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Abstract 

Climate Change Impact on the Spatial Distribution of Droughts in Kirindi Oya 
and Maduru Oya Dry Zone River Basins in Sri Lanka 

Drought, a consequence of prolonged precipitation deficiencies, is a significant hazard 

exacerbated by climate change. Sri Lanka, highly susceptible to extreme climatic events, faces 

drought as its most prominent hazard, necessitating a comprehensive assessment of its impact. 

This study focuses on the escalating impact of drought intensified by climate change on the 

Maduru Oya and Kirindi Oya dry zone basins, crucial due to their vulnerability to altered 

hydroclimatic dynamics. With the substantial contribution of the dry zone to the paddy 

cultivation of the country, early detection of agricultural droughts is crucial for effective water 

allocation planning. Recognizing the importance of meteorological droughts as precursors to 

physical droughts, proactive monitoring and forecasting are essential for planning against 

subsequent agricultural droughts, while monitoring hydrological droughts is imperative for 

ensuring a reliable water supply for irrigation and other purposes. Thus, this research primarily 

focuses on evaluating meteorological and hydrological droughts. 

The research employs the Standardized Precipitation Index (SPI) and the Streamflow Drought 

Index (SDI) for the monitoring of meteorological and hydrological droughts, respectively. It 

considers six CMIP6 (sixth Phase of the Coupled Model Inter Comparison Project) Global 

Climate Models (GCMs), and the CNRM-HR-1 model was selected as the preferred model. 

The two future projection scenarios, SSP1-2.6 and SSP5-8.5, were selected for the analysis. 

In the meteorological drought assessment, maps illustrating the spatial distribution of 

meteorological droughts were generated for both current and future climate scenarios. In order 

to generate maps, a future gridded rainfall dataset was developed by developing statistical 

relationships with the Climate Hazards Group InfraRed Precipitation with Station data 

(CHIRPS) set and observed precipitation data. For the hydrological drought assessment, 

machine learning methods, including Recurrent Neural Network and Random Forest 

Algorithm, were used to predict future streamflow at specific gauging stations, with the 

Random Forest model selected for its superior performance. Additionally, the climatic indices 

formulated by the Expert Team on Climate Change Detection and Indices (ETCCDI) were 

used in this study to monitor the occurrence of climate extremes of precipitation in the past. 

The meteorological and hydrological drought assessments reveal significant insights into the 

anticipated impacts of climate change. In the Maduru Oya basin, meteorological droughts 

exhibit varying percentage increases under SSP1-2.6 and SSP5-8.5 scenarios. Extreme and 

severe droughts experience increases of 18%, and 16%, respectively, under SSP1-2.6, and 

31%, and 2%, under SSP5-8.5. Conversely, the Kirindi Oya basin displays significant 

susceptibility to extreme meteorological droughts, with increases of 49% under SSP1-2.6 and 

37% under SSP5-8.5, particularly with extreme droughts surging by over 35% under both 

scenarios. Furthermore, the hydrological drought assessment highlights the heightened 

vulnerability of the Padiyathalawa sub-basin in the Maduru Oya basin, indicating a significant 

increase in the occurrence of moderate hydrological droughts at the 12-month timescale under 

both future scenarios. Conversely, the Wellawaya sub-basin in the Kirindi Oya basin also 

shows susceptibility to frequent moderate hydrological droughts along with an 80% increase 

in the occurrence of severe hydrological droughts under the SSP5-8.5 scenario at the 12-month 

scale.  Therefore, both basins are expected to face water scarcity in the future, emphasizing 

the importance of implementing measures to ensure a reliable water supply for irrigation and 

domestic purposes, given the substantial impact of climate change on watershed hydrology. 

Keywords: Climate-driven water stress, CMIP6 GCM projections, Drought resilience in 

water resources, Drought vulnerability 
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1. INTRODUCTION

1.1 General 

Drought occurs as a result of a prolonged deficiency in precipitation in a certain region 

and it can be intensified by other natural processes and anthropogenic activities 

(Chan et al., 2021; Sundararajan et al., 2021). The effects of drought-related processes 

transferred due to the non-linearity and unevenness, lead to numerous environmental 

and socioeconomic concerns that might happen simultaneously or chronologically. 

Therefore, these processes have allured the attentiveness of the scientific community 

to quantify and predict droughts and anticipate their environmental and socioeconomic 

impacts (Chan et al., 2021). Meteorological, agricultural, and hydrological droughts 

are the main three types of physical droughts. Meteorological drought occurs due to 

the reduction of infiltration, runoff, percolation, and groundwater flow that arise as a 

consequence of precipitation deficit, and it provides information on the level of 

dryness. Subsequently, these variations result in a shortage of soil water, which then 

leads to plant water stress, decreased biomass, and decreased production. This phase 

is referred to as an agricultural drought. The hydrological drought, which is the 

following stage of the drought, is characterized by decreased streamflow and inflow 

to reservoirs, lakes, and ponds (Sundararajan et al., 2021). The socio-economic 

drought category was later acquainted by the US Geological Survey, and it describes 

the perspective of society on the impacts of physical droughts (Alahacoon 

& Edirisinghe, 2022).  

Drought can be introduced as the most complicated and highly uncertain natural 

hazard, which is interconnected with a variety of land-based, atmospheric, and ocean 

processes (Shelton et al., 2022). On the other hand, the complexity and indeterminacy 

of these underlying processes will be further aggravated in the future as a consequence 

of climate change (Tramblay et al., 2020). Despite the objectives outlined in the Paris 

Agreement to limit global warming to a 1.5°C increase relative to the pre-industrial 

period of 1850–1900, the sixth assessment report from the Intergovernmental Panel on 

Climate Change (IPCC) indicates that there is a likelihood of surpassing this target 

during the 21st century, particularly under scenarios involving intermediate, high, and 

very high greenhouse gas emissions. On the other hand, with each degree of global 

warming, the risk of drought and the associated social consequences are predicted to 

rise, and it has been predicted that the incidence of extreme agricultural droughts 

would increase by 150% to 200% at 2°C and by over 200% at 4°C in Eurasia (IPCC, 

2019). Therefore, it is important to assess the effect of climate change on the 

occurrence of droughts to plan proactive measures. 

In 2019, Sri Lanka, Puerto Rico, and Dominica have been identified as the most 

affected nations according to the Global Climate Risk Index (CRI), a tool introduced 

by Germanwatch to assess the impact of extreme climatic events. Sri Lanka is therefore 
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highly exposed to the effects of climate change (Eckstein et al., 2019). On the other 

hand, a in regard to the number of affected people and the provided assistance 

(Abeysingha & Rajapaksha, 2020). Therefore, drought monitoring with possible 

extents of climate change impacts is very important in the Sri Lankan context. 

Moreover, agro-based industries are directly impacted by agricultural droughts 

resulting from prolonged periods of meteorological drought. Conversely, hydrological 

droughts result in causing restrictions on domestic water availability due to prolonged 

deficiency of water in basins (Abeysingha et al., 2020). Therefore, it is crucial to 

identify and monitor both meteorological and hydrological droughts, especially in the 

river basin scale to manage the water resource efficiently. 

1.2 Background 

Sri Lanka is a tropical island, and the Southwest monsoon and Northeast monsoon 

primarily affect the rainfall of the island seasonally. Precipitation stands out as a 

prominent factor contributing to the seasonal and spatial fluctuations in climate 

patterns. Sri Lanka has been categorized into three climatic zones, namely, the wet 

zone, dry zone, and intermediate zone based on total annual rainfall (Chaminda et al., 

2016). When precipitation falls below average levels over a prolonged period of time, 

nearly all climate zones naturally experience drought (Abeysingha & Rajapaksha, 

2020). Further, as a result of fluctuating rainfall patterns caused by the southwest 

monsoon, Sri Lanka has endured severe droughts once every three years (Aadhar & 

Mishra, 2017). Therefore, it is important to monitor droughts and predict the 

occurrence of droughts and their consequent impacts to plan proactive solutions.  

In general, agriculture in the intermediate and dry zones of Sri Lanka predominantly 

relies on diverse irrigated or semi-rain-fed small reservoirs, which are crucial for the 

agricultural productivity of the country. Simultaneously, the dry zone plays a pivotal 

role, accounting for 70% of the paddy cultivation of the country, with the success of 

this cultivation highly dependent on irrigated water. In essence, paddy cultivation 

relies significantly on a sophisticated water management system oriented around river 

basins in the area (Withanachchi et al., 2014). Therefore, paddy cultivation is 

substantially impacted by prolonged drought. For instance, the paddy yield 

experienced a 46% decline from 2016 to 2017 due to sustained drought, marking the 

lowest recorded paddy yield in Sri Lanka over the last decade (Shelton et al., 2022). 

Consequently, the early identification of agricultural droughts is crucial for planning 

effective measures to allocate sufficient irrigated water in advance. Given that the 

cascade of physical droughts follows a distinct pattern, commencing with 

meteorological droughts, the monitoring and forecasting of meteorological droughts 

become imperative to proactively plan for subsequent agricultural and hydrological 

droughts (Zhao et al., 2014).  

Furthermore, in recent decades, numerous studies have been carried out to monitor 

drought conditions in Sri Lanka, primarily utilizing location-specific rainfall data and 
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Standardized Precipitation Index (SPI)-based drought analyses. However, these 

investigations have largely overlooked the mapping of spatial-temporal patterns and 

the assessment of drought hazards. As a result, the spatial distribution of drought has 

not been adequately represented, given that these studies relied solely on data specific 

to particular locations. Consequently, there exists a timely and imperative need to 

undertake a comprehensive drought analysis that effectively captures the spatial 

distribution of drought (Alahacoon et al., 2021). Therefore, this study aims to present 

the spatial distribution of meteorological droughts to identify the vulnerable locations 

within the selected basins in the future.  

On the other hand, while hydrological drought occurs at the final stage of the physical 

drought cascade, the impacts of hydrological drought are significant and widespread, 

as it leads to reduced water supplies, deteriorated water quality, limited irrigation water 

supply, and various other economic and social consequences (Tabari et al., 2013). 

Hence, the monitoring of hydrological droughts is paramount for efficiently managing 

basin water resources. Additionally, the assessment and forecasting of the temporal 

distribution of hydrological droughts are imperative to plan and adopt timely measures, 

ensuring a reliable water supply for irrigation and other purposes. 

