically positioned across specific geographic regions. 
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The primary objective is ascertaining those designated areas' meteorological and 

climatological parameters. Each station collects data on various factors, including air 

temperature, atmospheric pressure, wind speed and direction, relative humidity, 

rainfall, evaporation and solar radiation. Subsequently, this gathered information is 

transmitted to a central database within the network for processing and storage. 

Nevertheless, unforeseen circumstances may render manual weather stations 

ineffective over time, leading to their temporary closure, permanent shutdown, 

operational malfunction, or precarious functionality (Costa et al., 2021). In these 

situations, it is required to fill that gaps using adequate techniques to get a continuous 

time series of data. 

Analyzing climate zone shifting and its hydrological impacts in Sri Lanka requires 

long and comprehensive time series data. However, acquiring continuous datasets for 

Sri Lanka proves challenging due to irregular data collection. Specifically, some 

weather stations, mainly manual stations in the north and east provinces, remained 

inoperable during the Civil War. This lack of continuous data makes it difficult to 

understand and predict climate change and climate zone shifting and impacts Sri 

Lanka's hydrological systems. 

To overcome these data limitations, researchers have employed various strategies, 

including data gap-filling techniques, spatial interpolation methods, and the integration 

of satellite-based data (Table 2-3). These approaches help mitigate the impact of 

missing data points and provide a more complete picture of Sri Lanka's climate and 

hydrology. 

Table 2-3: Summary of existing missing data imputation methods 

Method Summary Reference 

Linear Regression The gap-filling through linear regression 

involves utilizing data acquired from a 

consistently operating station during the 

gap period. When confronted with missing 

observations in dataset Y at a specific 

station, the historical series is reconstructed 

by incorporating observations from another 

dataset X sourced from a neighbouring 

station with similar characteristics. The 

estimation method involves applying a 

regression equation tailored based on the 

concurrently observed values at the two 

stations. 

(Fagandini et al., 

2023) 
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Method Summary Reference 

Spatial 

Interpolation 

This method employs two primary 

techniques: Inverse Distance Weighting 

(IDW) and Kriging. IDW assigns weights to 

neighbouring stations based on their 

proximity to the location with missing data. 

The weighted average of these values is 

then used to estimate the missing value. 

Kriging, on the other hand, is a 

geostatistical interpolation technique that 

considers the spatial correlation structure of 

the data to predict missing values. It utilizes 

a variogram, a statistical measure of spatial 

correlation, to determine the weights 

assigned to neighbouring stations. While 

IDW is more straightforward and 

computationally efficient, Kriging offers 

more accurate estimates, particularly in 

areas with complex spatial patterns. 

(Addi et al., 

2022) 

Machine Learning 

Techniques 

Neural networks have emerged as a 

powerful tool for addressing missing data in 

meteorological datasets. By trining the 

connections between various 

meteorological parameters, neural networks 

can effectively predict missing values based 

on the relationships learned during training. 

The methodology proposed intends to 

create a precipitation time series using 

observed data from nearby stations. The 

outcomes have been contrasted with those 

of a Multiple Linear Regression model, 

serving as a foundation for enhancements to 

conventional practices. 

(Papailiou et al., 

2022) 

The Multiple 

Imputation by 

Chained 

Equations 

MICE is a multiple imputation technique 

that iteratively imputes missing values in a 

multivariate dataset. It works by repeatedly 

imputing each missing value while 

considering all other variables in the 

dataset. This process ensures that the 

imputed values are consistent with the 

overall distribution of the data. 

(Buuren & 

Oudshoorn, 

2011) 

 

2.4.1 The Multiple Imputation by Chained Equations 

The Multiple Imputation by Chained Equations (MICE) algorithm is a multiple 

imputation method (Rubin, 1996) developed by Buuren & Oudshoorn (2011), which 
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imputes missing values by producing multiple complete data sets in which missing 

values are substituted with probable values based on information available in the 

observed data. The MICE algorithm is implemented by writing an S-PLUS  function 

(Mazumdar et al., 1999). To handle incomplete variables, the user can select a set of 

predictors for imputation. This feature is advantageous for imputing substantial 

collections of data series encompassing numerous variables. This method helps 

estimate climatological parameters through imputation, using a comprehensive 

collection of input data sets, therefore has a more extensive variety of applications in 

climatological parameter gap filling (de Carvalho et al., 2017; Turrado et al., 2014; 

Wesonga, 2015). The following section discusses two methods in MICE commonly 

used to fill the gaps in data series. 

• Predictive Mean Matching Method (PMM) 

The predictive mean matching (PMM) method involves using the mean of a set of 

similar observations to attribute the value of a missing observation. This method 

assumes that the missing value is likely to be similar to the mean of a set of similar 

observations (Vink et al., 2014). 

• Normal Imputation Method (Norm) 

The normal imputation method is a method (Norm) of imputing missing data in a 

dataset. It involves replacing the missing value with the mean or median of the entire 

dataset or with a randomly generated value from a normal distribution. This method is 

based on the assumption that the missing value is likely to be similar to the mean of 

the entire dataset (Lee & Carlin, 2010). 

2.4.2 Data Imputation Performance Evaluation 

In data imputation, assessing the quality and reliability of imputed data is paramount 

to ensure the robustness of subsequent analyses and modelling. Performance 

evaluation metrics are essential for quantifying how well-imputed data align with the 

missing values. This section discusses the significance of performance evaluation 

metrics. It introduces the use of Percentage Root Mean Square Error (RMSE) and 

Mean Absolute Error (MAE) as two critical metrics for evaluating data imputation 

performance (Turrado et al., 2014). 
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where 𝐺𝑖 and 𝐺̂𝑖  are the measurements and the model-estimated values of 

precipitation, respectively, and n is the number of data points of the validation set. The 

evaluation was conducted on three timescales: daily, 10-day, and monthly (Costa et al., 

2021). 

2.5 Global Climate Models 

The Global Climate Model (GCM) has become the predominant tool for future climate 

change studies, facilitating climate projections under various emission scenarios (Cai 

et al., 2018). Over the past few decades, GCMs have significantly improved, leading 

to more precise simulations of climate and its changes. The establishment of the 

Coupled Model Intercomparison Project (CMIP) aimed to investigate and compare the 

climate simulations produced by GCMs (Meehl et al., 2000).  

The most advanced GCM was developed under the sixth phase of the IPCC, providing 

insights into past climate mechanisms and enabling the projection of future climate 

scenarios. Compared to previous model intercomparison projects, CMIP6 projections 

can simulate various monsoon characteristics (Gusain et al., 2020). 

2.5.1 Reliability of the Global Climate Models 

The GCMs have several notable strengths. They provide a comprehensive framework 

for simulating the Earth's climate system, incorporating complex interactions among 

the atmosphere, oceans, land surface, and cryosphere (Mohandas, 2022). The GCMs 

have successfully reproduced historical climate variability and trends, demonstrating 

their ability to capture essential climate processes. They are instrumental in 

understanding the physical principles that govern the climate system and are crucial 

for climate predictions and projections. Moreover, GCMs offer the advantage of 

assessing the impacts of various climate forcings, including greenhouse gas emissions, 

volcanic eruptions, and solar variability, allowing researchers to quantify their 

contributions to observed climate changes (Maher et al., 2021). 

Despite their strengths, global climate models also have limitations and face 

challenges. One primary challenge is the complexity of the climate system, as it 

involves countless interacting components and processes. The GCMs require 

simplifications and parameterizations to make computations feasible, leading to 

uncertainties in model outputs (Wang et al., 2020). Additionally, the spatial and 

temporal resolutions of GCMs may not adequately capture small-scale climate 

phenomena and rapid changes (Kendon et al., 2021). 

2.5.2 GCMs Used in Past Studies in South Asia 

When selecting climate models for this study, several key factors were considered, 

including previous research on monsoon climate and spatial resolution. Table 4 

provides an overview of the selected climate models based on these criteria. All the 

models listed in Table 2-4 have been extensively studied within the South Asia domain 

and possess a spatial resolution of less than 2.0˚. By considering these factors, the 
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chosen models are expected to provide relevant and accurate predictions about the 

monsoon climate domain of the study region. 

Table 2-4: Details of the CMIP6 GCMs Assessed in this Study 

SN Source ID Institution ID Country 
Nominal 

Resolution 

Variant 

label 

1 ACCESS-CM2 CSIRO-

ARCCSS 

Australia 1.2˚ × 1.8˚ r1i1p1f1 

2 ACCESS-ESM1-

5 

CSIRO Australia 1.2˚ × 1.8˚ r1i1p1f1 

3 BCC-CSM2-MR BCC China 1.1˚ × 1.1˚ r1i1p1f1 

4 CAMS-CSM1-0 CAMS China 1.1˚ × 1.1˚ r1i1p1f1 

5 CESM2 NCAR USA 0.9˚ × 1.3˚ r1i1p1f1 

6 CMCC-CM2-SR5 CMCC Italy 1.0˚ × 1.0˚ r1i1p1f1 

7 CMCC-ESM2 CMCC Italy 1.0˚ × 1.0˚ r1i1p1f1 

8 CNRM_CM6-1-

HR 

CNRM-

CERFACS 

France 0.5˚ × 0.5˚ r1i1p1f2 

9 CNRM-ESM2-1 CNRM-

CERFACS 

France 1.4˚ × 1.4˚ r1i1p1f2 

10 GFDL-ESM4 NOAA-GFDL USA 1.3˚ × 1.0˚ r1i1p1f1 

11 FGOALS-f3-L CAS China 1.3˚ × 1.0˚ r1i1p1f1 

12 INM-CM4-8 INM Russia 1.5˚ × 2.0˚ r1i1p1f1 

13 INM-CM5-0 INM Russia 1.5˚ × 2.0˚ r1i1p1f1 

14 MPI-ESM1-2-HR MPI-M Germany 0.9˚ × 0.9˚ r1i1p1f1 

15 MRI-ESM2-0 MRI Japan 1.1˚ × 2.1˚ r1i1p1f1 

 

2.5.3 Selection of an appropriate GCM for monsoon climate in Sri Lanka 

Selecting an appropriate GCM is a critical step in climate research and prediction. The 

GCMs are complex computer simulations that attempt to represent the Earth's climate 

system and its dynamics. These models incorporate a wide range of physical, chemical, 

and biological processes to simulate the behaviour of the Earth's atmosphere, oceans, 

land surfaces, and ice sheets. However, no single GCM can accurately capture all 

aspects of global climate, and the choice of model can significantly affect the outcomes 

of climate simulations and predictions (Jose & Dwarakish, 2020). 

Like many other South Asian regions, Sri Lanka experiences a distinct monsoon 

climate characterized by seasonal shifts in wind patterns and precipitation 

(Naveendrakumar et al., 2019). Accurate modelling of monsoon behaviour is vital for 

predicting rainfall patterns, agricultural planning, and disaster management in the 

country. However, not all GCMs are equally adept at representing monsoon systems, 

and some may struggle to simulate the fine-scale processes that drive the monsoon. 
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• Global Climate Model selection based on Evaluation Based on Distance from 

Average Solution (EDAS) -  

To select the best-performing GCM, a methodology based on the distance from 

the average solution is employed. The distance method to the average solution, 

known as EDAS, was introduced by Ghorabaee et al. (2015), which enables 

the effective processing of decision information during multi-criteria decision 

analysis and therefore has a wider variety of applications (Chen, 2023; Phan & 

Nguyen, 2022). The fundamental concept of EDAS is to assess the available 

alternatives using positive and negative distances regarding the average answer 

derived from the decision matrix (Mishra et al., 2022). 

2.5.4 Coupled Model Intercomparison Project Phase 6 

The CMIP was established to investigate and contrast climate simulations using 

coupled GCMs, which incorporate ocean, atmosphere, cryosphere, and land 

components (Meehl et al., 2000). The CMIP provides a framework for comparing and 

evaluating climate models through standardized experiments. The CMIP Phase 6 

(CMIP6) represents the latest iteration of this project and has helped improve our 

understanding of climate change and its potential impacts. The CMIP6 (Coupled 

Model Intercomparison Project Phase 6) primarily aims to address several key research 

questions related to the Earth's system response to external forces. These questions 

include understanding the origins and implications of systematic model biases and 

assessing future climate change in the face of internal climate variability, climate 

predictability, and scenario uncertainties (Eyring et al., 2016). 

The core experiments include the Historical Simulation for understanding past climate 

and future projections up to 2100 by exploring emission scenarios. Historical 

projections are based on observations and various forcing data, and they are: 

• Emissions of short-lived species and long-lived greenhouse gases (GHGs) 

• GHG concentrations 

• Global gridded land-use forcing data sets 

• Solar forcing 

• Stratospheric aerosol data set (volcanoes) 

• Atmospheric Model Inter-comparison Project (AMIP) sea surface 

temperatures (SSTs) and sea ice concentrations (SICs) 

• For simulations with prescribed aerosols, a new approach to prescribing 

aerosols in terms of optical properties and the fractional change in cloud droplet 

effective radius to provide a more consistent representation of aerosol forcing 

• For models without ozone chemistry, time-varying gridded ozone 

concentrations and nitrogen deposition 

Enabling model groups to employ diverse forcing data sets can enhance the 

representation of uncertainty (Eyring et al., 2016). 
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2.5.5 Shared Socioeconomic Pathways (SSPs) 

Scenarios play a crucial role in climate change research and assessment as they 

facilitate our comprehension of the long-term implications of anthropogenic activities. 