To mitigate the impact of drought, it is crucial to monitor it considering various 

characteristics such as the time of occurrence, duration, severity, and spatial extent 

(Alahacoon & Edirisinghe, 2022). Drought indices can be introduced as useful tools 

for monitoring and assessing various types of droughts as they enable the 

dissemination of climatic anomalies to a wide range of user audiences 

(Abeysingha et al., 2020). Simultaneously, there is a need to conduct an assessment of 

the monitoring and forecasting of meteorological and hydrological droughts at the 

river basin scale. This proactive approach is essential for promptly identifying 

agricultural droughts and managing water resources efficiently.  

Hence, this study focuses on monitoring and predicting the occurrence of 

meteorological and hydrological droughts, illustrating the spatial and temporal 

distribution of these droughts, respectively, using selected drought monitoring indices. 

Simultaneously, the study specifically opts for two Shared Socio-economic Pathway-

Representative Concentration Pathway (SSP-RCP) scenarios, denoted as SSP1-2.6 

and SSP5-8.5, to assess the impact of climate change on the occurrence of 

meteorological and hydrological droughts in the future. The prediction of droughts is 

essential for efficiently managing water resources, supporting irrigation-based 

agriculture, promoting recreational tourism, conducting environmental monitoring, 

and maintaining ecosystem health (Alawsi et al., 2022).  

1.3 Problem Statement 

In the context of escalating global climate change, the dry zone basins of Sri Lanka 

emerge as critical regions susceptible to altered hydroclimatic dynamics and increased 
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drought occurrences. Notably, the absence of drought predictions considering climate 

change further highlights the urgency of the situation. If droughts persist for a certain 

period, it causes the soil moisture to decrease and exposes the plant to water stress, 

which in turn leads to the lowering of biomass and yield. Additionally, it will have an 

impact on the hydrological condition of the area by decreasing streamflow, inflow to 

reservoirs, and diminishing wetlands, which in turn will escalate the demand for water 

resources. Conversely, comprehensive predictions concerning these impending 

drought events are currently unavailable at the river basin scale. Therefore, forecasting 

drought at the river basin scale both in temporal and spatial scales is crucial for 

effective water resource management in order to plan solutions in advance. 

1.4 Significance of the Research 

As a consequence of prolonged meteorological droughts, soil droughts ensue, leading 

to a loss of crops and, subsequently, agricultural droughts. Agricultural droughts 

notably impact agro-based industries, as highlighted by Abeysingha et al. (2020). 

Conversely, the economy of Sri Lanka heavily relies on agriculture, with 25.5% of the 

workforce engaging in agriculture or agriculture-related livelihoods 

(Wickramasinghe et al., 2021). Implementing proactive measures to mitigate 

agricultural droughts resulting from prolonged meteorological droughts is crucial for 

effective management. Simultaneously, monitoring hydrological droughts remains 

paramount, although with a comparatively longer response time, given the constraints 

on water availability for domestic demand and irrigation when focusing on 

comprehensive perspectives of future water security (Abeysingha et al., 2020; 

Wickramasinghe et al., 2021). 

Furthermore, the research also delves into the significant impact of climate change on 

drought occurrences. The escalating ambient temperature, influenced by climate 

change, exacerbates evapotranspiration, diminishing groundwater recharge and soil 

moisture. Consequently, communities residing in the dry zone of Sri Lanka and similar 

localities elsewhere face amplified challenges from water scarcity, with severe 

impacts, as highlighted by Wickramasinghe et al. (2021). Therefore, effective 

management of water resources in the dry zone basins, which serve as crucial sources 

for irrigational purposes, becomes imperative.  

This study is primarily focused on monitoring and predicting meteorological and 

hydrological droughts in the Maduru Oya and Kirindi Oya dry zone basins in Sri 

Lanka, which are pivotal for the agricultural productivity of the country. The study 

employs designated drought monitoring indices to assess the vulnerability of the 

selected basins to meteorological and hydrological droughts under both current 

climatic conditions and future climatic conditions. Simultaneously, the research aims 

to map the spatial distribution of meteorological droughts in these basins. At the same 

time, the occurrence of hydrological droughts in the future under two selected 

projected scenarios on a temporal basis is presented in this study. The findings of this 
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analysis are of significant importance, providing insights for agricultural planning, 

disaster management, and the formulation of effective drought mitigation strategies in 

the selected dry zone basins. 

1.5 Main and Specific Objectives 

1.5.1 Main objective 

The main objective of the research is to analyze the impact of climate change on the 

temporal and spatial distribution of meteorological and hydrological droughts in the 

selected dry zone basins through drought monitoring and forecasting with the aid of 

selected drought monitoring indices. 

1.5.2 Specific objectives 

The specific objectives of the study are elaborated as follows: 

1. To select suitable drought indices and estimate drought conditions using relevant 

climatic and other variables to monitor meteorological and hydrological droughts. 

2. To estimate future streamflow data using an appropriate modelling technique and 

investigate the applicability of employing a machine learning approach in 

developing models for the estimation of predicted streamflow based on 

downscaled future climate data. 

3. To forecast the occurrence of meteorological and hydrological droughts in the 

selected basins based on downscaled future climate data and predicted streamflow. 

4. To graphically present the spatial distribution of meteorological droughts in 

selected basins under current and future climate scenarios.  

5. To propose recommendations for drought impact mitigation and effective water 

resource management perspectives in the future based on the results. 
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2. LITERATURE REVIEW 

2.1 Climate Change and Hydroclimatic Variability in Sri Lanka 

Natural climate variability gives rise to numerous instances of hydroclimatic extremes. 

The implications of climate change are expected to bring about drought conditions in 

almost all parts of Sri Lanka. The prevailing influence of two primary monsoonal 

winds, specifically the Southwest monsoon and the Northeast monsoon, significantly 

shapes the climatic regime in Sri Lanka. At the same time, the shifts between these 

prevailing monsoons are characterized by two intermediary phases known as the first 

inter-monsoon and the second inter-monsoon. In parallel, the climatic dynamics are 

distinctly impacted by the El Niño-Southern Oscillation (ENSO) phenomenon 

(Naveendrakumar et al., 2018). Consequently, both ENSO and the South Asian 

monsoon emerge as paramount factors driving hydroclimatic variability within the 

context of Sri Lanka. 

Moreover, a noticeable long-term increase in annual temperatures has been noted. The 

trends in mean monthly minimum and maximum temperatures reveal increases of 

2.6 ℃ and 1.7 ℃ per 100 years, respectively. A substantial warming trend is observed 

in most districts of Sri Lanka, aligning with the broader context of climate change 

impacts on temperature patterns (Naveendrakumar et al., 2018).  

On the other hand, anticipated adverse impacts on water resources due to greenhouse 

warming further underscore the complex interplay of climate change on hydroclimatic 

conditions. The accelerated hydrologic cycle brings about alterations in precipitation 

patterns, runoff volume, timing, and the frequency and severity of droughts and floods. 

Elevated temperatures also accelerate evapotranspiration, modify infiltration rates, and 

influence soil moisture. Changes in runoff primarily result from variations in 

precipitation and evaporation, with runoff elasticities showing higher sensitivity to 

changes in precipitation and temperature, particularly in arid climates (Frederick & 

Major, 1997). 

Frederick and Major (1997) have projected that, under climate conditions equivalent 

to those of 1990, water availability in Sri Lanka may diminish by 2050. This reduction 

is further compounded by variations in water availability across a spectrum of 

scenarios. Consequently, the implications of climate change on water resources and 

subsequent availability necessitate comprehensive research for a thorough 

understanding of potential impacts. 

2.1.1 El Niño-Southern Oscillation (ENSO) 

The ENSO can be introduced as the preeminent climate mode that impacts global 

climate extremes. This phenomenon naturally transpires across the tropical Pacific 

region, oscillating between periods of unusually elevated temperatures (El Niño) and 

decreased temperatures (La Niña). The two phases are connected to the Walker 
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Circulation, which arises from the pressure gradient force stemming from the regional 

high-pressure system positioned above the eastern Pacific Ocean and the low-pressure 

system located over Indonesia (Dadson et al., 2019). 

A considerable impact of ENSO has been detected on precipitation and temperature 

patterns in Sri Lanka. During El Niño events, precipitation increases approximately 

from October to December, while it declines during the periods of January to March 

and July to August. Consequently, a substantial decrease in river flow is observed from 

January to September during El Niño occurrences. Moreover, rice cultivation output 

during the Yala season (April–August) experiences a significant reduction in the El 

Niño periods (Zubair et al., 2008). 

2.1.2 South Asian monsoon 

The monsoon circulation is driven by disparities in temperature between land and sea, 

coupled with the intensity of atmospheric circulation and humidity levels in the air. 

These factors determine the extent and duration of monsoon precipitation. 

Additionally, topography and the influence of ENSO contribute to this phenomenon. 

Among the various regional monsoon systems, the South Asian monsoon stands out 

as the most influential, impacting approximately half of the global population 

(Dadson et al., 2019). It frequently gives rise to hazardous extreme weather events 

such as floods, landslides, and droughts. In the context of Sri Lanka, the hydroclimate 

is intensely affected by the South Asian monsoon wind system (Chaminda et al., 2016). 

2.1.3 ETCCDI climate change indices 

Climate indices serve as valuable tools for assessing and quantifying fluctuations in 

climate as well as the corresponding patterns. The climatic indices formulated by the 

Expert Team on Climate Change Detection and Indices (ETCCDI), constitute a 

fundamental collection of climate indicators utilized to observe instances of 

temperature and precipitation extremes and altogether 27 temperature and rainfall 

indices have been developed (Panda et al., 2016). The introduction of the ETCCDI 

core set of indices was driven by the aim to facilitate consistent calculations of these 

indices by individuals, countries, and regions. This uniform approach ensures that their 

analyses integrate smoothly into the global context (Yosef et al., 2021). Table 2.1 

presents the list of rainfall indices used in this study. 
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Table 2.1: List of selected rainfall indices 

Index Definition Unit 

RX1day Maximum 1-day rainfall  mm 

RX5day Maximum 5-day rainfall mm 

CWD 
Maximum number of 

consecutive wet days  
Days 

CDD 
Maximum number of 

consecutive dry days 
Days 

R10 
Number of days with 

rainfall 10 mm or more 
Days 

R20 
Number of days with 

rainfall 20 mm or more 
Days 

Rnn 
Number of days with 

rainfall 64.5 mm or more 
Days 

PRCPTOT Total rainfall on wet days  mm 

SDII 
Simple daily intensity 

index 
mm/day 

 

Note. A wet day is defined as a day with rainfall of 1 mm or more 

Source: (Panda et al., 2016) 

2.2 Concepts of Drought Characterization 

Drought is a phenomenon that can be characterized through three primary aspects, 

namely intensity, duration, and spatial coverage. The intensity of drought refers to the 

severity of the deficit in rainfall, soil moisture, or water storage, which may also 

encompass the severity of the resulting impacts. The duration of drought is defined as 

the period during which the drought persists, ranging from several months to several 

years, with the possibility of extreme droughts occurring. Lastly, spatial coverage 

describes the geographical extent of the drought and can vary from small, localized 

areas to entire regions or even continents (Balti et al., 2020). In addition to these 

primary aspects, several other characteristics can be used to further characterize 

drought. These include frequency, magnitude, predictability, rate of onset, and timing 

(Zargar et al., 2011). 
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2.2.1 Drought types 

Primarily droughts can be categorized as meteorological, hydrological, and 

agricultural droughts based on their physical characteristics. In addition to that, mainly 

the agricultural drought impacts the economy and society considerably.  These impacts 

are referred to as socio-economic droughts (Sundararajan et al., 2021). Therefore, 

according to Balti et al. (2020), droughts can be generally classified into four types, 

namely, meteorological, hydrological, agricultural, and socio-economic droughts. The 

origin and flow of physical droughts are presented in Figure 2.1. 

Source: (Zargar et al., 2011) 

2.2.2 Drought indicators 

In addition to precipitation deficit, drought is also characterized by other variables such 

as evapotranspiration and streamflow, which are used to provide a more 

comprehensive understanding of drought conditions (Zargar et al., 2011). In order to 

derive a drought index, various models like water balance or hydrological models use 

Figure 2.1: Origin and flow of physical droughts   
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these different indicators or variables in combination. These indicators can fall into 

three categories: meteorological (such as precipitation and cloud cover), hydrological 

(such as streamflow and groundwater level), or related to water supply and demand 

(such as reservoir storage). However, certain indicators like precipitation, potential 

evapotranspiration, and soil and vegetation characteristics are more commonly used 

indicators and at the same time, they have a greater impact in practice (Loukas et al., 

2008; Tsakiris, Pangalou, et al., 2007). 

2.2.3 Characterization of droughts using drought indices 

Drought indices are useful tools for monitoring and assessing the different types of 

droughts since they enable the dissemination of climate anomalies to a wide range of 

user audiences (Abeysingha et al., 2020). On the other hand, drought indices afford a 

more comprehensive understanding in contrast to raw data derived from individual 

indicators. Furthermore, over 150 different drought indices have been formulated for 

the purposes of aiding drought monitoring and assessing possible impacts 

(Zargar et al., 2011). 

2.3 Drought Monitoring Indices 

Indices serve as a means of measuring and assessing the severity of droughts. It is 

crucial to emphasize that these indices function as indicators in addition to quantifying 

droughts and their intensity (Yihdego et al., 2019). Table 2.2 presents the drought-type 

classification and suitable drought monitoring indices. 

This study primarily focuses on meteorological and hydrological droughts. The 

Standardized Precipitation Index (SPI) is the predominant drought monitoring tool, 

acknowledged by the World Meteorological Organization as a benchmark for other 

indices. However, SPI solely relies on precipitation data and does not consider 

temperature, a vital factor for assessing the water balance of a region. This limitation 

becomes evident when comparing events with similar SPI values but different 

temperature conditions, making such comparisons more challenging. Due to the 

tropical island climate in Sri Lanka, temperature fluctuations are minor, and there is 

minimal spatial variation in temperature within small river basins. Consequently, the 

Standardized Precipitation Index (SPI) is well-suited for application in these smaller 

basins in Sri Lanka. Therefore, SPI was selected as the preferred index for monitoring 

meteorological droughts in this research (Abeysingha et al., 2020). 

Globally, various hydrological drought indices are utilized, including the streamflow 

drought index (SDI), which shares similarities with SPI (Abeysingha et al., 2020; 

Tsakiris, Pangalou, et al., 2007). Building upon SPI concepts, Nalbantis and Tsakiris 

(2009) developed SDI for characterizing hydrological drought. Consequently, this 

study employed SDI to assess hydrological drought in the selected dry zone basins. 

 



11 

 

Table 2.2: Drought type classification 

Drought Type Definition Monitoring Indices 

Meteorological 

drought 

Related to the prolonged 

deficiency in precipitation in a 

region (Balti et al., 2020). 

PDSI (Palmer, 1965), SPI 

(Mckee et al., 1993), SPEI 

(Vicente-Serrano et al., 

2010) 

Hydrological 

drought 

Occurs when flow of rivers and 

water accumulation in aquifers, 

ponds, or reservoirs reduce 

below usual levels (Balti et al., 

2020). 

PHDI (Palmer, 1965), 

SSI, SWSI (Zargar et al., 

2011) 

Agricultural drought 

Refers to long-term soil 

moisture decline and 

consequent bio-mass and yield 

reduction (Balti et al., 2020). 

Computed Soil Moisture 

(CSM), Z-index (Dai, 

2011; Faghmous & 

Kumar, 2014) 

Socio-economic 

drought 

Links droughts with the supply 

and demand of water for 

economic goods (Balti et al., 

2020). 

Drought Area Index 

(DAI), Drought Severity 

Index (DSI)(Madani et al., 

2016; Zargar et al., 2011) 

 

Note. PDSI-Palmer Drought Severity Index, SPI-Standardized Precipitation Index, 

SPEI- Standardized Precipitation–Evapotranspiration Index, PHDI-Palmer 

Hydrological Drought Index, SSI- Standardized Streamflow Index, SWSI-Surface 

Water Supply Index. 

2.4 Future Climate Data 

The crucial aspect of comprehensive drought management for any region lies in the 

ability to anticipate plausible future drought scenarios and implement effective 

response measures. On the other hand, both quantitative and qualitative analyses of 

drought projections play a vital role in endorsing and formulating effective drought 

countermeasures (Zhai et al., 2020). Global Climate Models (GCMs) that encompass 

complex geo-bio-chemical processes are essential tools for accurately forecasting 

future climate changes (Zhu et al., 2021). The Coupled Model Inter-comparison 

Project (CMIP), established under the World Climate Research Program, constitutes a 

structured framework designed for comparing and evaluating GCMs. This project 

encompasses several distinct phases, each facilitating comprehensive assessments of 

the performance of models and their ability to simulate and project future climate 

patterns (Hamed et al., 2022). 

Moreover, the outcomes generated by GCMs participating in the CMIP have proven 

highly valuable in the assessment of forthcoming climatic hazards, such as droughts. 
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The sixth phase of the CMIP (CMIP6) framework has been specifically developed to 

meet the growing needs of the scientific community and to address the limitations 

identified in the previous CMIP5 framework. This new phase aims to enhance and 

expand the scope of climate modeling capabilities, providing more comprehensive and 

accurate insights into climate-related phenomena for scientific research and policy 

formulation (Kumar et al., 2021). Hence, in this study the Global Climate Model 

(GCM) projections obtained from the latest phase of the Coupled Model Inter-

comparison Project (CMIP6) will be used. This approach is aimed at evaluating and 

quantifying the potential impacts of future climate changes on the exposure of the 

population to drought conditions with improved accuracy and relevance. 

The CMIP6 incorporates nearly 30 enhanced Global Climate Model (GCM) outputs, 

contributed by multiple modelling centres. From this pool of available models, the 

analysis for this study has specifically chosen six GCM models to be included in the 

examination and the details of the selected models are presented in Table 2.3. These 

improved GCM outputs encompass various emission scenarios, each following 

distinct forcing trajectories. The Scenario Model Intercomparison Project 

(ScenarioMIP) forms the core of the 6th phase, focusing on designing and assessing 

these different emission scenarios to facilitate comprehensive climate model 

intercomparisons. The newly introduced scenario framework in the recent phase, 

denoted as SSPs-RCPs, has been formulated by integrating exposure and vulnerability 

concepts in the context of a changing climate. This integration effectively connects the 

representative concentration pathways (RCPs) with shared socioeconomic pathways 

(SSPs). This integrated approach enables the projection of future pathways considering 

both climate changes and their potential impacts on exposure and vulnerability factors 

(Kumar et al., 2021). 

With careful consideration of the impacts of climate change and various policies, a set 

of five new shared socioeconomic pathways (SSPs) has been devised. These pathways 

delineate plausible and alternative transformations in various societal dimensions, 

encompassing demographic, economic, technological, social, governance, and 

environmental aspects (Mondal et al., 2021). The SSPs encompass sustainability 

(SSP1), a middle-of-the-road approach with historical trends (SSP2), fragmentation 

(SSP3), inequality (SSP4), and growth-oriented development (SSP5) 

(O’Neill et al., 2017). The scenarios used in this study, namely SSP1-2.6 and SSP5-

8.5, are representative of low and high emission trajectories, respectively. These 

scenarios have been selected to effectively represent different levels of greenhouse gas 

emissions and their potential impacts on future climate and socioeconomic conditions, 

providing a robust framework for analysis and assessment. 
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Table 2.3: List of CMIP6 models selected for the study 

No. Model Name Country 
Horizontal Resolution  

(Lon. × Lat. in degrees) 

1 ACCESS-CM2 Australia 1.9°× 1.3° 

2 BCC-CSM2-MR China 1.1°× 1.1° 

3 CAMS-CSM1-0 China 1.1°× 1.1° 

4 CESM2 USA 1.3°× 0.9° 

5 CNRM-CM6-1-HR France 0.5°× 0.5° 

6 CNRM-ESM2-1 France 1.4°× 1.4° 

 

2.4.1 Downscaling of climate projections from GCMs 

The outputs derived from Global Climate Models (GCMs) necessitate post-processing, 

involving bias correction and downscaling before being used in studies assessing the 

impacts of climate change. This post-processing step becomes imperative due to biases 

against observed data and the insufficient spatial resolution present in the original 

GCM outputs. This necessary adjustment ensures that the GCM data aligns more 

accurately with observed measurements and meets the requirements of the spatial 

resolution demands of a specific study (Wang et al., 2016). 