Additionally, they allow researchers to investigate various potential futures within the 

framework of intrinsic uncertainties that lie ahead.  

The development of SSPs consisted of population, urbanization and Gross Domestic 

Product (GDP) as main socioeconomic scenario drivers (essential SSP elements). One 

of the critical contributions offered by the SSPs lies in their incorporation of 

socioeconomic development alongside climate change mitigation and adaptation. The 

SSPs give helpful information about the challenges and opportunities of meeting 

climate goals by showing different paths for population growth, economic growth, and 

energy systems.  

Table 2-5: Overview of Shared Socioeconomic Pathways 

SSP Description Marker Team Reference 

SSP1-2.6 Sustainability IMAGE (PBL) 
Van Vuuren et al. 

(2017) 

SSP2-4.5 
Middle of the 

Road 

MESSEGE-GLOBIOM 

(IIASA) 
Fricko et al. (2017) 

SSP3-7.0 Regional Rivalry AIM/CGE (NIES) Fujimori et al. (2017) 

SSP5-8.5 
Fossil-fueled 

Development 

REMIND-MAgPIE 

(PIK) 
Kriegler et al. (2016) 

 

2.6 Methods of Bias Correction 

Climate models are imperfect and may not always accurately represent the complex 

interactions between different climate system components. This can lead to errors in 

the projections, mainly when predicting regional or local climate conditions. To 

address these issues, bias correction methods are used to improve the fitting of climate 

model simulations to observations in the control period (Worku et al., 2020). Biased 

climate model simulations may lead to incorrect assessments of climate impacts, 

hinder the reliability of long-term projections, and limit the usefulness of model results 

for decision-making in various sectors. These methods aim to adjust the model output 

to match more closely with the observed data while preserving the overall patterns and 

trends in the model.  

2.6.1 Empirical Statistical Bias Correction 

Empirical Statistical Bias Correction is a data-driven method to rectify systematic 

errors in global climate models. It involves developing statistical relationships between 

model-simulated and observed data, allowing for fine-scale adjustments. This 

approach improves the accuracy and reliability of climate model outputs, enhancing 

their utility for climate change research and impact assessments. Table 2-6 provides 

the equation for the empirical statistical bias corrected method. 
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Table 2-6: Empirical statistical bias correction methods 

Method 
Transformation for 

Precipitation 

Transformation for 

Temperature 
Reference 

Mean Based 

Method 
𝑋𝑜

′ =  𝑋𝑀
′ ×

𝜇𝑜

𝜇𝑀
 𝑋𝑜

′ =  𝑋𝑀
′ + 𝜇𝑜 − 𝜇𝑀 

(Schmidli et 

al., 2006) 

Variance 

Based Method 
𝑋𝑜

′ =  
(𝑋𝑀

′ − 𝜇𝑀) 

𝜎𝑀
 ×  𝜎𝑂 +  𝜇𝑂 

Same as 

Precipitation 

(Hawkins et 

al., 2013) 

Subscript ‘O’ represents observation, and ‘M’ represents the modelled variable; with 

or without the apostrophe, it represents the future and calibration period, respectively. 

2.6.2 Quantile Mapping Bias Correction 

Quantile mapping is a widely used bias correction method in climate research. This 

approach aligns the cumulative distribution functions of model-simulated data with 

observed data, correcting biases in distribution percentiles. By preserving the 

statistical characteristics of the climate signal while minimizing biases, quantile 

mapping improves the accuracy and reliability of climate model outputs for various 

applications (Ayugi et al., 2020). Table 2-7 provides the equation for the quantile 

mapping method. 

Table 2-7: Quantile mapping bias correction methods 

Method 
Transformation for 

Precipitation 

Transformation 

for Temperature 
Reference 

Quantile Mapping 𝑋𝑜
′ =  𝐹𝑂

′ [𝐹𝑀(𝑋𝑀
′ )]

𝑋𝑀
′

𝑋𝑀
′  

Same as 

precipitation 
(Wood et al., 2004) 

Quantile 

Correcting 
𝑋𝑜

′ =  𝑋𝑀
′  ×  

𝐹𝑂
′ [𝐹𝑀(𝑋𝑀

′ )]

𝐹𝑀
′ [𝐹𝑀(𝑋𝑀

′ )]
 

𝑋𝑜
′

= 𝑋𝑀
′ + 𝐹𝑂

′ [𝐹𝑀′(𝑋𝑀
′ )]

− 𝐹𝑂
−1[𝐹𝑀′(𝑋𝑀

′ )]
𝑋𝑀

′

𝑋𝑀
′  

(Mpelasoka & 

Chiew, 2009) 

Transfer Function 𝑋𝑜
′ = 𝑎 ×  𝑋𝑀

𝑏  
𝑋𝑜

′

= 𝑎 ×  𝑋𝑀
′ + 𝑏 

(Prudhomme et al., 

2002) 

Subscript ‘O’ represents observation, and ‘M’ represents the modelled variable; with 

or without the apostrophe represents future and calibration period, respectively; F and 

F-1 represent empirical cumulative distribution function (ECDF) and reverse ECDF, 

respectively. 

2.7 Methods of Developing Gridded Meteorological Data Sets 

Gridded meteorological data sets are crucial tools in climate research and hydrological 

modelling. They provide spatially continuous and temporally consistent information 

about weather and climate variables, which is invaluable for various applications 

(Blankenau et al., 2020). 

Gridded datasets are crucial as they enable interpolating meteorological observations, 

offering estimates of weather and climate variables in locations lacking direct 



19 

 

measurements (Blankenau et al., 2020). These datasets are essential inputs for various 

environmental models, including climate and hydrological models. Table 2-8 discusses 

the existing methods for developing gridded datasets. 

Table 2-8: Summary of gridded dataset development methods 

Method Summary Reference 

Kriging method of 

interpolation 

Kriging is a geostatistical 

interpolation method used 

to estimate values at 

unsampled locations 

based on the spatial 

autocorrelation of 

observed data. It involves 

characterising spatial 

property variations 

through variograms and 

aims to minimize the 

estimation errors 

associated with predicting 

variations. 

(Oliver & Webster, 1990) 

Ensemble Kalman Filter 

Ensemble Kalman Filter 

integrates observed data 

with model simulations to 

create gridded 

meteorological data sets. 

These methods are 

particularly suitable for 

real-time applications, 

where near-real-time 

observations are 

incorporated into the 

analysis. 

(Houtekamer & Mitchell, 

1998, 2001) 

 

2.7.1 Satellite Weather Data 

Traditional methods of rainfall measurement, such as rain gauges, are limited in their 

spatial and temporal coverage. Rain gauges are often sparsely distributed, making 

obtaining more accurate and dispersed rainfall estimates difficult. Satellite rainfall data 

is a valuable tool that offers comprehensive global rainfall coverage, with the 

advantage of high temporal and spatial resolutions. Climate change studies high spatial 

resolution data for reliable mitigation measurements. This makes satellite rainfall data 

ideal for drought monitoring, flood forecasting, and water resource management 

(Dumont et al., 2022; Hinge et al., 2022; Lemma et al., 2022). 
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Table 2-9: Key features of satellite rainfall data sources 

Product 
Spatial 

Resolution 
Temporal Resolution 

Temporal 

Domain 

GPCC 2.5˚ Monthly 1951 - 2000 

GPCP 0.5˚,1.0˚,2.5˚ Daily, Monthly 1979 - 2004 

PERSIANN 0.25˚ 6-Hours, Daily 1983 - present 

TRMM 0.25˚ 3-Hours, Daily 1998 - present 

ERA-

Interim 

0.75˚ 6-Hours 1950 - present 

ERA5 0.25˚ Hourly 1979 - present 

CHIRPs 0.05˚ Daily, Monthly, Pentad, 

Decadal, Annual 

1981 - present 

Spatial resolution was the most critical factor when validating the database selection 

for a small island like Sri Lanka. Considering its spatial resolution, temporal 

resolution, and data availability period, the Climate Hazards Group InfraRed 

Precipitation with Station (CHIRPs) dataset is the most suitable for high-resolution 

climatological studies. 

2.7.2 The CHIRPs Dataset 

The CHIRPS dataset is a global, high-resolution rainfall dataset produced by the 

University of California, Berkeley Climate Hazards Group. The dataset is created by 

combining satellite rainfall estimates with ground-based observations. The 

development of the CHIRPS dataset involved the collaboration of the U.S. Geological 

Survey, the Climate Hazards Group at the University of California in Santa Barbara, 

the Climate Prediction Center and the National Climatic Data Center (Marulanda et 

al., 2022). The CHIRPS satellite observation employs two thermal infrared satellites 

to collect data from observation archives. This data is obtained by measuring the 

duration of cold clouds (Funk et al., 2015). The calibration process of CHIRPs involves 

using the Tropical Rainfall Measuring Mission (TRMM) and in situ precipitation 

observations (Funk et al., 2015). The CHIRPS dataset was previously used in Sri 

Lanka by Alahacoon and Edirisinghe (2021) to study historical rainfall and analyse 

trends. 

2.8 Hydrological Modelling 

Hydrological Modelling is a process used to understand natural ecological systems, 

and this understanding is employed to improve decision-making in water resource 

planning, policymaking, irrigation practices, and the identification of flood-prone 

areas and groundwater improvement. Comprehensive hydrological parameters are 

inputted into the mathematical or systematic process, and these models perform 

complex hydrological processes, providing results in the form of hydrological 

components, such as runoff (Pandi et al., 2021).  
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The earliest attempt at hydrological modelling can be traced back to the 18th century 

when Mulvany (1851) introduced the method to compute peak discharge by 

calculating the concentration time. Fundamental theories that used hydrological 

modelling were developed until the 1960s and the 1960s witnessed the initiation of the 

computer revolution. The computational power of computers enabled the development 

of a new hydrological subfield called numerical hydrology (Singh, 2018). With the 

power of computers, it became possible to simulate the entire hydrological system with 

the development of the Stanford Watershed Model (Crawford & Linsley, 1966). Since 

then, two and three-dimensional modelling has become possible (Bear, 1979), and the 

simulation of water flow, sediment, and pollutant transport has been undertaken (Bear 

& Verruijt, 1987). Operational techniques, such as reservoir management, were 

developed, introducing techniques to calibrate hydrological models (Beven, 2001). 

Moreover, computers have facilitated the creation of accessible software and tools for 

user convenience in tasks such as acquiring, storing, retrieving, processing and 

distributing data (Croley, 1980). The development of remote sensing tools facilitates 

the development of geographical information systems (GIS) to analyse large quantities 

of vector and raster data (Maidment, 2005). After computer revolution, artificial 

intelligence made huge impact on hydrological modelling. Early 21st century 

witnessed the new nural network models such as fuzzy logic, genetic programming, 

and wavelet models and these new methods made significant impact in hydrological 

model development (Kumar et al., 2005; Sen, 2009; Tayfur, 2014).  

2.8.1 Objectives of Hydrological Modelling 

Hydrological modelling plays a vital role in understanding hydrological processes 

within a watershed, encompassing phenomena such as precipitation, runoff, 

infiltration, and evaporation. Finally, it can explain the water balance in the given study 

area. With these results, primary objectives of hydrological modelling can be achieved, 

such as water resource management, a comprehensive assessment of water availability, 

demand prediction, and strategic allocation for agricultural, industrial, and domestic 

purposes. Moreover, hydrological models perform a critical role in disaster 

management, such as flood and drought predictions, by identifying vulnerable areas 

and formulating preventive measures. 

Beyond the above primary objectives, hydrological models address broader 

challenges, including climate change impact assessment on water resources. 

Additionally, hydrological models aid in environmental impact assessments, 

evaluating anthropogenic activities on water quality. With these capabilities, 

hydrological models can be used as decision-making tools and simulate diverse 

scenarios, providing valuable insights for informed decision-making and policy 

development in water-related issues and disaster preparedness. 
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2.8.2 Types of Hydrological Models 

Hydrological models address spatial scale, complexity, and purpose, enabling 

researchers to choose models that best suit their specific objectives and data 

availability. Hydrological models can be classified based on model structure, spatial 

distribution, stochasticity, and spatial-temporal application (Wheater, 2002). The 

following table 2-10 discusses different types of hydrological models. 

Table 2-10: Summary of different types of hydrological models 

Type Summary Reference 

Lumped Model The lumped model is a 

hydrological model 

representing a catchment as a 

single unit, considering 

average values of variables 

over the entire catchment area. 