The process of climatic downscaling can be classified into two main categories 

namely, dynamic approaches, which involve explicit solving of physical dynamics, 

and empirical methods, also known as "statistical downscaling". Dynamic 

downscaling aims to extract local-scale information from the large-scale Global 

Climate Model (GCM) data, and this objective is accomplished through the utilization 

and development of limited-area models (LAMs) or regional climate models (RCMs) 

(Xu, 1999). On the other hand, the computationally demanding characteristics of 

dynamical downscaling pose challenges when attempting to conduct multi-decade 

simulations involving multiple Global Climate Models (GCMs) and/or greenhouse gas 

scenarios. The complex computational requirements make it difficult to efficiently 

carry out such extensive simulations using dynamical downscaling techniques 

(Wang et al., 2016). 

On the contrary, statistical downscaling methods demonstrate computational 

efficiency and sufficient flexibility, enabling their direct application in climate change 

impact studies. Particularly in situations where cost-effective and expeditious 

evaluations of localized climate change impacts are needed, statistical downscaling 

currently stands out as the more promising and favourable option (Wilby & Dawson, 

2007; Xu, 1999). Among the assortment of statistical downscaling methods, a category 

known as 'empirical downscaling methods' or 'empirical scaling methods' is gaining 
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popularity, particularly in situations where the analysis demands multi-GCM 

projections. These methods are designed to mitigate biases in climate model outputs 

and have become increasingly favored in climate change impact studies. The 

simplicity of their application contributes to their widespread utilization among the 

various statistical methodologies discussed in the literature (Chen et al., 2013; Wang 

et al., 2016). 

Empirical statistical downscaling methods can be categorized into two types namely, 

Bias Correction (BC) and Change Factor (CF) approaches (Chen et al., 2013). In this 

study, the Bias Correction (BC) approach was chosen as the selected method. Table 2.4 

provides an overview of bias-correction methods that can be utilized for empirical 

statistical downscaling. 

Table 2.4: Bias correction methods 

Source: (Wang et al., 2016) 

2.5 Machine Learning Methods for Streamflow Simulations 

In the context of this study, it is required to obtain future streamflow data for the 

purpose of estimating the Streamflow Drought Index (SDI). This estimation is 

essential for monitoring the occurrence of hydrological droughts in the future. The 

calculation of SDI relies solely on streamflow values and is analogous to the 

Standardized Precipitation Index (SPI) (Nalbantis & Tsakiris, 2009). 

The process of streamflow is complex and inherently unpredictable, influenced by 

multiple parameters such as precipitation, temperature, evapotranspiration, and land 

use. Moreover, the connection between streamflow and the characteristics of the 

watershed is nonlinear, adding to the intricacy of the process (Adnan et al., 2019). 

Models for predicting streamflow can be broadly categorized into physically based 

models and data-driven models. Physically based models rely on extensive data and 
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necessitate various factors, encompassing rainfall amount, intensity, distribution, as 

well as physiographic features of the watershed, land use, and anthropogenic activities 

(Parisouj et al., 2020). However, ensuring consistent model performance universally 

is challenging, as it depends on the specific study area and intended purpose. Obtaining 

accurate and sufficient data for numerous watersheds presents difficulties, often 

resulting in suboptimal model outcomes (Ragettli et al., 2014).  

In contrast, data-driven models have gained prominence owing to their minimal data 

requirements, rapid development, simplicity, and accuracy in streamflow predictions. 

(Karran et al., 2014). Machine learning can also be introduced as a statistical approach 

characterized by data-driven and self-adaptive features (Liu et al., 2020). This study 

uniquely focuses on the application of data-driven models for streamflow prediction. 

Conventional data-driven predictions of streamflow have historically relied on 

statistical models such as multiple linear regression (MLR) and autoregressive 

integrated moving average (ARIMA) models. While these methods have demonstrated 

relatively satisfactory performance in long-term forecasting, both are constrained by 

their fundamental assumption of linearity in the data. Subsequently, non-linear models 

utilizing machine learning methods like Artificial Neural Networks (ANNs), Support 

Vector Machines (SVMs), and Random Forest (RF) have become widely adopted for 

hydrologic predictions (Karran et al., 2014). 

2.5.1 Prediction of streamflow using a neural network employing deep learning 

techniques 

As a subfield within machine learning techniques, deep neural networks have been 

increasingly employed in predictive research in recent years, facilitated by the 

abundance of observational data and enhanced computing power. The majority of deep 

learning architectures are derived from neural networks (NNs), which consist of layers 

including input, output, and hidden layers and neurons. At the same time, they possess 

the ability to handle temporal structures within time series data efficiently, promptly 

capturing temporal dependencies. As a result of this adept handling of sequential 

information, deep learning algorithms stand out in their ability to construct optimal 

predictive models, particularly when dealing with non-linear data patterns. The cyclic 

nature of cells allows them to retain crucial information from preceding time steps 

(Liu et al., 2020).  

The Long Short-Term Memory (LSTM), categorized as a specific type of Recurrent 

Neural Network (RNN), exhibits an extended memory capacity, enabling it to retain 

information over a long time. Notably, the LSTM model possesses the capability to 

selectively forget irrelevant information during the training process, a functionality 

attributed to the dynamic adjustments within the internal structure of the RNN. This 

architecture of LSTM contributes to enhanced performance compared to other deep 

learning structures in the prediction of long-term time series (Liu et al., 2020). 
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2.5.2 Prediction of streamflow using the ensemble machine learning approach 

of random forest algorithm 

The Random Forest constitutes an ensemble machine learning methodology that 

makes predictions through an extensive assembly of classification or regression trees, 

known as CART. Owing to its notable stability and versatility, this approach has found 

extensive application across various domains such as land subsidence, invasive plant 

monitoring, groundwater analysis, gully head susceptibility assessment, and forest fire 

susceptibility prediction. In the process of training regression trees, rules are 

formulated based on the response variable to sequentially partition observations. This 

partitioning continues until the resulting predictions reach a minimum threshold of 

node impurity. The collective outputs derived from individual decision trees form the 

ultimate output of the Random Forest model ( Jibril et al., 2022).  

Miller et al. (2018) have developed 120 Random Forest Models to predict observed 

streamflow at reference sites. The squared correlation coefficient (R2) and Nash–

Sutcliffe coefficient (NSE) have been chosen as the model fit statistics for evaluating 

performance. The mean R2 across all models ranged from 0.5 to 0.96 with a median 

value of 0.85, while the mean NSE ranged from 0 to 0.96 with a median value of 0.87. 

These findings suggest superior model performance compared to values reported for 

water balance models. The Random Forest algorithm has frequently been employed 

for streamflow predictions, consistently demonstrating better model fits. This 

underscores the suitability of using the Random Forest algorithm for predicting 

streamflow (Jibril et al., 2022). 
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3. METHODOLOGY 

3.1 General 

This chapter outlines the methodology employed to fulfil the primary and specific 

goals of the study. To effectively achieve the research objectives, it is crucial to identify 

appropriate drought monitoring indices to assess drought conditions in the designated 

dry zone basins. Therefore, the Standardized Precipitation Index (SPI) was chosen as 

the meteorological drought monitoring index, while the Streamflow Drought Index 

(SDI) was chosen as the hydrological drought monitoring index based on literature and 

due to their simplicity in evaluating drought conditions within the chosen basins, 

considering both present and future climate scenarios. 

In order to enhance future drought monitoring, the CNRM-CM6-1-HR model was 

specifically chosen from the six CMIP6 models assessed in this study. This selection 

was made based on the objective function values obtained during the bias correction 

process. The CMIP6 dataset utilized in this study was acquired from the official 

CMIP6 database website (https://esgf-node.llnl.gov/search/cmip6). 

Commencing with the need for generating maps illustrating the meteorological 

drought status in the designated basins, a gridded dataset was imperative. The Climate 

Hazards Group InfraRed Precipitation with Station data (CHIRPS), boasting a 

resolution of 25 km², was employed for this purpose. Establishing statistical 

relationships between each grid point and observed data from the nearest station was 

a monthly endeavour, utilizing baseline data spanning from 1983 to 2015. These 

developed relationships were subsequently applied to future data, resulting in the 

creation of a gridded dataset for future projections. Following this, the Standardized 

Precipitation Index (SPI) was computed at a three-month scale to monitor 

meteorological drought conditions. The estimated SPI values served as the basis for 

generating maps delineating the spatial distribution of extreme, severe, and moderate 

drought conditions in the selected dry zone basins. These maps were crafted for both 

the historical period (1983-2014) and the future period (2015-2100), taking into 

account two distinct projection scenarios: SSP1-2.6 and SSP5-8.5. 

On the other hand, for future hydrological drought monitoring purposes, it was 

necessary to predict future streamflow for the two selected gauging stations in the 

designated dry zone basins. To forecast these streamflow values, machine learning 

methods were employed due to their ability to handle the nonlinearity inherent in the 

streamflow process, as compared to conventional physically-based hydrological 

models. Hydrological drought monitoring was conducted utilizing only one gauging 

station per basin, considering the available data. The Streamflow Drought Index (SDI) 

was estimated using historical and future streamflow data. Additionally, the 

Standardized Precipitation Index (SPI) was calculated for the same locations. 

https://esgf-node.llnl.gov/search/cmip6
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Subsequently, hydrological drought monitoring was conducted based on the calculated 

SDI and SPI values. 

3.2 Methodology Flowchart 

Figure 3.1 illustrates the methodology flowchart elaborating on the stepwise approach 

followed in the study. The tools and methods used in each step are discussed within 

the corresponding subsections of this chapter. 

  

Figure 3.1: Methodology flowchart 

3.3 Study Area 

Irrigation stands as the predominant water use sector in Sri Lanka, constituting 92% 

of total water withdrawals, with dry zone alone accounting for 94% of irrigation 

withdrawals. Furthermore, the dry zone encompasses 91% of the gross irrigated area 

and a substantial 80% of the gross rice area, with 91% of the irrigated rice area falling 
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within their bounds. Given these statistics, it is evident that the dry zone regions play 

a pivotal role in the agricultural landscape of Sri Lanka and water resource utilization 

(Amarasinghe, 2010). 

In light of the aforementioned, this research focuses primarily on two significant dry 

zone basins in Sri Lanka, the Maduru Oya basin and the Kirindi Oya basin. These 

basins were meticulously selected as the study area due to their ecological, 

hydrological, and agricultural significance, which collectively contribute substantially 

to conservation efforts and food security initiatives in the country. 