Typically, a lumped model is 

formulated using differential or 

empirical algebraic equations, 

neglecting consideration for 

spatial variations in processes, 

inputs, boundary conditions, 

and geometric characteristics 

within the system. 

(Beven, 2001) 

Distributed Model Distributed models produce 

spatially distributed predictions 

by representing local averages 

by discretising the catchment 

into numerous elements or grid 

squares. The equations for the 

state variables related to each 

element are then solved to 

capture the spatial variability 

within the modelled system. 

(Beven, 2001) 

Semi-distributed Model A semi-distributed 

hydrological acts as a balance 

model between lumped and 

fully distributed models. These 

models split the basin into 

several smaller subbasins, and 

spatial parameter variation is 

partially permitted.  

(Orellana et al., 

2008) 
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2.8.3 Distributed Hydrological Model 

There are different types of distributed hydrological models. The Rainfall-Runoff-

Inundation (RRI) model is a popular distributed hydrological model that serves as a 

comprehensive framework in hydrological science and is used for rainfall, runoff, and 

inundation processes. This model uses meteorological, geographical, and hydraulic 

factors to simulate the dynamic cascade of events from precipitation to flooding, 

offering a holistic perspective on watershed behaviour. At its core, the RRI model 

delineates how rainfall infiltrates the soil, transforms into runoff, and subsequently 

contributes to inundation, encapsulating the entire hydrological cycle. However, RRI 

models simplify the complex physical processes involved in rainfall, runoff, and 

inundation. These simplifications may not capture all relevant details, leading to 

potential inaccuracies in modelling certain hydrological phenomena. 

The Soil and Water Assessment Tool (SWAT) model is a prominent and widely used 

watershed-scale distributed hydrological model employed to simulate and assess the 

intricate interactions of soil, water, and land management practices. SWAT facilitates 

comprehensive analyses of hydrological processes by integrating meteorological, 

topographical, and land use data. It employs a basin-scale approach, allowing 

researchers and water resource managers to evaluate the impact of various land 

management strategies, climate scenarios, and land use changes on water availability 

and quality. However, SWAT requires substantial data for accurate simulations, 

including detailed information on topography, soils, land use, and meteorology. 

In this study, the simulation of natural water balance was conducted using the 

distributed hydrological runoff model created by Kashiwa & Kazama (2010) within 

the framework outlined by Kazama (2004). The model was modified to estimate the 

distributed water balance in Sri Lanka. This distributed hydrological model process 

combines layers with precipitation, evaporation, surface runoff, groundwater flow and 

water balance. The methodology used for flow estimation included direct and ground 

flow in the model. Because of that, this model can provide a comprehensive idea of 

the water balance.  

The selection of this model for the study was based on its requirement for less data 

compared to RRI and SWAT models. Additionally, software-based models such as RRI 

and SWAT are challenging to reshape for specific objectives, whereas program-based 

models can be improved to achieve user needs. 

2.8.4 Calibration of Hydrological Model 

Model calibration involves the selection of suitable values for model parameters to 

simulate the hydrological behavior of a study area accurately (Moore & Doherty, 2005; 

Wagener et al., 2004). Most models include two types of parameters: physical 

parameters and process parameters (Singh, 1995). Physical parameters reflect 

measurable properties of the catchment, such as the catchment area and surface slope. 

On the other hand, process parameters represent characteristics that are not easily 
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measured, such as the average depth of water storage capacity and the coefficient of 

nonlinearity controlling discharge rates from component stores (Singh, 1995). The 

calibration process of the model can be done manually or automated. The following 

table 2-11 summaries the different methods available in the model calibration. 

Table 2-11: Summary of different methods of hydrological model calibration 

Method Summary Reference 

Manual 

Calibration 

Model calibration involves manually 

adjusting parameter values until the model 

output closely matches observed data, 

requiring familiarity with the model and 

study catchments. It's a trial-and-error 

process with no clear endpoint, leading to 

variability in results. This method is time-

consuming, and formal uncertainty analysis 

is a disadvantage. 

(Wheater, 2002; 

Sorooshian and 

Gupta, 1995) 

Automatic 

Calibration 

Computer-based methods for automatic 

calibration of hydrological models aim to 

expedite the calibration process and 

enhance objectivity by eliminating 

subjective manual human judgment. While 

these methods offer increased objectivity 

and reduced dependency on model-specific 

expertise, they have not replaced manual 

methods entirely due to challenges in 

constructing objective functions and 

optimization algorithms. Automatic 

calibration is often most successful when 

used alongside manual procedures. 

(Boyle et al., 2000; 

Sorooshian and 

Gupta, 1995) 

Objective 

Functions 

An objective function quantifies the 

disparity between model-simulated and 

observed catchment outputs. Standard 

objective functions include Weighted Least 

Squares (WLS), incorporating weight 

parameters for specific hydrograph 

characteristics. The Nash-Sutcliffe 

Efficiency (NSE) criterion is widely used. 

Still, the Kling and Gupta Efficiency (KGE) 

has emerged to address NSE limitations, 

exhibiting better performance in capturing 

variability, peaks, and means of flows. 

Maximum Likelihood-based functions by 

Sorooshian and Dracup rigorously address 

autocorrelation and heteroscedasticity in 

streamflow data errors but are less favoured 

in hydrology due to justifiability concerns. 

(Schaefli and 

Gupta, 2007; Gupta 

et al., 2009; 

Pechlivanidis et al., 

2010a; Sorooshian 

and Dracup, 1980; 

Beven, 2001) 
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3. DATA AND METHODOLOGY 

3.1 General 

This section outlines the methodology to fulfill the research aim and specific 

objectives. Figure 4 illustrates the flowchart detailing the methodology. It is essential 

to select suitable methods to gap-fill the missing meteorological data to maintain a 

continuous time series of data to accomplish the main and specific research objectives. 

Accordingly, the Multiple Imputation by Chained Equations (MICE) method was 

selected based on simplicity and handling extensive data range with an advanced 

mathematical model.  

To select the most suitable global climate model (GCM) for capturing the monsoon 

signal of Sri Lanka, the Evaluation Based on Distance from Average Solution (EDAS) 

method was chosen based on a comprehensive literature review. The EDAS method is 

a multi-criteria decision analysis approach that relies on an evaluation based on the 

distance to the average solution. Using the EDAS method, the best-performing models 

were ranked for each climate zone in Sri Lanka. 

Achieving the primary objectives of this study necessitates the development of a high-

resolution meteorological dataset to identify the spatial variation of climatology. This 

goal was achieved by establishing a relationship between the observed data series and 

the CHIRPs satellite data series. This methodology generated a high-resolution 0.05˚ 

precipitation data series encompassing the entire island of Sri Lanka. In parallel, 

temperature data series were integrated into each cell using the Thiessen polygon 

method, assuming uniform temperature distribution within each polygon. This 

approach made it possible to develop a high-resolution meteorological data series, 

facilitating the identification of spatial variation of climate zones according to the 

Koppen-Geiger Climate Classification for Sri Lanka climatology. This section 

provides comprehensive overview of the data and methods used for the study. 

Regarding model selection for hydrological applications, the literature review 

examined various hydrological models and their applications, identifying the different 

hydrological models previously used and the purposes for utilizing these models to 

assess water balance. This study utilized Kashiwa et al. (2010) distributed hydrological 

runoff model within the framework of Kazama et al. (2004) for simulating runoff and 

calculating water balance.  
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3.2 Methodology Flow Chart 

The methodology adopted in the present study is illustrated in Figure 3-1 below. 

 

Figure 3-1: Methodology flowchart
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3.3 Study Area 

The study focuses on Sri Lanka, a tropical island nation located in the Indian Ocean 

off the southern coast of India. The geographic location of Sri Lanka falls between the 

latitudes 5°55′ and 9°51′ north and longitudes 79°41′ and 81°53′ east, covering an area 

of 65,610 km2. Sri Lanka is a small island nation susceptible to extreme weather events 

such as floods, landslides, and droughts. Consequently, According to the IPCC, Sri 

Lanka falls into the category of vulnerable small island nations that are under threat 

from the impacts of climate change. 

The climate of Sri Lanka is characterized by a tropical monsoon climate, which is 

further divided into two major monsoon rainfall seasons and two discernible inter-

monsoon rainfall seasons (Esham & Garforth, 2013). The distinct monsoon seasons 

experienced in Sri Lanka are the Northeast Monsoon (NEM) from December to 

February and the Southwest Monsoon (SWM) from May to September. Additionally, 

two inter-monsoon periods of rainfall are observed, namely the First Inter-Monsoon 

(FIM), lasting from March to April and the Second Inter-Monsoon (SIM), occurring 

between October and November. The topography of Sri Lanka is diverse, with 

elevations ranging from sea level to 2,505 m. This topographical variation results in 

slight variations in air temperature throughout the island and changes in rainfall 

patterns. Furthermore, based on topography, precipitation patterns and soil type, the 

island is divided into three principal climatic zones: wet, intermediate, and dry 

(Panabokke, 1996). 

3.4 Data Collection 

Observed daily precipitation and temperature data spanning a period of 40 years (1975-

2014) was obtained from 27 meteorological stations (Table 3-1) from the Department 

of Meteorology, Sri Lanka (Figure 3-2). The data is assumed to be missing completely 

at random. 

The current study selected a collection of fifteen CMIP6 global climate models 

(GCMs) to assess their performance in simulating the monsoon climate of Sri Lanka 

for precipitation (Table 2-4), where data was obtained from the Earth System Grid 

Federation (ESGF) portal. Model performances were assessed over the 1975–2014 

period. The model selection study was based on the analysis of monthly precipitation 

values, which have been derived from the above daily data set with missing data 

imputed. 
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Figure 3-2: Selected Gauging Stations 

 

Table 3-1: Coordinates of Meteorological Stations 

Gauging Station 
Coordinates 

Precipitation Temperature 
Latitude Longitude 

Anfield Estate N 6° 52' 12'' E 80° 37' 48'' ✓  

Anuradhapura N 8° 21' 00'' E 80° 22' 48'' ✓ ✓ 

Bakamuna N 7° 46' 12'' E 80° 49' 12'' ✓  

Badulla N 6° 58' 48'' E 81° 03' 00'' ✓ ✓ 

Batticoloa N 7° 43' 12'' E 81° 42' 00'' ✓ ✓ 

Colombo N 6° 54' 00'' E 79° 52' 12'' ✓ ✓ 
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Gauging Station 
Coordinates Precipitation 

Temperature 
Gauging 

Station Latitude Longitude 

Diyatalawa N 6° 49' 12'' E 80° 58' 12'' ✓ ✓ 

Galle N 6° 01' 48'' E 80° 13' 12'' ✓ ✓ 

Hambantota N 6° 07' 12'' E 81° 07' 48'' ✓ ✓ 

Helbodde Estate N 7° 04' 48'' E 80° 40' 12'' ✓  

Jaffna N 9° 40' 48'' E 80° 01' 48'' ✓  

Kalutara N 6° 34' 48'' E 79° 57' 00'' ✓  

Kandalama N 7° 52' 12'' E 80° 40' 48'' ✓  

Katugastota N 7° 19' 48'' E 80° 37' 48'' ✓ ✓ 

Katunayake N 7° 10' 12'' E 79° 52' 48'' ✓ ✓ 

Kurunagala N 7° 28' 12'' E 80° 22' 12'' ✓ ✓ 

Mahailluppallama N 8° 07' 12'' E 80° 28' 12'' ✓ ✓ 

Mannar N 8° 58' 48'' E 79° 55' 12'' ✓ ✓ 

Nuwaraeliya N 6° 58' 12'' E 80° 46' 12'' ✓ ✓ 

Palampoddar N 8° 33' 00'' E 81° 04' 12'' ✓  

Pelwehera N 7° 54' 00'' E 80° 40' 48'' ✓  

Potuvil N 6° 52' 48'' E 81° 49' 48'' ✓  

Puttalam N 8° 01' 48'' E 79° 49' 48'' ✓ ✓ 

Ratmalana N 6° 49' 12'' E 79° 52' 48'' ✓ ✓ 

Ratnapura N 6° 40' 48'' E 80° 24' 00'' ✓ ✓ 

Trincomale N 8° 34' 48'' E 81° 15' 00'' ✓ ✓ 

Vavuniya N 8° 45' 00'' E 80° 30' 00'' ✓ ✓ 

 

3.5 Data Source and Resolution 

The primary data types used in this study were precipitation, temperature and 

streamflow data. Data sources spatial and temporal resolution of the data set are shown 

in Table 3-2.  
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Table 3-2: Data Sources and Availability 

Data Type 
Temporal 

Resolution 

Spatial 

Resolution 
Data Period Data Source 

Observed 

Precipitation 
Daily Station 1975 – 2014 

Department of 

Meteorology 

Observed 

Temperature 
Daily Station 1975 – 2014 Department of 

Meteorology 

GCM 

Precipitation 

and 

Temperature 

Monthly 
Vary 

(Table-4) 

1975 – 2014 

2015 - 2100 
ESGF Portal 

Satellite 

Precipitation 
Monthly 0.05˚ 1981 - 2014 USGS Portal 

Streamflow Monthly Station 1999 - 2014 

Hydrological 

Annual, 

Irrigation 

Department 

 

3.6 Data Checking and Missing Data Imputation 

The MICE algorithm was used to replace the missing data in records. To run the MICE 

algorithm, 27 stations were selected for this study, and an additional four stations were 

also used to impute missing data (Table 3-3). These stations were divided into eight 

separate groups (Table 3-4). This separation was done using a single mass curve 

(Figure 3-3) and the station's location.  