According to Amarasinghe (2010), the total irrigation withdrawal as a percentage of 

average runoff varies notably between these two basins. Specifically, the Kirindi Oya 

basin exhibits a range from 20% to 40%, whereas the Maduru Oya basin demonstrates 

a significantly higher range from 60% to 90%. This discrepancy underscores the 

critical importance of assessing water availability, particularly in terms of drought 

occurrence, within these river basins. 

3.3.1 Maduru Oya basin 

A substantial portion of the Maduru Oya basin is located in the dry zone, specifically 

within the Polonnaruwa and Batticaloa administrative districts in the eastern part of 

the country. It also extends into the intermediate zone of Sri Lanka. The total catchment 

area of this river basin is 1,541 km² (Kirupacaran, 2020). The Maduru Oya project 

constitutes one of the five major reservoir projects under the Accelerated Mahaweli 

Development Program that spanned from the 1980’s in Sri Lanka, rendering the 

Maduru Oya river basin a significant area in the country (Mahenthiran & Rajapakse, 

2021). Additionally, Maduru Oya has been identified as a basin with a high hazard 

level in the drought hazard analysis conducted by Alahacoon and Amarnath (2022). 

Hence, it is imperative to assess the occurrence of droughts in the Maduru Oya basin. 

For the analysis, five rain gauging stations and the Padiyathalawa streamflow gauging 

station were chosen. Figure 3.2 depicts the study area map and the selected gauging 

stations. The location coordinates of the chosen rainfall and streamflow gauging 

stations are provided in Table 3.1 and Table 3.2, respectively. 
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Figure 3.2: Maduru Oya basin and selected gauging stations 

 

Table 3.1: Coordinates of the selected rainfall gauging stations for the Maduru Oya 

basin 

 

 

 

Rainfall Gauging 

Station 

Coordinates 

Latitude (N) Longitude (E) 

Polonnaruwa Agri 7° 55' 12"  81° 01' 48"  

Angamedilla 7° 51' 00"  80° 55' 12"  

Aluthnuwara 7° 19' 00"  81° 00' 00"  

Kandaketiya 7° 10' 12"  81° 01' 12"  

Kudasigiriya 7° 41' 00"  81° 08' 00"  
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Table 3.2: Coordinates of river gauging station of Maduru Oya basin 

River Gauging Station 
Coordinates 

Latitude (N) Longitude (E) 

Padiyathalawa 7° 23' 01"  81° 11' 28"  

 

3.3.2 Kirindi Oya basin 

The Kirindi Oya river basin is situated in the dry zone of Sri Lanka, specifically in the 

southeastern region (refer to Figure 3.3). This river basin encompasses a catchment 

area of 1,203 km2 (Abeysingha et al., 2020). The water from Kirindi Oya serves 

multiple purposes, being utilized by Debera Wewa (Tank), Bandagiriya Wewa, Yoda 

Wewa, Tissa Wewa, Pannagamuwa Wewa, and Weerawila Wewa (Mahenthiran & 

Rajapakse, 2021). The basin exhibits distinctive traits, including limited rainfall, 

elevated ambient temperatures, and reduced relative humidity. Consequently, there is 

heightened evaporation, surpassing the precipitation for the majority of the months 

annually. As a result, evaluating drought conditions holds paramount significance for 

water planning and management within the basin. Furthermore, the assessment of both 

meteorological and hydrological drought proves valuable for agricultural planning in 

the region (Abeysingha et al., 2020). 

To conduct the analysis, four rain gauging stations and two streamflow gauging 

stations were chosen. The study area map and the specific gauging stations selected 

are illustrated in Figure 3.3, while the location coordinates of these selected stations 

are provided in Tables 3.3 and 3.4. 
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Figure 3.3: Kirindi Oya basin and selected gauging stations 

Table 3.3: Coordinates of the selected rainfall gauging stations for the Kirindi Oya basin 

Rainfall Gauging Station 

Coordinates 

Latitude (N) Longitude (E) 

Bandaraeliya 6° 46' 48" 81° 01' 12" 

Thissamaharama Irrigation 6° 16' 48" 81° 18' 00" 

Wellawaya 6° 43' 48" 81° 01' 12" 

Thanamalwila 6° 28' 12" 81° 07' 12" 

 

Table 3.4: Coordinates of river gauging stations of Kirindi Oya basin 

River Gauging Station 
Coordinates 

Latitude (N) Longitude (E) 

Wellawaya 6° 43' 48" 81° 06' 00" 
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3.4 Data Collection and Data Checking 

This study primarily relied on observed rainfall and streamflow data. Table 3.5 

presents the data sources and resolution utilized for both the Maduru Oya basin and 

the Kirindi Oya basin. 

Table 3.5: Data sources and resolution 

Maduru Oya basin 

Data Type Station 
Selected 

Period 

Temporal 

Resolution 
Source 

Rainfall 

Polonnaruwa Agri 

1983-2015 Daily 

Dept. of 

Meteorology 

Angamedilla 

Aluthnuwara 

Kandaketiya 

Kudasigiriya 

Streamflow Padiyathalawa 
Dept. of 

Irrigation 

Kirindi Oya basin 

Data Type Station 
Selected 

Period 

Temporal 

Resolution 
Source 

Rainfall 

Bandaraeliya 

1983-2015 Daily 

Dept. of 

Meteorology 

Thissamaharama 

Irrigation 

Wellawaya 

Thanamalwila 

Streamflow Wellawaya 
Dept. of 

Irrigation 

 

Daily data were collected from the Department of Meteorology and the Department of 

Irrigation, Sri Lanka. Monthly data were subsequently derived from the collected daily 

data and used for the analysis since drought assessment typically relies on monthly 

data, and smaller time intervals do not have a noteworthy impact when using general 

indices to evaluate drought conditions (Tsakiris, et al., 2007). Data checking 

procedures encompassed visual observation, as well as the analyses of single mass 

curve and double mass curve, to assess and scrutinize the daily precipitation and 

streamflow data, ensuring the integrity, uniformity, and consistency of the data 

(Punsara & Rajapakse, 2021). 

The process of visual data checking involves generating a graphical representation that 

illustrates the relationship between rainfall and streamflow. Discrepancies in the 
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patterns of rainfall and streamflow can be identified in a preliminary manner through 

this visual analysis. Visual data checking was conducted for each water year from the 

water year 1984/1985 to the water year 2014/2015 for both basins. Figure 3.4 

illustrates rainfall-runoff graphs for the Padiyathalawa gauging station in the Maduru 

Oya basin from the water year 2010/2011 to the water year 2011/2012. The observed 

inconsistencies have been marked as red circles. It can be observed that in October 

2011 and September 2012, although a considerable amount of rainfall has been 

recorded, the streamflow response has shown comparatively low values.  

 

Figure 3.4: Padiyathalawa streamflow response with rainfall from 2010/2011 to 

2011/2012 

Figure 3.5 illustrates rainfall-runoff graphs for the Wellawaya gauging station in the 

Kirindi Oya basin from the water year 2004/2005 to the water year 2005/2006. 

 

Figure 3.5: Wellawaya streamflow response with rainfall from 2004/2005 to 

2005/2006 
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A considerable discrepancy can be observed in February 2005, where the streamflow 

response is significantly lower compared to the recorded rainfall. 

To address missing data, the closest station patching method was applied, following 

the approach outlined by Punsara and Rajapakse (2021) where the missing data 

percentage was less than 10%. 

3.4.1 Single mass curve 

The analysis of temporal trends in rainfall stations can be facilitated by using single 

mass curves, which are plotted for each specific rainfall station (Punsara & Rajapakse, 

2021). The single mass curves, depicting the temporal trends of the selected rain 

gauging stations of the Maduru Oya basin and Kirindi Oya basin, are presented in 

Figure 3.6 and Figure 3.7, respectively. In order to make effective use of rainfall 

records obtained from a specific station, it is important to thoroughly examine the data 

for consistency and continuity. Similarly, for the purpose of efficiently monitoring 

drought conditions, it is essential to possess a comprehensive dataset that does not 

contain any missing values. As a result, it becomes crucial to estimate the missing data 

prior to conducting the analysis. 

For the purpose of estimating and imputing missing data, the closest station patching 

method was utilized as outlined by Punsara and Rajapakse (2021). In accordance with 

this approach, the initial step involved extracting the necessary data from a 

neighbouring gauging station exhibiting a comparable trend to the station with missing 

data. Subsequently, the extracted data were multiplied by the ratio of the slope of the 

single mass curve of the station with missing data to that of the neighbouring station, 

which provided the substituted data. Finally, the missing values were filled with the 

calculated value obtained through this procedure. 
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Figure 3.6: Single mass curves for the Maduru Oya basin 
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Figure 3.7: Single mass curves for the Kirindi Oya basin 

In the single mass curve plotted for the Thanamalwila rain gauging station within the 

Kirindi Oya basin, noteworthy discontinuities are particularly visible during the period 

spanning from the 1994/1995 water year to the 1999/2000 water year. These 

discontinuities are ascribed to a significant proportion of total missing data, accounting 

for 38.9%. Consequently, the adoption of the closest station patching method may not 

be regarded as an advantageous approach for the supplementation of the missing data. 

To address this data gap at the Thanamalwila station, data from the Hambantota station 

were employed, as both stations are positioned within the same isohyetal layer. The 

choice of utilizing data from stations within the same isohyetal layer is grounded in 

the presumption that they experience analogous precipitation patterns. Despite the 

approximate distance of 45 km between the two gauging stations, Harischandra et al. 

(2016) state that Thanamalwila and Hambantota belong to the arid zone and share 

similar climatic conditions. 

3.4.2 Double mass curve 

The double mass curve methodology serves as a tool for scrutinizing the consistency 

of hydrological or meteorological records obtained from multiple locations. 

Simultaneously, double mass curves can be employed for temporal trend analysis of 

hydro-meteorological data. It involves the comparison of data from an individual 

station with a pattern derived from data collected across several other stations within 

the same geographic area. A straight-line graph that illustrates the cumulative data of 

one variable against the cumulative data of a related variable, indicates a consistent 

ratio relationship between the two variables. Disruptions in the graph may arise due to 

various factors, including alterations in the measurement instrumentation or changes 
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in the observation procedures (Jayadeera, 2016). There is no significant inconsistency 

observed in the rainfall data, as indicated by the straight-line nature of the plotted 

graphs for all stations. The double mass curves for the Polonnaruwa station in the 

Maduru Oya basin and the Bandaraeilya station in the Kirindi Oya basin are illustrated 

in Figure 3.8 and Figure 3.9, respectively. The corresponding plots for rainfall stations 

at other locations are provided in Appendix A. 