Table 3-3: Additional Data Stations 

Station 
Coordinates 

Period 
Latitude Longitude 

Laxapana N 6° 54' 00" E 80° 31' 12" 1983 - 2014 

Nawalapitiya N 7° 04' 12" E 80° 31' 48" 1983 - 2014 

Peradeniya Botanical 

Garden 
 N 7° 16' 01" E 80° 35' 60" 1989 – 2014 

Thanamalwila N 6° 28' 00" E 81° 07' 45" 2000 - 2014 
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Figure 3-3: Single-mass curve 

Table 3-4: Data Imputation Groups 

Group Stations 

Wet Zone - 1 Katunayake, Colombo, Ratmalana 

Wet Zone - 2 Kalutara, Ratnapura, Galle, Anfield Estate, Laxapana 

North Jaffna, Mannar, Vavuniya, Puttalam 

North Central Anuradhapura, Mahailluppallama, Kandalama, Pelwehera, 

Bakamuna 

South Hambantota, Pottuvil, Thanamalwila 

East Trincomalee, Batticoloa, Palampoddar 

Central - 1 Kurunagala, Katugastota, Peradeniya Botanical Garden 

Central - 2 Nuwaraeliya, Badulla, Diyatalawa, Helbodde, 

Nawalapitiya 
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3.7 Imputing Missing Daily Meteorological Data 

The MICE algorithm is an imputation method (Buuren & Oudshoorn, 2011) which 

imputes missing values by producing multiple complete data sets in which missing 

values are substituted with probable values based on information available in the 

observed data. When multiple imputations are generated, the statistical uncertainty of 

the imputations decreases. The MICE algorithm is implemented by writing an S-PLUS 

function. To handle incomplete variables, the user can select a set of predictors for 

imputation. This feature is advantageous for imputing substantial collections of data 

series encompassing numerous variables. Figure 3-4 illustrates the three primary 

stages of multiple imputations: imputation, analysis, and clustering. The algorithm 

organizes the outcomes of each stage into distinct categories known as mids, mira, and 

mipo, which are elucidated in detail below. 

 

Figure 3-4: Main steps in multiple imputation 

The MICE package in Rstudio version 2022.12.0 + 353 (RStudio Team, 2020) was 

used to impute the missing values in the collected meteorological data. 

The following parameters were used in the imputation process: 

• 'm': the number of imputed data sets to be created is five 

• 'method': the imputation methods to be used are "PMM" (predictive mean 

matching) and "Norm" (normal imputation) 

• 'maxit': the maximum number of iterations to use for the imputation process is 

50 

• 'seed': the seed for the random number generator used in the imputation process 

is 500 

This would create five imputed data sets using the predictive mean matching method, 

with a maximum of 50 iterations and a seed value 500. This study employed the 
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"PMM" and "Norm" methods to compare their performance in imputing the missing 

values. 

Root Mean Square Error (RMSE) assigns greater importance to substantial estimation 

errors than smaller ones, making it a crucial metric for model validation. Additionally, 

Mean Absolute Error (MAE) is a valuable supplement to the scatter plot of measured 

versus modelled data, particularly near the 1-to-1 line (Perez et al., 2013).  

After imputing missing data using the MICE algorithm, the consistency of the rainfall 

data was checked by using the double mass curve analysis for each imputation group 

divided in the MICE method. The double mass curve indicated the homogeneity of 

annual rainfall.  The double-mass curve theory relies on the principle that a graph 

depicting the cumulative value of one quantity against the cumulative value of another 

during the same period will exhibit a straight line when the data is proportional. In this 

context, the line's slope serves as the proportionality constant between the quantities. 

3.8 Evaluation Based on Distance from Average Solution 

The first step involved in the EDAS method is the selection of relevant performance 

criteria to derive a decision matrix (X). 

𝑋 =  [𝑋𝑖𝑗]
𝑛×𝑚

= [

𝑋11

𝑋21

…
𝑋𝑛1

𝑋12

𝑋22

…
𝑋𝑛2

……
…
…

𝑋1𝑚

𝑋2𝑚

…
𝑋𝑛𝑚

]-------------------------------------------------------------------(5) 

Where n represents alternatives and m represents criteria. xij also indicates the status 

of the ith alternatives considering the jth criteria. 

The approach of Rupp et al. (2013) was applied to generate the decision matrix to 

evaluate the effectiveness of GCMs and rank them based on performance indicators. 

Not all performance criterion measurements have equal value in indicating outcomes, 

which is notable in the literature. Specifically, specific metrics indicate a positive 

connection between performance and their corresponding numerical values, whereas 

others indicate an inverse correlation. Therefore, after calculating the performance 

metrics, those numerical values were normalized according to Rupp et al. (2013). 

𝑋𝑖𝑗
∗ =  

𝑋𝑖𝑗−𝑋𝑗
𝑤𝑜𝑟𝑠𝑡

𝑋𝑗
𝑏𝑒𝑠𝑡−𝑋𝑗

𝑏𝑒𝑠𝑡 -------------------------------------------------------------------------------(6) 

Where 𝑋𝑖𝑗
∗  is the normalised performance of the  ith GCM on the jth performance 

criterion.  

The present study employs five primary statistical metrics to evaluate the performance 

of climate models, such as the correlation coefficient (R), skill score (Taylor, 2001), 

root-mean-square error (RMSE), mean absolute error (MAE), and percentage bias 

(PBIAS). The mathematical formulation for the indices above is given below. 𝑆𝑖 and 

𝑂𝑖 denote the ith simulated and observed values, respectively. 𝑆𝑖̅ and 𝑂𝑖̅ refer to the 
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mean of simulated and observed values, and n represents the total number of 

observations. 

𝑅 =  
∑ (𝑆𝑖−𝑆𝑖̅)(𝑂𝑖−𝑂𝑖̅̅ ̅)𝑛

𝑖=1

√∑ (𝑆𝑖−𝑆𝑖̅)2−∑ (𝑂𝑖−𝑂𝑖̅̅ ̅)2𝑛
𝑖=1

𝑛
𝑖=1

 ---------------------------------------------------------------------(7) 

𝑆𝑆 =  
4(1+𝑅)4

(𝜎𝑛+
1

𝜎𝑛
)2(1+𝑅)4

  ---------------------------------------------------------------------(8) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

𝑛
  ---------------------------------------------------------------------(9) 

𝑀𝐴𝐸 =  
∑ |𝑂𝑖−𝑆𝑖|𝑛

𝑖=1

𝑛
  -------------------------------------------------------------------(10) 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

× 100 -------------------------------------------------------------------(11) 

In order to evaluate the best performance, a determination must be based on a set of 

specific performance criteria. Thus, to include all the performance criteria, the average 

solution matrix (AV) was determined as follows: 

𝐴𝑉 =  [𝐴𝑉𝑗]
1×𝑚

---------------------------------------------------------------------------------------(12) 

where, 

𝐴𝑉𝑗 =  
∑ 𝑋𝑖𝑗

∗𝑛
𝑖=1

𝑛
 ---------------------------------------------------------------------------------------(13) 

The EDAS method's core concept is the performance evaluation by measuring distance 

from the average solution. The distances from the average value are calculated using 

the following equations, and the PDA (positive distance from the average solution) 

and NDA (negative distance from the average solution) matrices are formulated. 

𝑆𝑃𝑖 = ∑ 𝑃𝐷𝐴𝑖𝑗
𝑛
𝑗=1  -----------------------------------------------------------------------------(14) 

𝑆𝑁𝑖 = ∑ 𝑁𝐷𝐴𝑖𝑗
𝑛
𝑗=1  -----------------------------------------------------------------------------(15) 

𝑁𝑆𝑃𝑖 =
𝑆𝑃𝑖

𝑚𝑎𝑥𝑖(𝑆𝑃𝑖)
 -----------------------------------------------------------------------------(16) 

𝑁𝑆𝑁𝑖 =
𝑆𝑁𝑖

𝑚𝑎𝑥𝑖(𝑆𝑁𝑖)
 -----------------------------------------------------------------------------(17) 

The best performance model selected based on the final score of each GCM (𝐴𝑆𝑖). The 

GCM that has the highest 𝐴𝑆𝑖 Value is the one that should be chosen above the other 

alternatives. 

𝐴𝑆𝑖 =
1

2
(𝑁𝑆𝑃𝑖 + 𝑁𝑆𝑁𝑖) -----------------------------------------------------------------------------(18) 

where, 

 0 ≤ 𝐴𝑆𝑖 ≤ 1. 
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The main objective of this research is to identify a climate model capable of accurately 

displaying the monsoon precipitation pattern signal for Sri Lanka. Although a small 

island, the varied topography of Sri Lanka results in distinct rainfall patterns 

throughout its various regions. As a result, the model performance was assessed using 

the methodology mentioned above through a climate zone-wise evaluation. 

To analyse model performance for each climate zone, average values for both observed 

and model precipitation values were first calculated for each climate zone. These 

derived average values were then utilized throughout the EDAS method to rank the 

GCMs for each climate zone. 

3.9 Development of a High-Resolution Meteorological Dataset 

Data scarcity is one of the significant issues in climatology studies. While observations 

remain the most dependable meteorological data, their effectiveness is limited in 

offering comprehensive insights into the spatial distribution of rainfall in many regions 

(Dewan et al., 2019). To overcome this issue and develop a high-resolution dataset, 

this study used a novel method involving the development of a high-resolution dataset 

with satellite data and observed data. Satellite data provide a high-resolution dataset 

in the spatial and temporal domains. However, observed data stations provide data 

series for only a particular location. A high-resolution meteorological dataset can be 

developed in the spatial domain by developing a method to match and scatter observed 

data using satellite data.  

3.9.1 CHIRPs Data Bias Correction 

Satellite precipitation data are imperfect when compared to in-situ observed station 

data. Hence, correcting the bias present in the satellite precipitation data is necessary. 

This study used CHIRPs data to develop the relationship between observational data 

and create a high-resolution dataset. As a first step, CHIRPs data cells were identified 

for each observation station. According to the 27 observed stations, Sri Lanka was 

divided into 27 polygons using the ArcGIS Thiessen Polygon geoprocessing tool 

(Figure 8). Then, each CHIRPs cell corresponding to each observed station was 

identified. A mean-based method was employed for the bias correction of CHIRPs 

data, where average values were obtained for each polygon's CHIRPs cells. Bias 

factors for 12 months were then calculated for each polygon. These factors were used 

to correct the precipitation time series for each CHIRPs grid. A bias-corrected CHIRPs 

dataset for the entire island of Sri Lanka can be obtained by performing the above 

methodology. 
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Figure 3-5: Precipitation Thiessen Polygons 

3.9.2 Development of Relationship between CHIRPs and Observe Data 

The CHIRPs precipitation data, accumulated monthly from 1981 to 2014, were 

utilized, while observed data were collected from 1975 to 2014. Since CHIRPs data is 

available only from 1981 onwards, satellite data from 1981 to 2014 was employed to 

establish the relationship between bias-corrected CHIRPs and the observed stations. 

Linear regression analysis was employed using equation 19 to develop this relationship 

between observed station data points with corresponding CHIRPs grid cells. 

𝑌𝑐ℎ𝑖𝑟𝑝𝑠 = 𝑚𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 ----------------------------------------------------------------------(19) 

The independent variable in this analysis is the observed data values (𝑋𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑), while 

the dependent variable is the CHIRPs data values (𝑌𝑐ℎ𝑖𝑟𝑝𝑠), and using the above 

equation, the gradient value (m) was calculated for each month of the year. This 

involved adding the values of particular CHIRPs grids corresponding to each station 

for each month to the relationship and calculating the gradient value. These calculated 

gradient values were then employed to distribute historical and future projection data 

from GCMs to each CHIRPs cell. By adopting this approach, a high-resolution dataset 

with 2,418 pixels was generated for Sri Lanka. This method offers the advantage of 
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developing accurate and high-resolution maps, overcoming the limitations of using 

only 27 stations. 