 

Figure 3.8: Double mass curve for Polonnaruwa rainfall station 

(Maduru Oya river basin) 

 

Figure 3.9: Double mass curve for Bandaraeliya rainfall station 

(Kirindi Oya river basin) 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

C
u
m

m
u

la
ti

v
e 

ra
in

fa
ll

 a
t 

P
o

lo
n

n
ar

u
w

a 

(m
m

)

Average cumulative rainfall (mm)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000

C
u

m
u

la
ti

v
e 

ra
in

fa
ll

 a
t 

B
an

d
ar

ae
li

y
a 

(m
m

)

Average cumulative rainfall (mm)



28 

 

3.5 Calculation of ETCCDI Climate Change Indices 

The 11 selected rainfall Climate Change Indices (ETCCDI) were computed using the 

RStudio software, and Climate Hazards Group InfraRed Precipitation (CHIRPS) daily 

data from 2000 to 2020 were utilized for the analysis. The maps, illustrating the values 

of the indices for each year from 2000 to 2020, are presented in Chapter 4. 

Additionally, the maximum consecutive wet days and maximum consecutive dry days 

were estimated using the Thiessen average rainfall of the basin, calculated from the 

observed dataset spanning from 1985 to 2015. The results of these analyses are also 

presented in Chapter 4. 

3.6 Bias Correction of GCM Output 

Firstly, comparative plots were created to assess the similarity between the raw data 

extracted from the six selected models and the observed data. These plots aimed to 

identify any shared trend patterns within the observed time series. Figure 3.10 presents 

the time series plots for the chosen models and observed data, focusing specifically on 

the data collected at the Thissamaharama Irrigation gauging station. Markedly a 

consistent pattern was evident among all the models, except for the two models, BCC-

CSM2-MR and CESM2, across all the gauging stations. Subsequently, the bias 

correction was performed by computing bias correction factors using the mean-based 

method and variance-based method. Firstly, historical data spanning from 1983 to 

2015 were extracted to estimate bias-correction factors. The coefficient of 

determination (R2) was selected as the objective function to assess the performance of 

the selected climate models. The R2 is defined as in Equation 3.1, 

𝑅2 =  
𝑛 ∑ 𝑂𝑖𝑆𝑖−∑ 𝑂𝑖 ∑ 𝑆𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√[𝑛 ∑ 𝑂𝑖
2−(∑ 𝑂𝑖)𝑛

𝑖=1
2𝑛

𝑖=1 ]−[𝑛 ∑ 𝑆𝑖
2−(∑ 𝑆𝑖)𝑛

𝑖=1
2𝑛

𝑖=1 ]

                                          (3.1) 

where Oi and Si are observed rainfall (mm) and model rainfall (mm), respectively. The 

recommended ranges for the coefficient of determination (R2) are tabulated in 

Table 3.6. 

Table 3.6: Recommended ranges for R2 

Performance Rating R2 

Very good 0.75 < R2 ≤ 1.0 

Good 0.65 < R2 ≤ 0.75 

Satisfactory 0.5 < R2 ≤ 0.75 

Unsatisfactory R2 ≤ 0.5 
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Figure 3.10: Variation of the annual rainfall of selected GCM models 

3.7 Generation of Maps showing the Probability of Occurrence of Different 

Drought Categories 

Firstly, a future gridded dataset was developed with the aid of observational data and 

Climate Hazards Group InfraRed Precipitation (CHIRP) satellite data. Subsequently, 

the Standardized Precipitation Index (SPI) was estimated for all grids at a 3-month 

scale to monitor meteorological drought conditions. Following this, maps were 

generated based on the frequency of occurrence for different SPI drought categories 

for both present and future climatic scenarios. 

3.7.1 Development of a future gridded rainfall data set 

To provide an accurate representation of the meteorological drought conditions in the 

Kirindi Oya and Maduru Oya basins and to forecast their future drought susceptibility, 

obtaining a dataset with high resolution is of paramount importance. This fine-

resolution dataset is critical for conducting precise interpolations, enabling a 

comprehensive depiction of the drought status across the Maduru oya and Kirindi oya 

basins in an effective manner. In order to achieve this objective, the study utilized the 

Climate Hazards Group InfraRed Precipitation satellite (CHIRPS) data, known for its 

ability to generate high-resolution, satellite-based estimates in both space and time. 

The selection of CHIRPS data was made to facilitate accurate and detailed assessments 

of meteorological drought conditions and future drought susceptibility within the 

selected basins. The CHIRPS dataset encompasses a broad latitudinal range, spanning 

from 50° S to 50° N, and extends across all longitudes. This extensive coverage enables 

near-real-time monitoring and evaluation of diverse regions with accuracy and 

efficiency (Goshime et al., 2019).  
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Initially, the study identified the CHIRP grid points situated within the basin area. 

Using the Thiessen polygon method, the closest gauging station was determined for 

each grid point. The locations of the selected grid points for the Maduru Oya and 

Kirindi Oya basins are depicted in Figure 3.11 and Figure 3.12, respectively. Following 

this, statistical relationships were established for each month at every grid point, 

utilizing the monthly rainfall data from the nearest rain gauging station. For this 

purpose, monthly data spanning the period from 1983 to 2014 was employed.  

 

Figure 3.11: Thiessen polygon map (Maduru Oya basin) 

 

Figure 3.12: Thiessen polygon map (Kirindi Oya basin) 
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3.7.2 Bias correction of CHIRPS satellite data 

This study employed the non-linear power transformation bias correction method to 

address and correct the bias present in the uncorrected CHIRPS satellite estimate 

(Goshime et al., 2019). According to Equation 3.2, the bias present in the data was 

addressed and alleviated, as follows.                                                                                                                            

𝑃𝑐 = 𝑥𝑃𝑦                                                                                                                 (3.2) 

The bias correction process for monthly CHIRPS rainfall (Pc) involved the application 

of bias factors (x and y) to adjust the original CHIRPS rainfall data (P). The 

determination of these bias factors followed an iterative approach, wherein the 

observed values were meticulously compared and matched with the corresponding 

CHIRPS satellite data. To estimate the bias factors, a comprehensive aggregation of 

complete daily datasets from both data sources was executed for each month within 

the time frame spanning 1983 to 2014. 

The bias factor y was computed to align its standard deviation with that of the nearest 

gauging station data. Subsequently, the bias factor x was determined to align with the 

mean of the observed gauging station data. By employing this methodological 

approach, monthly bias factors were calculated for all CHIRPS grid points. 

3.7.3 Generation of maps based on estimated SPI values 

The formulated statistical relationships were employed to acquire prospective gridded 

rainfall data. Subsequently, the derived dataset underwent bias correction by 

employing the estimated bias factors unique to each grid point. Following the 

completion of the bias correction process, the Standardized Precipitation Index (SPI) 

was computed specifically for the three-month time scale. The selection of this time 

scale was made based on its acknowledged suitability for monitoring the onset of 

drought conditions (Manesha et al., 2015).  

The SPI formulated by Mckee et al. (1993) initially characterizes the variability of 

precipitation totals through a gamma distribution, which is subsequently converted 

into a normal distribution. The probability density function that defines the gamma 

distribution (Equation 3.3): 

𝑓𝑋(𝑥) =
1

𝛽𝛼Γ(𝛼)
𝑥𝛼−1𝑒

−𝑥

𝛽  𝑓𝑜𝑟  𝑥 > 0                                                                        (3.3) 

where, 𝛼 and 𝛽 denote the shape and scale parameters respectively, while x represents 

the precipitation amount, and Γ(𝛼) signifies the gamma function.  

The estimates for  𝛼 and 𝛽 based on the maximum likelihood method are as follows: 

𝛼 =
1

4𝛾
[1 + √1 +

4𝛾

3
],  𝛽 =

𝑥̅

𝛼
 , where  𝛾 = (𝑥̅) −

∑ 𝑙𝑛(𝑥)

𝑛
                                (3.4) 
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where, n = Number of observed rainfall values 

The derived parameters are subsequently employed to calculate the cumulative 

probability of an observed precipitation event for the specified month and time scale 

at the relevant location. Given that the gamma function lacks a definition for x = 0 and 

precipitation distributions might include zeros, the cumulative probability is expressed 

as follows (Equation 3.5): 

𝐺(𝑥) = 𝑝 + (1 − 𝑝)𝐻(𝑥)                                                                                           (3.5) 

In this context, 𝑝 represents the probability of zero precipitation, and 𝐻(𝑥) signifies 

the cumulative probability derived from the incomplete gamma function. 

Subsequently, the cumulative probability, denoted as 𝐺(𝑥), is converted into the 

standard normal random variable z with a mean of zero and a variance of one. This 

transformed value of z corresponds to the SPI (Tigkas et al., 2015). 

This research specifically opted for two Shared Socio-economic Pathway-

Representative Concentration Pathway (SSP-RCP) scenarios, denoted as SSP1-2.6 

and SSP5-8.5, with the explicit purpose of evaluating the potential future drought 

conditions within the river basin. The SSP1-2.6 scenario embodies a juxtaposition of 

reduced societal vulnerability and low emission levels. On the other hand, SSP5-8.5 

characterizes elevated emissions leading to substantial mitigation efforts and limited 

adaptation capabilities (IPCC, 2021, Chapter 4). The probability of occurrence for each 

drought category was estimated based on the SPI values for both the historical period 

(1983-2014) and the projected period (2015-2100). Subsequently, the computed 

percentage values were used to create maps depicting drought occurrences. The map 

generation process was carried out using the Inverse Distance Weighted (IDW) spatial 

analyst tool, which is available within the ArcGIS (ESRI Inc, USA) software. 

3.8 Streamflow Prediction 

This study specifically focuses on the application of machine learning methods for 

predicting future streamflow. In the development of these models, monthly rainfall 

data served as the input, while monthly streamflow values were utilized as the output. 