3.9.3 Distribution of Temperature Data for CHIRPs Grid Cells 

In this study, the Köppen-Geiger climate classification system is employed, relying on 

characterizing seasonal precipitation patterns and temperature levels. Following the 

distribution of precipitation data to CHIRPs cells to create the Köppen-Geiger Climate 

Map, it becomes imperative to similarly distribute temperature station data to these 

same cells. However, there is a lack of temperature satellite data with a resolution of 

0.05˚ for developing a relationship for temperature, such as in Section 3.9.2. Factors 

such as latitude, altitude, proximity to the sea, and oceanic currents affect temperature 

variations in the atmosphere (Noor et al., 2020).  

When considering the spatial distribution of temperature in Sri Lanka, the mean annual 

temperature ranges from 27°C in the Coastal Lowlands to 16°C in Nuwara Eliya (at 

an elevation of 1,900 AMSL) in the Central Highlands (Meegahakotuwa & Nianthi, 

2018). 

Based on observational data, no significant temperature variations exist in the Coastal 

Lowlands areas, as Meegahakotuwa & Nianthi (2018) indicated. However, the Central 

Highland regions exhibit noticeable temperature variations. To address this issue, 

dense station data were collected from the highland areas during the data collection 

process, totalling 18 stations. Subsequently, Sri Lanka was divided into 18 Thiessen 

polygons (Figure 9) to distribute the CHIRPs cells, assuming that each polygon 

experiences the same temperature variation as the corresponding observed station.  

Historical and future data from the observed stations were distributed to each CHIRPs 

cell accordingly. This process enables the development of a climate dataset consisting 

of 2,418 pixels, facilitating the creation of a high-resolution Köppen-Geiger climate 

classification map. 
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Figure 3-6: Temperature Thiessen Polygons 

3.10 Distributed Hydrological Model 

A distributed hydrological model is used as a 0.05˚×0.05˚ grid cell for calculating 

water balance and identifying a hydrological impact with future climate predictions. 

This hydrological model was primarily developed using the FORTRAN language in 

the Visual Studio source-code editor. The model considers subsurface and surface 

water tanks for calculating the water balance. The kinematic wave method has been 

employed to calculate direct runoff using this hydrological model, and base flow is 

calculated using the storage function method. The basic conceptual model is shown in 

Figure 10. The governing equations for both methods are as follows; 

Kinematic Wave Equation- 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= (𝑅 − 𝑅𝑖𝑛 − 𝐸𝑇)𝐵 -------------------------------------------------------------(20) 

Here, 'A' refers to the cross-sectional area of the flow (m²), 't' represents time (s), 'Q' 

denotes the surface flow rate (m³/s), 'x' is the spatial distance along the flow path (m), 

'R' stands for precipitation per unit time (m/s), 'Rin' is the penetration rate per unit time 
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(m/s), 'ET' represents evaporation per unit time (m/s), and 'B' denotes the grid width of 

the distributed model cell. This equation represents the conservation of mass for open-

channel flow. It assumes the ignored rapid variations in flow and complex hydraulic 

phenomena, such as irrigation and reservoir control operations, in the calculations.  

Manning's equation relates the flow velocity (V) to the hydraulic radius (R), the 

channel slope (S), and Manning's roughness coefficient (n).  

𝑉 =  
1

𝑛
𝑅2 3⁄ 𝑆1 2⁄  ---------------------------------------------------------------------- (21) 

The discharge (Q) can be expressed as the product of the cross-sectional area (A) and 

the velocity (V): 

𝑄 = 𝐴. 𝑉   ------------------------------------------------------------- (22) 

𝐴 = 𝐵. ℎ   ------------------------------------------------------------- (23) 

𝑄 = (𝐵. ℎ)( 
1

𝑛
𝑅2 3⁄ 𝑆1 2⁄ ) ------------------------------------------------------------- (24) 

The hydraulic radius (R) in terms of the cross-sectional area (A) and wetted perimeter 

(P): 

𝑅 =  
𝐴

𝑃
 ---------------------------------------------------------------------------------------- (25) 

Assuming a rectangular channel, the wetted perimeter (P) is the sum of the bottom 

width (B) and twice the water depth (h): 

𝑃 = 𝐵 + 2ℎ   -------------------------------------------------------------(26) 

𝑄 = (𝐵. ℎ)( 
1

𝑛
(

𝐴

𝐵+2ℎ
)2 3⁄ 𝑆1 2⁄ ) -------------------------------------------------------------(27) 

 𝑄 =  
1

𝑛
𝐵ℎ5 3⁄ 𝑆1 2⁄   -------------------------------------------------------------(28) 

Here, ‘h’ is water depth in a cell (m), ‘S’ is the gradient flow and ‘n’ is the Mannings 

roughness coefficient. 

The term ‘Rin' is represented by water depth infiltration into a subsurface to water depth 

‘h’; that value can be calculated using the following equation. 

𝑅𝑖𝑛 = 𝑘𝑎 × ℎ -------------------------------------------------------------------------------(29) 

The constant 'ka' is taken as 0.008 in this distributed hydrological model.  

Evaporation (ET) is a crucial input in hydrological models, playing a key role in the 

water balance equation as a primary source of water exiting the system. The 

evaporation rate is directly influenced by temperature, and in this study, the daily 

average temperature was employed for this purpose. Consequently, the simplified 

Penman formula was used to calculate ET based on the mean temperature (Linacre, 

1977). 
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𝐸𝑇 =  
700𝑇𝑚 (100−𝐴)+15(𝑇−𝑇𝑑)⁄

(80−𝑇)
 -------------------------------------------------------------(30) 

Tm = T+0.006h, h is elevation, and T is daily mean temperature. A is latitude in degrees, 

and Td is the mean dew point. However, according to the Penman, 

(𝑇 − 𝑇𝑑) = 0.0023ℎ + 0.37𝑇 + 0.53𝑅 + 0.35𝑅𝑎𝑛𝑛 − 10.9-------------------------(31) 

Here, 'R' denotes the mean daily temperature range, while 'Rann' represents the 

difference between the mean temperatures of the warmest and coldest months. 

Consequently, estimating the evaporation rate becomes straightforward, relying on 

elevation, latitude, and the daily maximum and minimum temperatures. 

Storage Function Method- 

𝑑𝑠

𝜕𝑡
= 𝑅𝑖𝑛 − 𝑞 ------------------------------------------------------------------------------- (32) 

𝑆 = 𝑘𝑞𝑝 -------------------------------------------------------------------------------(33) 

Here, 'S' denotes the apparent height retention in meters (m), 'q' represents the high 

base flow discharge in meters per second (m/s), and 'k' and 'p' are the model constants. 

 

Figure 3-7: Conceptual Model 

In addition to precipitation and temperature data, digital elevation data, land-use cover, 

and soil maps are required as inputs for this distributed model. Details of the datasets 

collected for this purpose are provided in Table 3-5. 
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Table 3-5: Additional data used in the distributed hydrological model 

Dataset Source 

Digital Elevation Model ASTER GDEM 

Land use cover WaPOR 

Soil Map NRMC 

3.10.1 Methodology Flowchart for the Hydrological Model 

The methodology of the distributed hydrological model in the present study is 

illustrated using Figure 3-8 below. 

 

 

Figure 3-8: Methodology flowchart of the distributed hydrological model
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4. RESULTS AND DISCUSSION 

4.1 Imputation of Missing Data 

In this study, missing precipitation and temperature data were gap-filled using the 

MICE algorithm. Gap-filling missing precipitation and temperature data is most 

significant to climatology studies because it facilitates continuous analysis in the 

temporal domain. Subsequently, MICE performance was compared with the Sri Lanka 

monsoon climate to identify how this algorithm performs in gap filling with the wet 

zone and dry zone precipitation patterns. 

4.1.1 Comparison of MICE Data Imputation Methods  

This study examined imputation results between the Wet Zone-1 and  North groups 

(refer to Table 3-4). Figures 4-1 & 4-2 show a Stripplot of results between Predictive 

Mean Matching (PMM) and Noramal Imputation (Norm) methods for the Wet Zone-

1 group. The findings revealed that the Norm method successfully imputed data across 

various data series while avoiding extreme events as imputed values. In contrast, the 

PMM method focused on imputing data near the mean of the dataset as the number of 

imputations increased. 

 

Figure 4-1: Strip plot of three stations in the original data and the five imputed data sets (PMM 

method) – [Blue- Original data, Red- Imputed data] 
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Figure 4-2: Strip plot of three stations in the original data and the five imputed data sets (Norm 

method) – [Blue- Original data, Red- Imputed data] 

Two performance evaluation methods were used for both the wet and dry zones to 

determine the optimal imputation method. 

Tables 4-1 and 4-2 display the RMSE and MAE values acquired through the leave-

one-out cross-validation method using the MICE algorithm. The analysis involved two 

groups of meteorological stations, one in the wet zone and one in the dry zone. Error 

calculations were done over five years with no missing data, omitting one year of data 

from each station during the calculations. Using the MICE package, the missing year 

precipitations were then generated, and the performance of each method was 

evaluated. 

Table 4-1: RMSE and MAE obtained for the wet zone 

 

 

 

Station 

RMSE (%) 

Daily 10 – Days Monthly 

PMM Norm PMM Norm PMM Norm 

Colombo 105.29 84.05 37.42 47.18 25.78 42.08 

Katunayake 118.18 119.79 41.18 64.4 36.53 58.96 

Ratmalana 92.02 84.48 32.60 46.62 17.94 41.14 

 MAE (%) 

Colombo 21.97 26.14 12.28 17.56 8.62 15.86 

Katunayake 20.81 34.99 10.22 24.36 10.49 22.27 

Ratmalana 19.75 26.41 10.24 17.15 6.37 15.74 
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Table 4-2: RMSE and MAE obtained for the dry zone 

The error percentage decreases as the time scale increases from one day to one month 

for both the PMM and Norm methods. In the wet zone evaluation, the PMM method 

demonstrated superior performance at the monthly scale, with RMSE percentages 

below 40% for Colombo, Katunayake, and Ratnapura, respectively. In contrast, the 

Norm method exhibited RMSE percentages ranging from 40% to 60% for the exact 

locations. Similarly, in the dry zone evaluation, the Norm method showed higher 

RMSE percentages than the PMM method, with increments of 77.5%, 93.4%, 56.2%, 

and 70.3% for Jaffna, Mannar, Vavuniya, and Puttalam, respectively. 

Furthermore, the MAE percentages followed a similar trend to the RMSE percentages, 

with the Norm method displaying higher error percentages than the PMM method in 

wet and dry zone evaluations. 

4.1.2 Double Mass Curve 

A double mass curve was generated by plotting the cumulative precipitation of the 

chosen rainfall station against the average cumulative precipitation of other selected 

rainfall stations within the sub-basin. A fixed ratio in the graph indicates a consistent 

relationship between the rainfall variables, and any deviations from a straight line may 

signal changes in data collection methods or alterations in the rainfall station. 

No notable inconsistencies were observed in the rainfall data, as evidenced by the 

straight-line nature of the plotted graphs for all stations. Figure 14 illustrates the double 

mass curve specifically for the wetzone-1 group (refer to Table 4-3), while additional 

graphs can be found in appendix B. 

Station 

RMSE (%) 

Daily 10 - Days Monthly 

PMM Norm PMM Norm PMM Norm 

Jaffna 130.16 148.40 48.74 109.11 22.26 99.84 

Mannar 138.55 164.71 52.81 136.45 32.88 126.34 

Vavuniya 158.75 133.61 60.17 101.62 37.69 93.85 

Puttalam 124.31 136.76 45.38 106.65 28.4 98.69 

 MAE (%) 

Jaffna 17.4 45.21 10.29 32.01 5.41 30.99 

Mannar 17.27 51.06 11.07 39.51 8.3 38.35 

Vavuniya 22.73 41.74 11.21 29.36 7.74 28.66 

Puttalam 16.76 41.99 9.93 31.45 5.69 29.64 
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Figure 4-3: Double mass curve for wet zone-1 group 

4.2 Global Climate Model Selection 

4.2.1 Objective Functions Performance over the Historical Period 

The performance of global climate models in Sri Lanka's various climate zones was 

assessed by first summarizing precipitation values for each zone. To accomplish this, 

the mean precipitation values were calculated for each climate zone for models, and 

the observed dataset, and the observed and modelled values were then evaluated based 

on this dataset. The following tables illustrate each model's performance outcomes 

with the objective function across the different climate zones. 