Various methodologies were employed, and their performance in predicting monthly 

streamflow values was primarily evaluated based on metrics such as coefficients of 

determination (R2), the Nash–Sutcliffe coefficient (NASH), and Percent Bias (PBIAS) 

(Al-Sudani et al., 2019; Karran et al., 2014). The selected objective functions are 

defined as,  

𝑅2 =  
𝑛 ∑ 𝑂𝑖𝑆𝑖−∑ 𝑂𝑖 ∑ 𝑆𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

√[𝑛 ∑ 𝑂𝑖
2−(∑ 𝑂𝑖)𝑛

𝑖=1
2𝑛

𝑖=1 ]−[𝑛 ∑ 𝑆𝑖
2−(∑ 𝑆𝑖)𝑛

𝑖=1
2𝑛

𝑖=1 ]

                                                             (3.6) 

𝑁𝐴𝑆𝐻 = 1 −
∑ (𝑆𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

                                                                                     (3.7) 
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𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

                                                                                                   (3.8) 

where Oi and Si are observed streamflow (m3/s) and simulated streamflow (m3/s), 

respectively, while Omean is the mean observed streamflow (m3/s). 

The Wellawaya subbasin of the Kirindi Oya basin and the Padiyathalawa subbasin of 

the Maduru Oya basin were chosen for analysis. Thiessen average rainfall data were 

used as the input for both models, while the streamflow values at the Wellawaya and 

Padiyathalawa stations served as the output data for the models developed for the 

Kirindi Oya and Maduru Oya basins, respectively. Figure 3.13 and Figure 3.14 depict 

the selected subbasins and Thiessen polygon maps for the Maduru Oya basin and 

Kirindi Oya basin, respectively. Monthly data from the 1984/1985 year to the 

2014/2015 water year were employed for the study. During the model development 

process, 80% of the data was dedicated to training the models, and the remaining 20% 

was allocated for testing. The primary models employed for predicting monthly 

streamflow at the selected observed streamflow gauging station in each river basin 

were based on Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) 

and Random Forest. The selection of these model types was informed by their 

documented suitability for streamflow prediction in existing literature.  

 

Figure 3.13: Padiyathalawa subbasin of the Maduru Oya basin 
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Figure 3.14: Wellawaya subbasin of the Kirindi Oya basin 

When training the LSTM model, the Back-Propagation Through Time (BPTT) 

algorithm was employed. This algorithm possesses the capability to iteratively develop 

the network and update the weights across each time step, facilitating effective 

learning. Furthermore, the Rectified Linear Unit (ReLU) function was chosen as the 

activation function for the RNN models. This decision stems from the observation that 

the ReLU function offers improved gradient propagation in comparison to other 

activation functions (Liu et al., 2020). 

The best models among the developed RNN and RF models were chosen based on the 

values obtained for the selected objective functions to evaluate model performance. 

Subsequently, the selected models were employed to predict future monthly 

streamflow, incorporating future monthly rainfall under SSP1-2.6 and SSP5-8.5 

scenarios. 

3.9 Estimation of the Streamflow Drought Index (SDI) 

In this study, SDI was selected as the hydrological drought monitoring index. The 

calculation algorithm of SDI is explained below.  

If the time series of monthly streamflow values are available (Sij ), where i indicates 

the hydrological year and j indicates the month within the hydrological year, the 

cumulative streamflow (Rik) can be expressed by the following Equation 3.9 (Nalbantis 

& Tsakiris, 2009). 
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𝑅𝑖𝑘 = ∑ 𝑆𝑖𝑗   3𝑘
𝑗=1  i = 1, 2, 3, …,  j = 1, 2, 3, …, 12 ,  k = 1, 2, 3, 4                             (3.9) 

𝑅𝑖𝑘 represents the total cumulative streamflow volume for the ith hydrological year and 

the kth reference period. Specifically, k takes on different values: k = 1 corresponds to 

the period from October to December, k = 2 corresponds to October to March, k = 3 

corresponds to October to June, and k = 4 corresponds to October to September. 

Derived from the cumulative streamflow volumes 𝑅𝑖𝑘, the Standardized Drought 

Index (SDI) is formulated for each reference period k within the ith hydrological year 

in the following manner: 

𝑆𝐷𝐼𝑖𝑘 =
𝑅𝑖𝑘−𝑅𝑖𝑘̅̅ ̅̅ ̅

𝑠𝑘
  i = 1, 2, 3, …,  k = 1, 2, 3, 4                                                             (3.10) 

where 𝑅𝑖𝑘
̅̅ ̅̅  and 𝑠𝑘 denote the mean and standard deviation, respectively, of cumulative 

streamflow volumes for reference period k, calculated over an extended timeframe. In 

this definition, the threshold level is established at 𝑅𝑖𝑘
̅̅ ̅̅ , although alternative values 

could be considered. 

In the case of small basins, the probability distribution of streamflow often exhibits 

skewness and can be effectively approximated using the family of Gamma distribution 

functions. Subsequently, this distribution is transformed into a normal distribution. 

Utilizing the two-parameter log-normal distribution, where normalization involves 

simply taking the natural logarithms of streamflow, the SDI index is formulated as: 

𝑆𝐷𝐼𝑖𝑘 =
𝑇𝑖𝑘−𝑇𝑖𝑘̅̅ ̅̅̅

𝑆𝑇𝑘
 i = 1, 2, 3, …,  k = 1, 2, 3, 4                                                           (3.11) 

Here, 𝑇𝑖𝑘 represents the natural logarithms of cumulative streamflow, characterized by 

a mean 𝑇𝑖𝑘 and standard deviation 𝑆𝑇𝑘, with these statistical parameters derived from 

a long-term estimation (Tigkas et al., 2015). 

This study employed hydrological drought classifications as outlined by Nalbantis and 

Tsakiris (2009), as detailed in Table 3.7. 

Table 3.7: Drought categorization based on SDI values 

Category SDI Values 

Non-drought SDI ≥ 0.0 

Mild drought –1.0 ≥ SDI < 0.0 

Moderate drought –1.5 ≥ SDI < –1.0 

Severe drought –2.0 ≥ SDI < –1.5 

Extreme drought SDI < –2.0 

 

In this study, the software tool known as the Drought Indices Calculator (DrinC) was 

used for the computation of SDI (Tigkas et al., 2015). 
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4. RESULTS AND ANALYSIS 

4.1 General 

In this chapter, a comprehensive exposition is provided regarding the obtained results 

and the applied analysis methods, as outlined in the methodology presented in 

Chapter 3. The presented results encompass the bias correction of GCM data, 

developed statistical relationships between CHIRPS grid points and station data, bias-

correction of CHIRPS data, generated maps showing the meteorological drought status 

in the selected basins, streamflow predictions based on machine learning approaches 

and hydrological drought monitoring assessment based on the estimated Streamflow 

Drought Index (SDI) values at three-month (October-December), six-month (October-

March) and twelve-month (October-September) time scales. 

4.2 Bias Correction of GCM Output 

The evaluation of the six selected GCM models was conducted using both the mean-

based approach and the variance-based approach. Figure 4.1 and Figure 4.2 illustrate 

the coefficient of determination (R2) values obtained for each gauging station of the 

Maduru Oya basin and Kirindi Oya basin, respectively. The mean-based method 

evaluation based on the results of the objective function values obtained for both basins 

(R2 > 0.5) revealed that the CNRM-CM6-1-HR model exhibited the highest 

performance among all the models. Consequently, the CNRM-CM6-1-HR model was 

selected as the preferred climate model for generating future predictions, and mean 

based method was selected as the bias-correction method. 

 

Figure 4.1: Objective function values (Maduru Oya basin) 
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Figure 4.2: Objective function values (Kirindi Oya basin) 

Figure 4.3 and Figure 4.4 visually represent the relationship between the bias-corrected 

CNRM-CM6-1-HR model data and the observed data at the Kandaketiya gauging 

station of the Maduru Oya basin and Wellawaya gauging station of the Kirindi Oya 

basin, respectively.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MBM VBM MBM VBM MBM VBM MBM VBM

Bandaraeliya Thissamaharama Thanamalwila Wellawaya

R
2

Rain gauging station

ACCESS-CM2 BCC-CSM2-MR CAMS-CSM1-0

CESM2 CNRM-CM6-1-HR CNRM-ESM2-1

R² = 0.6076

0

400

800

1,200

0 400 800 1,200

B
ia

s-
co

rr
ec

te
d

 r
ai

n
fa

ll
 (

m
m

)

Observed rainfall (mm)

Figure 4.3: Variation of bias-corrected data with observed data 
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Figure 4.5 and Figure 4.6 depict rainfall time series for both the observed data and the 

bias-corrected data recorded at the Thissamaharama Irrigation station in the Kirindi 

Oya basin and the Polonnaruwa station in the Maduru Oya basin, respectively. 

 

Figure 4.5: Thissamaharama Irrigation gauging station (Kirindi Oya basin) rainfall 

time series 

0

100

200

300

400

500

600

M
ay

-1
9
8
3

S
ep

-1
9
8
4

Ja
n
-1

9
8
6

M
ay

-1
9
8
7

S
ep

-1
9
8
8

Ja
n
-1

9
9
0

M
ay

-1
9
9
1

S
ep

-1
9
9
2

Ja
n
-1

9
9
4

M
ay

-1
9
9
5

S
ep

-1
9
9
6

Ja
n
-1

9
9
8

M
ay

-1
9
9
9

S
ep

-2
0
0
0

Ja
n
-2

0
0
2

M
ay

-2
0
0
3

S
ep

-2
0
0
4

Ja
n
-2

0
0
6

M
ay

-2
0
0
7

S
ep

-2
0
0
8

Ja
n
-2

0
1
0

M
ay

-2
0
1
1

S
ep

-2
0
1
2

Ja
n
-2

0
1

4

R
ai

n
fa

ll
 (

m
m

)

Time

Observed Bias corrected

R² = 0.7469

0

200

400

600

0 200 400 600

B
ia

s 
co

rr
ec

te
d
 r

ai
n
fa

ll
 (

m
m

)

Observed rainfall (mm)

Figure 4.4: Variation of bias-corrected data with observed 

data at the Wellawaya station 



39 

 

 

Figure 4.6: Polonnaruwa gauging station (Maduru Oya basin) rainfall time series 

However, despite the improved performance indicated by the bias-corrected CNRM-

CM6-1-HR model data, as evidenced by an R2 exceeding 0.5, it is suggested that an 

alternative method such as quantile mapping may provide better results when 

compared to the mean-based approach. This perspective has been elaborated upon in 

the Discussion chapter (Chapter 5). 

4.3 ETCCDI Climate Change Indices 

The ETCCDI Climate Change Indices, the maximum consecutive wet days (CWD) 

and maximum consecutive dry days (CDD) for the Kirindi Oya basin were computed 

using the Thiessen average rainfall. Figure 4.7 illustrates the variation in maximum 

consecutive wet days and dry days in the Kirindi Oya basin from 1985 to 2015. 