Table 4-3: Values of performance indicators in the wet zone 

Model R PBIAS(%) MAE RMSE SS 

ACCESS-CM2 0.14 -36.06 126.86 161.07 0.33 

ACCESS-ESM1-5 0.18 -45.23 128.01 162.93 0.36 

BCC-CSM2-MR 0.27 10.71 148.56 211.01 0.35 

CAMS-CSM1-0 0.40 -56.08 123.47 154.14 0.67 

CESM2 0.18 -3.23 143.91 184.52 0.32 

CMCC-CM2-SR5 0.19 3.20 107.41 138.83 0.39 

CMCC-ESM2 0.21 7.39 108.47 144.18 0.42 

CNRM_CM6-1-HR 0.40 8.56 89.59 119.31 0.74 

CNRM-ESM2-1 0.37 -3.33 100.54 128.74 0.68 

GFDL-ESM4 0.27 -18.24 114.91 145.96 0.49 

FGOALS-f3-L 0.23 7.59 130.93 171.14 0.40 

INM-CM4-8 0.17 23.17 131.87 179.53 0.33 

INM-CM5-0 0.20 -3.74 109.14 144.23 0.40 

MPI-ESM1-2-HR 0.51 -40.73 106.49 134.07 0.99 

MRI-ESM2-0 0.40 -27.16 114.03 144.22 0.72 
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Table 4-4: Values of performance indicators in the intermediate zone 

Model R PBIAS(%) MAE RMSE SS 

ACCESS-CM2 0.09 -27.41 106.32 136.43 0.24 

ACCESS-ESM1-5 0.14 -29.97 110.75 140.93 0.29 

BCC-CSM2-MR 0.04 35.51 165.77 233.97 0.14 

CAMS-CSM1-0 0.21 -47.40 104.81 136.61 0.34 

CESM2 0.05 20.39 147.00 190.41 0.18 

CMCC-CM2-SR5 0.27 28.92 105.16 135.44 0.45 

CMCC-ESM2 0.28 35.41 110.22 145.25 0.46 

CNRM_CM6-1-HR 0.46 47.40 102.61 127.16 0.80 

CNRM-ESM2-1 0.41 -26.55 88.14 117.21 0.69 

GFDL-ESM4 0.02 3.64 122.49 153.89 0.19 

FGOALS-f3-L 0.11 54.79 158.23 205.99 0.21 

INM-CM4-8 0.32 54.91 129.04 172.32 0.47 

INM-CM5-0 0.19 19.15 110.65 142.02 0.35 

MPI-ESM1-2-HR 0.55 -65.97 103.49 132.06 0.82 

MRI-ESM2-0 0.31 -17.78 104.38 135.91 0.51 

 

Table 4-5: Values of performance indicators in dry zone 

Model R PBIAS(%) MAE RMSE SS 

ACCESS-CM2 0.43 -41.64 85.50 118.12 0.52 

ACCESS-ESM1-5 0.39 -35.36 86.36 120.72 0.50 

BCC-CSM2-MR 0.11 41.20 156.23 213.47 0.08 

CAMS-CSM1-0 0.17 -41.36 97.08 133.62 0.22 

CESM2 0.11 27.06 134.12 174.91 0.21 

CMCC-CM2-SR5 0.48 46.93 101.42 130.02 0.69 

CMCC-ESM2 0.50 51.22 104.18 135.80 0.72 

CNRM_CM6-1-HR 0.62 -19.89 64.63 95.62 0.96 

CNRM-ESM2-1 0.54 -4.17 77.39 112.28 0.81 

GFDL-ESM4 0.29 -18.92 90.92 122.13 0.37 

FGOALS-f3-L 0.26 26.23 115.35 152.90 0.37 

INM-CM4-8 0.49 78.05 124.56 161.91 0.68 

INM-CM5-0 0.33 29.34 101.59 133.67 0.45 

MPI-ESM1-2-HR 0.47 -52.74 81.71 119.52 0.51 

MRI-ESM2-0 0.47 -34.95 79.96 115.87 0.66 

 

The performance metrics, including the correlation coefficient (R), skill score (SS), 

root-mean-square error (RMSE), mean absolute error (MAE), and percentage bias 

(PBIAS), were computed to assess the performance of each GCM in different climate 

zones. The results revealed varying performances across the climate zones. In the wet 

zone, the R values ranged from 0.14 to 0.51, in the intermediate zone from 0.05 to 

0.55, and the dry zone from 0.11 to 0.62. In the dry zone, the uncorrected GCM 

projections exhibited a stronger relationship with the observed meteorological data 
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than the wet and intermediate zones. However, when the results from PBIAS, MAE, 

and RMSE are considered, the wet zone displayed significantly higher values than the 

observed data, highlighting the necessity for bias correction before conducting further 

analysis. Nevertheless, the primary objective of this model selection procedure is to 

gauge the ability of each GCM to capture the monsoon rainfall patterns. For this 

purpose, the uncorrected model projection data can be utilized. 

Performance metrics indicate a positive connection between performance and their 

corresponding numerical values, whereas others indicate an inverse correlation. 

Therefore, after calculating the performance metrics, those numerical values were 

normalized according to Rupp et al. (2013), and normalised values for each model in 

each climate zone are shown in Figure 4-4. 

 

Figure 4-4: Normalised decision matrix values 

4.2.2 GCM Selection based on Evaluation Based on Distance from Average 

Solution (EDAS) 

Upon the computation of the NSPi, NSNi, and ASi values for each climate zone, the 

models were ranked for each zone. This ranking process allowed the identification of 

the most favourable models for their performance in the various climate zones. The 

ranking procedure involved thoroughly examining and evaluating each model's NSPi, 

NSNi, and ASi values to the corresponding values of other models. By ranking the 

models in this manner, it became possible to determine which models were the most 

adept at accounting for the specific climatic conditions of each zone. The following 

tables illustrate the ranks of each model across the different climate zones. 
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Table 4-6: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in the wet zone 

Model NSPi NSNi ASi RANK 

ACCESS-CM2 0.00 0.11 0.05 14 

ACCESS-ESM1-5 0.00 0.14 0.07 11 

BCC-CSM2-MR 0.05 0.06 0.05 13 

CAMS-CSM1-0 0.36 0.63 0.49 6 

CESM2 0.09 0.00 0.04 15 

CMCC-CM2-SR5 0.22 0.59 0.41 9 

CMCC-ESM2 0.17 0.69 0.43 7 

CNRM_CM6-1-HR 0.80 1.00 0.90 2 

CNRM-ESM2-1 0.61 1.00 0.81 3 

GFDL-ESM4 0.06 0.96 0.51 5 

FGOALS-f3-L 0.06 0.48 0.27 10 

INM-CM4-8 0.00 0.13 0.06 12 

INM-CM5-0 0.18 0.64 0.41 8 

MPI-ESM1-2-HR 1.00 0.81 0.91 1 

MRI-ESM2-0 0.47 0.93 0.70 4 

 

Table 4-7: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in the 

intermediate zone 

Model NSPi NSNi ASi RANK 

ACCESS-CM2 0.00 0.11 0.05 14 

ACCESS-ESM1-5 0.00 0.14 0.07 11 

BCC-CSM2-MR 0.05 0.06 0.05 13 

CAMS-CSM1-0 0.36 0.63 0.49 6 

CESM2 0.09 0.00 0.04 15 

CMCC-CM2-SR5 0.22 0.59 0.41 9 

CMCC-ESM2 0.17 0.69 0.43 7 

CNRM_CM6-1-HR 0.80 1.00 0.90 2 

CNRM-ESM2-1 0.61 1.00 0.81 3 

GFDL-ESM4 0.06 0.96 0.51 5 

FGOALS-f3-L 0.06 0.48 0.27 10 

INM-CM4-8 0.00 0.13 0.06 12 

INM-CM5-0 0.18 0.64 0.41 8 

MPI-ESM1-2-HR 1.00 0.81 0.91 1 

MRI-ESM2-0 0.47 0.93 0.70 4 
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Table 4-8: Calculated values of NSPi, NSNi, ASi and Rank assigned for each GCM in dry zone 

Model NSPi NSNi ASi RANK 

ACCESS-CM2 0.20 0.97 0.58 4 

ACCESS-ESM1-5 0.17 0.99 0.58 6 

BCC-CSM2-MR 0.00 0.00 0.00 15 

CAMS-CSM1-0 0.03 0.70 0.37 13 

CESM2 0.07 0.43 0.25 14 

CMCC-CM2-SR5 0.23 0.93 0.58 5 

CMCC-ESM2 0.24 0.90 0.57 8 

CNRM_CM6-1-HR 1.00 1.00 1.00 1 

CNRM-ESM2-1 0.81 1.00 0.91 2 

GFDL-ESM4 0.25 0.88 0.56 9 

FGOALS-f3-L 0.08 0.75 0.41 11 

INM-CM4-8 0.20 0.57 0.39 12 

INM-CM5-0 0.07 0.94 0.50 10 

MPI-ESM1-2-HR 0.25 0.90 0.58 7 

MRI-ESM2-0 0.39 1.00 0.69 3 

 

The approach employed in this methodology involved normalising all objective 

function performance values by their respective best and worst values. The resultant 

normalised values were bound between 1 and 0. Subsequently, these normalised values 

were utilised to evaluate the models. This normalisation process enabled the effective 

comparison of performance values and facilitated determining optimal outcomes. 

In the wet zone, MPI-ESM1-2-HR, CNRM-CM6-1-HR, and CNRM-ESM2-1 

demonstrated the highest Asi values of 0.91, 0.90, and 0.81, respectively. Conversely, 

BCC-CSM2-MR, ACCESS-CM2, and CESM2 displayed the lowest Asi values of 

0.05, 0.05, and 0.04, respectively. 

Within the intermediate zone, CNRM-ESM2-1, CNRM-CM6-1-HR, and MPI-ESM1-

2-HR exhibited the highest Asi values of 0.95, 0.89, and 0.87, respectively. In contrast, 

CESM2, FGOALS-f3-L, and BCC-CSM2-MR demonstrated the lowest Asi values of 

0.21, 0.06, and 0.00, respectively. 

For the dry zone, CNRM-CM6-1-HR, CNRM-ESM2-1, and MRI-ESM2-0 attained 

the highest Asi values of 1.00, 0.91, and 0.69, respectively. Conversely, CAMS-CSM1-

0, CESM2, and BCC-CSM2-MR exhibited the lowest Asi values of 0.37, 0.25, and 

0.00, respectively. 

Selecting the most appropriate GCM based on statistical criteria is crucial for 

accurately evaluating the impacts of various factors. Overall, CNRM-CM6-1-HR and 

CNRM-ESM2-1 have the best performance among the selected GCMs. Among these 

two, CNRM-CM6-1-HR models have 0.5˚×0.5˚ high resolution. Hence, considering 

the study area, that model is more suitable for small islands like Sri Lanka.  
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These findings contribute to a better understanding of GCM performance in different 

climate zones and aid in making informed decisions for future climate projections. 

4.2.3 Comparison of Measured and Modelled Data by Climate Zones 

Figure 4-5 illustrates the performance of the selected top-performed two models in 

each climate zone of Sri Lanka. Upon analyzing the results, it became evident that the 

selected models exhibited strong performance in both the dry and wet zones. However, 

the modelled values differed from the observed values in the intermediate zone. This 

variation can be attributed to the gradual fluctuations in climate conditions 

characteristic of the intermediate zone. Despite this variation, it is notable that the two 

selected models maintained a strong relationship with the observed values in all three 

climate zones.  

In both the dry and wet zones, the mean values of the modelled data sets and observed 

data sets changed in tandem. However, the ability of the models to capture extreme 

events differed between the dry and wet zones. Specifically, the results indicate that 

only the CNRM-ESM2-1 model could accurately capture extreme events in the dry 

zone. The ability to capture extreme events is of particular importance in extreme data 

analysis, as it is essential for accurately projecting and preparing for the potential 

impacts of climate change. These findings highlight the need for continued refinement 

and improvement of climate models, particularly their ability to capture extreme 

events.  

 

Figure 4-5: Monthly precipitation value distribution over the climate zones 

4.2.4 Comparison of Measured and Modelled Monthly Precipitation 

Comparing model data to observed data is challenging before bias correction. To 

overcome this obstacle, normalized monthly precipitations were calculated for each 

month using the following equation for both models and observed data. 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =  
𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑚𝑚)

𝑌𝑒𝑎𝑟𝑙𝑦 𝐶𝑢𝑚𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑚𝑚)
 ---------------(34) 

The images below depict the monthly variation of normalized precipitation for the 

selected climate models compared to the observed monthly data. These bar graphs 

illustrate the sample stations from the wet zone (Kalutara) and the dry zone 

(Batticaloa), and other graphs are presented in appendix C. Upon analyzing these 

results, it becomes evident that both models exhibit a strong relationship with the 

observed data in the dry zone. Conversely, in the wet zone, the two models display 

varying degrees of correlation with the observed data across different months. 

However, it is essential to note these results before bias correction. Further 

optimization of the results can be achieved through this technique. 

 

 

Figure 4-6: Observed vs model normalise monthly precipitation 
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The images above depict the monthly variation of normalized precipitation for the 

selected climate models compared to the observed monthly data. Upon analyzing these 

results, it becomes evident that both models exhibit a strong relationship with the 

observed data in the dry zone. Conversely, in the wet zone, the two models display 

varying degrees of correlation with the observed data across different months. It is 

important to note, however, that these results are before performing bias correction, 

and as such, further optimization of the results can be achieved through this technique. 

4.2.5 Comparison of Measured and Modelled Precipitation with Seasonal 

Variation 

Given that Sri Lanka is a country with a monsoon climate, it is imperative that any 

climate model used to analyze climate change in this context can accurately capture 

the monsoon signal. To understand this, Figure 4-7 presents two sample station 

datasets from the wet and dry zones, displaying seasonal variations in precipitation. 

Other graphs are presented in Appendix D. Upon analysing these box plots, it is evident 

that the selected models can effectively capture the monsoon precipitation patterns in 

both the wet and dry zones. Consequently, these models may be considered reasonably 

reliable for use in modelling the monsoon climate of Sri Lanka. 
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Figure 4-7: Box plot of observed vs model seasonal variation 

4.3 Bias Correction of GCM Data 

4.3.1 Mean Based Method 

As discussed in Section 4.2.4, even the best-performing General Circulation Models 

(GCMs) exhibit significant bias between projected and observed data. Before 

additional analysis, bias correction was performed using the mean-based method. Bias 

factors were computed using the monthly mean values of both observed and projected 

historical data. These bias factors were subsequently applied to historical and future 

datasets to obtain mean-based bias-corrected values. 

Figure 4-8 presents a scatter plot illustrating the comparison between observed and 

uncorrected model historical precipitation data and precipitation bias-corrected data 

obtained using the mean-based method. In this approach, data correction is conducted 

on an individual data value basis, with bias correction factors calculated using monthly 

mean values. 
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Figure 4-8: Scattered plots between observed data vs uncorrected and corrected GCM data for the 

Mean-Based method 
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Notably, in regions with high precipitation, such as Diyatalawa and Ratnapura, the 

scattered data points exhibit a good relationship between the bias-corrected model data 

and observed data. However, in dry zone stations, discrepancies arise, with the CNRM-

CM6-1-HR model occasionally projecting higher precipitation than the observed data. 

The model sometimes predicts lower precipitation despite the observed data indicating 

higher values. 

Figure 4-9 presents the empirical cumulative density function (CDF) graphs, offering 

a comparative analysis of observed data, uncorrected historical model data, and bias-

corrected historical model data for precipitation. Examining the CDF curves reveals a 

discernible difference in the probability distribution between the bias-corrected 

precipitation data series and the observed data series. 

 

 

Figure 4-9: CDF curves between observed vs mean-based corrected model precipitation data 

Specifically, in the context of the mean-based method, the bias-corrected data 

demonstrates elevated CDF values in the mid-range of precipitation data when 
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contrasted with the observed data series. This discrepancy is particularly pronounced 

in regions characterized by high precipitation, where the bias-corrected CDF curves 

exhibit substantial deviations from the observed CDF curves. On the contrary, in arid 

areas featuring scenarios of low precipitation, the CDF curves portray relatively 

consistent patterns across the various data series. 

4.3.2 Empirical Quantile Mapping Method 

Quantile mapping represents the latest advancement in bias-correction approaches and 

has gained popularity as the most widely used method in climate science studies due 

to its advanced statistical methodology (Thrasher et al., 2012). This method effectively 

addresses biases across the entire distribution of climate datasets. Recent research 

indicates that Quantile mapping outperforms more straightforward methods for bias 

correction for temperature and precipitation (Azmat et al., 2018; Worku et al., 2019). 

 

 

Figure 4-10: CDF Curves between Observed vs Bias Corrected Precipitation Data Using the Quantile 

Mapping Method 
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Figure 4-10 demonstrates the Cumulative Density Function (CDF) plots derived using 

the Quantile Mapping (QM) method for bias correction of precipitation data. This 

method adjusts the entire probability distribution of the baseline data series to align 

with the observed data series. Applied to future data series, this bias difference results 

in a reasonably accurate bias-corrected dataset suitable for future predictions. The 

figure clearly illustrates the effectiveness of the data series adjustment achieved 

through QM. The mean-based method exhibits significant differences in CDF values 

for high precipitation data stations. In contrast, the QM method closely resembles the 

observed series, highlighting its effectiveness in adjusting precipitation bias 

correction. 

Figure 4-11 showcases the Cumulative Density Function (CDF) plots, encompassing 

observed, model, and QM-corrected data for temperature. A noteworthy observation 

emerges when comparing the precipitation data with the temperature data in the 

climate model; the CDF plots of temperature data demonstrate relatively lower 

prediction ability. Nevertheless, applying the QM method offers a promising solution, 

enabling the acquisition of a reliable and improved temperature dataset critical for 

robust future scenario predictions. This enhancement in temperature data accuracy 

paves the way for more informed and dependable climate projections, crucial for 

informed decision-making and policy formulation. 
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Figure 4-11: CDF curves between observed vs Quantile Mapping Method corrected model 

temperature data 

The effectiveness of the data series adjustment achieved through QM is vividly 

depicted in the figures. In contrast, the mean-based method reveals significant 

differences in CDF values for high precipitation stations. Notably, the QM method 

closely resembles the observed series, highlighting its effectiveness in precipitation 

bias correction. 

4.3.3 Relationship between CHIRPs and Observe Data 

This study's main challenge is creating a high-resolution climate dataset covering Sri 

Lanka. To address this, the study employed a linear regression technique to establish a 

relationship between CHIRP cell data and the corresponding observational dataset. 

Figure 4-12 illustrates the gradient values derived from the CHIRPs dataset in 

conjunction with respective observed data stations. Sri Lanka was divided into 27 

polygons, each corresponding to an observed data station. Gradient 
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Values were then calculated for the CHIRPS cells within each polygon and their respective observed data series. 
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Figure 4-12: The gradient values derived from the CHIRPs dataset with respective observed data stations 
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This approach allows us to understand precipitation variation spatially for each month 

in each polygon and how precipitation is distributed across the area. Particularly during 

monsoon seasons, the distribution of precipitation is crucial for further studies. In the 

Northeast monsoon period, the highest rainfall occurs in the North, Eastern slopes of 

the hill country, and the Eastern slopes of the Knuckles range. The maps above clearly 

demonstrate nearly identical gradient values in the island's Northeast region from 

December to February, indicating similar precipitation levels. 

In the first inter-monsoon season (March to April), there are low gradient values from 

the Eastern coast to the southwest coast for the observed stations. This is associated 

with the low precipitation experienced during this period, resulting in a weak 

relationship between the stations and cells in those areas. However, the hill areas' 

western coast and western slopes display a high precipitation relationship between the 

stations and cells. 

During the southwest monsoon season (May to September), rainfall varies 

significantly, ranging from approximately 100 mm to over 3000 mm, and exhibits 

significant spatial variance. The analysis reveals considerable gradient variation in the 

maps from May to September due to diverse rainfall patterns. The second inter-

monsoon period (October to November) exhibits a more evenly balanced rainfall 

distribution across Sri Lanka. This period is commonly influenced by weather systems 

such as depressions and cyclones in the Bay of Bengal, leading to varying gradient 

values in response to extreme weather events. However, compared to the southwest 

monsoon period, this distribution demonstrates a pattern consistent with the polygons, 

indicating a direct variation of gradient values with cell values during this period. 

4.4 Köppen-Geiger Climate Classification 

In this study, the Köppen-Geiger climate scheme (Peel et al., 2007) was employed to 

categorize the climate of Sri Lanka into tropical (A), arid (B), temperate (C), boreal 

(D), and highland (E) climate types. However, owing to the influence of the South 

Asian monsoon climate, Sri Lanka mainly exhibits tropical (A) and temperate (C) 

climate types. The climatic classification was based on mean monthly temperature and 

precipitation at each grid point, and the number of specific grid cells estimated the 

percentage of each climate type. Figure 4-13 shows the climate zone distribution in the 

historical period (1975-2014) and the four future projection scenarios (2015 - 2100).  
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Figure 4-13: Köppen-Geiger zone distribution for the historical period (1975-2014) and future 

projections (2015-2100) 

According to Figure 4-14, Sri Lanka is primarily covered by a Tropical savanna (Aw) 

climate with high precipitation in the rainy season, and temperature is hot all around 

the year. These areas mainly face dry and wet seasons throughout the year. The 

southwest part of the island is classified mainly tropical monsoon climate (Am), which 

experiences heavy rain during the year but also has a relatively short dry season due 

to the shifting direction of trade winds from land to sea and vice versa. Around 5% of 

the southwest low elevation area is covered with the tropical rainforest climate with 

rain and hot temperatures all year round. According to the classification map, the 

Rathnapura area, along with the Sinharaja rainforest area, is categorized as a tropical 

rainforest climate (Af). The southwest monsoon primarily influences this region but 

receives substantial yearly precipitation. Consequently, it exhibits the typical 

characteristics of an Af climate, including high rainfall year-round and consistently 

warm (but not excessively hot) temperatures throughout the year. 
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Figure 4-14: Köppen-Geiger climate scheme percentage area values for the historical period (1975-

2014) and future projections (2015-2100) 

This analysis particularly reveals the presence of a warm-summer Mediterranean 

climate (Csb) and a Subtropical highland climate without a dry season (Cfb), as well 

as with a dry winter (Cwb) in high-elevation regions. The Csb climate is characterized 

by low rainfall in summer (April - September) and substantial rainfall in winter 

(October–March), with temperatures transitioning from cool to warm throughout the 

year. The maps presented illustrate the prevalence of the Csb climate zone on the 

eastern slopes of the hill country, predominantly influenced by the Northeast monsoon 

(December-February) and second-inter monsoon (October-November). 

Areas designated as Cfb climate zones experience moderate to high precipitation and 

consistently exhibit warm to cool temperatures throughout the year. The Cfb climate 

zone in Sri Lanka is in the western hill area, typically receiving precipitation 

throughout the year. The Cwb climate zone is primarily defined by high precipitation 

in summer and low precipitation in winter, surrounding the highland areas in Sri 

Lanka. This pattern is attributed to the greater influence of the southwest monsoon 

compared to the northeast monsoon in these regions. 

4.5 Köppen-Geiger Climate Classification Comparison with Traditional 

Climate Classifications 

4.5.1 Rainfall zones classification 

Sri Lanka mainly devided in to three major climate zones based on the annual 

precipitation named ‘wet’, íntermediate’and ‘dry’ zones. The wet zone experiences 

significant rainfall throughout the year, averaging over 2,500 mm annually, mainly 

from the south-west monsoons from April to June. Conversely, the dry zone receives 

less rainfall, averaging below 1,750 mm per year, primarily during the north-east 
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monsoons from October to January, with a noticeable dry season from May to 

September. The intermediate zone falls between these extremes, with an annual rainfall 

ranging from 1,750 to 2,500 mm and a shorter, less pronounced dry season. 

 

Figure 4-15: Köppen-Geiger climate zone classification comparison with the wet,driand intermediate 

zone classificatiofor historical (1975-2014) 

The Köppen-Geiger climate classification identifies six major classes within Sri 

Lanka. In comparison to traditional classifications, the entire dry zone is categorized 

as a tropical savannah (Aw) climate, characterized by temperatures higher than 18°C 

and a driest month precipitation ranging from 0mm to 39mm, falling below the 

threshold of (100 - mean annual precipitation/25), which ranges from 20 to 80. The 

tropical savannah classification also encompasses areas within the intermediate zone. 

The maximum and minimum annual precipitation within tropical savannah areas range 

from 1995mm to 502mm, confirming that they receive less than 2500mm of annual 

precipitation, thus categorizing them as intermediate and dry zones. 

The majority of the tropical rainforest (Af) climate class is situated in the wet zone 

region, with a driest month precipitation ranging from 61mm to 126mm, surpassing 

60mm. These Af class cells received a maximum annual precipitation of up to 

4520mm. Additionally, emaining most parts of the wet zone are classified under the 

tropical monsoon climate classification (Am), with a driest month precipitation 

ranging from 18mm to 60mm, exceeding the value of (100 - mean annual 
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precipitation/25), which ranges from -22 to 39, and with an annual precipitation range 

of 1925mm to 3041mm. 

Three complex climate zones a warm-summer Mediterranean climate (Csb), a dry 

winter (Cwb), and a Subtropical highland climate without a dry season (Cfb) are 

situated within both the wet and intermediate zones. These zones are characterized by 

a hottest month temperature of 17.3°C or higher, a coolest month temperature above 

0°C but below 18°C, and they fully lie within the wet zone.    

4.6 Spatial Changes of Shifting Climate Types 

Figure 4-15 presents the spatial and temporal characteristics of major climate types 

relative to historical (TB/1975–2014) in Sri Lanka from 2020 to 2050 (Near Term/TN) 

and 2070 to 2100 (Long Term/TL). A notable spatial feature is the disappearance of 

the Csb and Cwb climate zones, predominantly replaced by the Am climate zone. 

When compared to TB, spatial shifts were detected in the Highland areas of Sri Lanka, 

particularly in the Southwest and Southeast Mountains. 

 

Figure 4-16: Köppen-Geiger zone distribution for near-term (2020-2050) and long-term (2070-2100) 

Periods 



68 

 

Regarding temporal changes, the percentage of area occupied by Af, Am, and Aw 

climate types fluctuates less during the future scenarios than TB. However, the 

percentage of area change for Cfb, Csb, and Cwb shows significant variations, ranging 

from -14% (TB/TN) to -28% (TB/TL), 56% (TB/TN) to -25% (TB/TL), and -39% 

(TB/TN) to 36% (TB/TL), respectively, in the SSP1-2.6 scenario. In the SSP5-8.5 

scenario, the changes for Cfb, Csb, and Cwb range from -201% (TB/TN) to 100% 

(TB/TL), -70% (TB/TN) to 100% (TB/TL), and 68% (TB/TN) to 100% (TB/TL), 

respectively. These observations provide valuable insights into the potential climate 

changes and their spatial distribution in Sri Lanka under different future scenarios—

the most notable observation in the disappearance of highland climate zones in the TL 

period. 

In each scenario, identifying the changing areas is most important to future climate 

policy and strategy planning. Figure 4-16 shows the spatial changing areas in TN and 

TL due to climate change compared to TB. 

 

Figure 4-17: The spatial changing areas in TN (2020-2050) and TL (2070-2100) due to climate change 

compared to TB (1975-2014). 

The study results show distinct spatial shifts are observed during the TN and TL 

periods. In the TN period, the shifts are primarily concentrated within elevated 

highland regions, while in the TL period, spatial shifts are more broadly distributed, 

encompassing both highland and southwest regions. Both periods exhibit significant 

climate zone shifts in the highland areas, constituting the central heart of Sri Lanka's 

hydrological system. 
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These observed changes carry profound implications for the hydrological system. As 

the focal point of these shifts, the highland areas play a crucial role in the water balance 

of Sri Lanka's hydrology. As these spatial shifts persist, they are expected to impact 

the hydrological system directly. Section 4.6 of this study focuses on a comprehensive 

analysis of the changes in hydrology resulting from these climate zone shifts.
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4.6.1 Temporal Changes of Shifting Climate Types 

Seasonal variation changes with the climate change scenarios will be discussed in this subsection. The following illustration shows the 

monthly mean precipitation and temperature variation in historical and two future (SSP1 & 5) projection scenarios.  
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Figure 4-18: Temporal changes in mean precipitation and temperature with shifting climate  for the historical period (1975-2014) and future projections (2015-

2100)
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The results generated from this study highlight a noteworthy trend in monsoon rainfall 

patterns, indicating their relative stability across different scenarios. However, a closer 

examination of the data reveals a discernible shift when comparing the TN and TL 

periods. 

In the TL period, there is a notable increase in both precipitation and temperature 

magnitudes when compared with the TN period. This escalation suggests a substantive 

alteration in the climatic conditions over the long term. The observed rise in 

precipitation and temperature significantly affects the region's hydrological dynamics 

and broader climate resilience. Understanding these temporal changes is crucial for 

anticipating and adapting to evolving climate patterns, particularly as they are likely 

to affect the balance of precipitation and temperature that sustains the hydrological 

system. The subsequent sections of this study present a more detailed analysis of these 

trends, exploring the potential repercussions on water resources, ecosystems, and the 

overall resilience of the region's hydrological framework. 

4.7 Hydrological Model 

4.7.1 Model Calibration 

The distributed hydrological model was built to assess the hydrological impact of 

climate change. This model was specifically designed to calculate the water balance in 

grid cells. For the calibration of the hydrological model, two basins from the wet zone 

and two basins from the dry zone were selected. The Kalu River Basin and Kelani 

River Basin were chosen from the wet zone, while the Kirindi Oya and Maduru Oya 

River Basins were selected from the dry zone. 

The model parameters from the calibrated distributed model are represented in Tables 

4-9 and 4-10. The calibration process utilized data from the years 2000 to 2005. The 

model comprises five layers: Digital Elevation Model (DEM), Precipitation Layer, 

Evaporation Layer, Landuse Cover Layer, and Soil Layer. Figure 4-18 displays land 

cover and soil maps for Sri Lanka, providing visual representation and context for the 

calibration process. 
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Figure 4-19: Landuse cover (2014) and soil map of Sri Lanka 



76 

 

Table 4-9: Calibrated manning roughness coefficients 

Landuse Class Type 
Manning Roughness 

Coefficient 

Shrubland 0.052 

Grassland 0.035 

Cropland 0.03 

Built-up 0.01 

Bareland 0.03 

Waterbodies 0.01 

Herbaceous Cover 0.045 

Tree Cover 0.25 

 

Table 4-10: Calibrated infiltration coefficient 

Soil Type Infiltration Coefficient (mm/h) 

Calcareous Soil 8.40 

Regosols 7.20 

Latosolic 12.40 

Reddish Brown Soil 14.20 

Podzolic Soil 19.40 

Noncalcic Brown Soil 14.10 

Loams 15.00 

Grumusols 20.04 

Erosional Remnants 8.10 

Eroded Land 7.40 

Bog and Half-Bog Soils 2.54 

Alluvial Soil 22.00 

 

4.7.2 Changes in Annual Runoff 

Anthropogenic activities have been identified as significant contributors to future 

runoff changes, particularly in the context of climate change (Liu et al., 2022). Climate 

change plays a crucial role in influencing runoff patterns, and this study employs a 

distributed hydrological model to comprehensively understand the hydrological 

impact on water balances in Sri Lanka. 
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The hydrological model was calibrated using a baseline period sample dataset. 

Subsequently, future scenarios were simulated using the SSP1-2.6 and SSP5-8.5 

scenarios for 2020 to 2100. The analysis was conducted for two distinct time frames: 

Near-term (TN/2020-2050) and Long-term (TL/2070-2100) to assess the impact on 

hydrology with climate zone shifts. Figure 4-19 illustrates the ensemble mean runoff 

percentage changes compared to the baseline period (TB/1975-2014) for the 45 river 

basins.  

 

Figure 4-20: Projected mean runoff change percentage in TN (2020-2050) and TL (2070-2100) 

compared to TB (1975-2014) period 

In Figure 4-19, the runoff changes are visually represented, depicting both increments 

and decrements during the TN and TL periods. Specifically, in the TN period, basins 

located on the island's eastern side exhibit a runoff decrement, while basins along the 

western coast show a runoff increment. However, in the TL period, all basins across 

the island demonstrated an increase in runoff with the impact of climate change. 

Focusing on the Wet zone under the SSP1-2.6 scenario, comparing TN and TL periods 

with the baseline (TB) period reveals noteworthy changes. In the TN period, the 

average runoff change is 10%, while in the TL period, it increases to 15%. In contrast, 
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under the SSP5-8.5 scenario, the average runoff change in the Wet zone is more 

substantial, with 27% during TN and a higher increment of 38% during TL. 

Examining the Dry zone under the SSP1-2.6 scenario, the TN period shows an average 

runoff change of 10%, which rises to 35% during the TL period. These findings 

highlight the varying impacts of climate change on runoff changes across different 

climate zones and scenarios, providing valuable insights for understanding the 

hydrological dynamics in Sri Lanka. 
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5. CONCLUSION 

The research study aimed at assessing climate zone shifting attributed to future climate 

change in Sri Lanka according to Köppen-Geiger Climate Classification. First, the 

study evaluated the performances of the Multiple Imputation by Chained Equations 

(MICE) package and General Circulation Models (GCMs) in the context of the 

monsoon climate in Sri Lanka. The MICE package was assessed in wet and dry zones 

using RMSE and MAE percentages. Accordingly, the PMM method exhibited 

consistently lower error percentages than the Norm method across all time scales. As 

the time scale increased, both methods demonstrated a decrease in percentage errors, 

with smaller errors observed in monthly scales compared to daily scales. These 

findings suggest that MICE imputation data is more suitable for high-temporal scale 

analyses. According to the wet zone and dry zone RMSE and MAE, it can be 

concluded that the predictive mean matching method performs better than the normal 

imputation method for the monsoon climate in Sri Lanka. 

Furthermore, fifteen GCMs were evaluated for their performance in simulating 

monsoon precipitation in Sri Lanka. The models were ranked based on their results 

compared to data from 27 meteorological stations using the EDAS method. The MPI-

ESM1-2-HR, CNRM-CM6-1-HR, and CNRM-ESM2-1 were identified as the top 

performers in simulating precipitation in both the wet and intermediate zones. These 

findings will be valuable for future climate change studies, enabling the selection of 

well-performing models in different climate zones. CNRM-ESM2-1,  CNRM-CM6-

1-HR, and MRI-ESM2-0 emerged as the top three models in the dry zone. Notably, 

the MRI-ESM2-0 model did not perform strongly in the wet zone. The CNRM-CM6-

1-HR and CNRM-ESM2-1 have the best performance among the selected GCMs. Two 

CNRM models are available, one of which features a high resolution of 0.5˚×0.5˚. 

Therefore, the abovementioned model appears to be better suited for a study area such 

as Sri Lanka.  

The performance of the selected two GCMs through the EDAS method showed strong 

results across all seasons. It is worth noting that both climate models exhibit a strong 

ability to capture the monsoon signal throughout the year, indicating their effectiveness 

in simulating the precipitation patterns of Sri Lanka. The successful representation of 

the monsoon signal by these models is important for climate change studies, as it 

provides a solid foundation for projecting future climate scenarios and assessing 

potential impacts. 

Precipitation and temperature data from the CNRM-CM6-1-HR model were used for 

further analysis. The Mean-Based and Quantile Mapping methods were used for the 

bias correction. A comparison of the CDFs showed better results in the Quantile 

Mapping method than in the Mean-Based method. The Quantile Mapping method 
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showed better relationships between observed data and the model prediction data in 

precipitation and temperature datasets. 

Developing a high-resolution precipitation and temperature data dataset divided the 

Sri Lankan land area into different zones according to the Köppen-Geiger Climate 

Classification. A similar analysis was performed using future projections of 

precipitation and temperature. According to these results, climate zone shifting mostly 

affects the island's South-West region and the highland areas. Notably, Highland 

climates are the most affected in all the prediction scenarios. According to the SSP5-

8.5 scenario, in the TL, the Cfb and Cwb climate zones will disappear.  The findings 

further illustrated that the potential climate shifts associated with global warming 

scenarios vary across different regional climate zones. 

The hydrological model aimed at stimulating the effects of climate shifts on hydrology 

within dry and wet zones. According to the model results,  during the TN period, the 

eastern basins undergo a decrease in runoff, in contrast to the observed increase along 

the western coast. On the other hand, runoff is expected to increase across all basins 

during the TL in different magnitudes. When the results from different scenarios are 

considered, the Wet zone exhibits substantial runoff changes, with the SSP5-8.5 

scenario demonstrating a more pronounced effect. Notably, the Dry zone experiences 

a significant surge in runoff during the TL period under the SSP1-2.6 scenario. These 

findings offer valuable insights into the complex interplay between climate change and 

runoff dynamics in Sri Lanka, emphasizing the need for region-specific adaptation 

strategies to mitigate the multifaceted impacts on water resources. 
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Appendix A: Stripplots of imputed datasets with PMM and Norm method 
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Appendix A-1 Strip plot of Wet Zone-1 in the original data and the five imputed data 

sets (PMM method) 

 
Appendix A-2 Strip plot of Wet Zone-1 in the original data and the five imputed data 

sets (Norm method) 
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Appendix A-3 Strip plot of Wet Zone-2 in the original data and the five imputed data 

sets (PMM method) 

 

 
Appendix A-4 Strip plot of Wet Zone-2 in the original data and the five imputed data 

sets (Norm method) 
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Appendix A-5 Strip plot of South in the original data and the five imputed data sets 

(PMM method) 

 
Appendix A-6 Strip plot of South in the original data and the five imputed data sets 

(Norm method) 
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Appendix A-7 Strip plot of East in the original data and the five imputed data sets 

(PMM method) 

 

 
Appendix A-8 Strip plot of East in the original data and the five imputed data sets 

(Norm method) 
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Appendix A-9 Strip plot of Central-1 in the original data and the five imputed data sets 

(PMM method) 

 
Appendix A-10 Strip plot of Central-1 in the original data and the five imputed data 

sets (Norm method) 
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Appendix A-11 Strip plot of North Central in the original data and the five imputed 

data sets (PMM method) 
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Appendix A-12 Strip plot of North Central in the original data and the five imputed 

data sets (Norm method)
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Appendix  B:  Double Mass Curve for the data imputation groups 
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Appendix C: Observed vs model monthly normalized precipitation 
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Appendix  D: Selected models comparison for monsoon seasonal variation 
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Appendix E: CDF curves between observed vs mean-based corrected model 

precipitation data 
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Appendix F: CDF curves between observed vs bias corrected precipitation data 

using the quantile mapping method 
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Appendix G: CDF curves between observed vs bias corrected temperature data 

using the quantile mapping method 
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