Additionally, maps showing the values of the total rainfall on wet days (PRCPTOT) 

for the Maduru Oya and Kirindi Oya basins, generated using CHIRPS data, are 

illustrated in Figures 4.8 and 4.9, respectively.  

 

Figure 4.7: Variation of CWD and CDD from 1985 to 2015 in the Kirindi Oya basin 
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The dataset has been divided into three decades. Based on the observed variation, the 

maximum number of consecutive wet days (CWD) has shown an increase in the last 

ten years compared to the other two decades. In other words, CWD exhibits an 

increasing trend, while the maximum number of consecutive dry days (CDD) 

demonstrates a decreasing trend. The record for the maximum number of consecutive 

dry days (82 days) was in the year 1992. According to Shelton et al. (2022), droughts 

have been documented in Sri Lanka in 1987, 1992, and 2014, particularly in the 

intermediate zone and dry zone. Therefore, the higher CDD values recorded in those 

years clearly represent drought conditions. 
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Figure 4.8: Annual total rainfall on wet days recorded in the Maduru Oya basin 
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Figure 4.9: Annual total rainfall on wet days recorded in the Kirindi Oya basin 

According to the results, the highest total precipitation on wet days was recorded in 

2011 in both river basins. Conversely, the minimum total precipitation on wet days 

was recorded in 2016. As stated by Lokuhetti et al. (2017), a drought condition in Sri 

Lanka persisted throughout the entirety of 2016. Hence, this condition may have 

contributed to the reduction in the annual total precipitation on wet days in 2016. The 

maps illustrating the computed values of other selected rainfall indices are presented 

in Appendix B. 
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4.4 Statistical Relationship Between CHIRP Satellite Data and Observed Data 

In order to develop a statistical relationship between CHIRPS data and observed 

precipitation data, the grid points lying within the basin were identified as the first 

step. Accordingly, 41 and 44 grid points were located within the Kirindi Oya basin and 

Maduru Oya basin, respectively. Then the closest station to each grid point was 

identified using the Thiessen polygon method. After identifying the closest station, 

y = mx graphs were plotted for all months of each grid point. Then the gradients of the 

best-fitted curve of each month were estimated for every grid point. The estimated 

gradients were used to develop future gridded data sets for the study area. Figure 4.10 

illustrates the gradient obtained for the month of December at Grid No. 39 of the 

Kirindi Oya basin, with the Bandaraeliya station identified as the nearest station. 

4.5 Bias Correction of CHIRPS Satellite Data 

The bias-correction process employed a non-linear power transformation method. 

Figure 4.11 exhibits hydrographs illustrating the observed data at Wellawaya station 

alongside the bias-corrected data at Grid No. 32. The bias-corrected data series have 

displayed a significantly elevated level of correlation with the observed variation in 

the nearest station data across all grid points. This is evident through correlation 

coefficients ranging from 0.80 to 0.98. 
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Figure 4.11: Hydrographs of the observed data at Wellawaya station and bias 

corrected data at Grid No. 32 

4.6 Generation of Maps 

Using the calculated SPI-3 values, the occurrence percentages of extreme, severe, and 

moderate droughts were determined for each grid point (Edossa et al., 2010). The 

respective SPI ranges corresponding to each drought category are presented in 

Table 4.1. Maps were generated to visually represent the spatial distribution of drought 

occurrences during both the historical and projected periods, considering the two 

selected scenarios, SSP1-2.6 and SSP5-8.5. The resulting maps of the Maduru basin, 

portraying the historical and projected periods under the two scenarios are presented 

in Figure 4.12. 

Table 4.1: Drought categorization based on SPI values 

 

 

 

 

 

 

According to the results, the occurrence percentages of moderate droughts at the 

upstream part of the Maduru Oya basin are significant (8-10%) in the historical period 

compared to the two projected scenarios. Under the SSP1-2.6 scenario, the occurrence 

of extreme, severe, and moderate droughts shows percentage increases of 18%, 16%, 

and -6%, respectively, in comparison to the historical period. The occurrence of 
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basin. Conversely, for the SSP5-8.5 scenario, the percentage increments for extreme, 

severe, and moderate drought conditions are 31%, 2%, and -4%, respectively. 

The resulting maps of the Kirindi Oya basin, portraying the historical and projected 

periods under the two scenarios are presented in Figure 4.13. The results elaborate that 

the occurrence percentages of moderate droughts exhibit relatively higher values 

across all three scenarios in comparison to the occurrence percentages of extreme and 

severe droughts. On the other hand, the occurrence percentages of moderate droughts 

at some locations are significant (8-10%) in the historical period compared to the two 

projected scenarios. Furthermore, the vulnerability of the Kirindi Oya basin to 

moderate drought conditions has been reduced under the SSP5-8.5 scenario compared 

to the SSP1-2.6 scenario. 

Figure 4.12: Occurrence of extreme, severe, and moderate droughts in 

the Maduru Oya basin 
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Additionally, the analysis reveals that, in the Kirindi Oya basin, under the SSP1-2.6 

scenario, the occurrence of extreme, severe, and moderate droughts shows percentage 

increases of 49%, -8%, and 8%, respectively, in comparison to the historical period. 

Conversely, for the SSP5-8.5 scenario, the percentage increments for extreme, severe, 

and moderate drought conditions are 37%, -5%, and 4%, respectively. Importantly, it 

is noteworthy that the occurrence of extreme meteorological droughts is projected to 

surge by more than 35% under both projection scenarios. On the other hand, the 

occurrence of severe droughts is expected to decline, while the occurrence of moderate 

droughts is predicted to show a marginal increase in comparison to the historical 

period. 

Figure 4.13: Occurrence of extreme, severe, and moderate droughts in 

Kirindi Oya basin 
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4.7 Streamflow Prediction based on Selected Machine Learning Approaches 

This study mainly employed Long Short-Term Memory (LSTM), Recurrent Neural 

Networks (RNN), and Random Forest algorithm to predict future streamflow. 

Estimated Thiessen average monthly rainfall data spanning from the 1984/1985 water 

year to the 2014/2015 water year served as the input data for predicting monthly 

streamflow. The RNN models were trained using various configurations, including 

different hidden layers, LSTM units, activation functions, learning rates, batch sizes, 

and epoch numbers, to identify the model with better performance. The evaluation of 

model performance employed key metrics, including the coefficient of determination 

(R2), Nash Sutcliffe coefficient (NASH), and the root mean square error (RMSE). This 

assessment focused on two distinct models developed for the Padiyathalawa sub-basin 

of the Maduru Oya basin and the Wellawaya subbasin of the Kirindi Oya basin. 

Table 4.2 presents the values obtained for the selected objective functions for the RNN 

model, while Table 4.3 presents the objective function values obtained for the random 

Forest (RF) model. Based on the acquired values for the objective functions, the RF 

models developed for the two subbasins were deemed as the preferred models. This 

decision was made since the trained RNN models did not demonstrate satisfactory 

performance when compared to the RF models. This observation is evident in the 

hydrographs obtained for the training dataset (80 % of the data) of the Padiyathalawa 

subbasin of the Maduru Oya basin and the Wellawaya subbasin of the Kirindi Oya 

basin, as illustrated in Figure 4.14 and Figure 4.15, respectively, which highlights the 

subpar performance of the RNN model. 

Table 4.2: Objective function values obtained for the developed RNN model 

Sub basin Process R2 NASH RMSE 

Padiyathalwa 

(Maduru) 

Training 0.378 -0.791 7.747 

Testing 0.427 0.252 5.343 

Wellawaya 

(Kirindi) 

Training 0.513 -0.046 2.787 

Testing 0.447 0.019 2.693 

 

Table 4.3: Objective function values obtained for the developed RF model 

Sub basin Process R2 NASH RMSE 

Padiyathalwa 

(Maduru) 

Training 0.928 0.915 2.859 

Testing 0.898 0.888 2.350 

Wellawaya 

(Kirindi) 

Training 0.903 0.889 1.347 

Testing 0.865 0.859 1.279 
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Figure 4.14: Hydrographs obtained from the RNN model developed for the 

Padiyathalawa subbasin 

 

Figure 4.15: Hydrographs obtained from the RNN model developed for the 

Wellawaya subbasin 

In both RNN models, the prediction of peak and troughs values has not been accurate, 

significantly impacting the overall goodness of fit and resulting in very low values for 

the Nash-Sutcliffe Coefficient. 
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4.7.1 Streamflow prediction using the random forest algorithm 

Eighty percent (80%) of the dataset was utilized for training the Random Forest 

models, with the remaining 20% allocated for testing (validation). Figures 4.16 and 

4.17 depict the scatter plots and hydrographs obtained for the training data set of the 

model developed for the Padiyathalawa subbasin of the Maduru Oya basin, 

respectively.  

 

Figure 4.16: Scatter plots obtained from the RF model developed for the 

Padiyathalawa sub-basin (Training period) 

Figure 4.18 illustrates the flow duration curves plotted for the observed and simulated 

streamflow at the Padiyathalawa gauging station of the Maduru Oya basin for the 

training period. The flow duration curves demonstrate the superior performance of the 

model in simulating high flows compared to low flows. However, the simulated low 

flows have shown higher values compared to the observed values, which remains a 

limitation of machine learning-based models. This limitation is further elaborated in 

the discussion section.  

Subsequently, Figures 4.19 and 4.20 illustrate the scatter plots and hydrographs 

obtained for the testing dataset of the model developed for the Padiyathalawa sub-

basin, respectively. Figure 4.21 depicts the flow duration curves plotted for the testing 

period of the model developed for the Padiyathalawa sub-basin. The testing period has 

also shown similar behavior to the training period when predicting low flows at the 

Padiyathalawa gauging station. 
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Figure 4.17:Hydrographs obtained from the RF model developed for the 

Padiyathalawa sub-basin (training period)  

 

Figure 4.18: Flow Duration Curves obtained for the training period for the 

Padiyathalawa sub-basin 
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Figure 4.19: Scatter plots obtained from the RF model developed for the 

Padiyathalawa sub-basin (Testing period) 

 

Figure 4.20: Hydrographs obtained from the RF model developed for the 

Padiyathalawa sub-basin (Testing period) 
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Figure 4.21: Flow Duration Curves obtained for the testing period for the 

Padiyathalawa sub-basin 

Furthermore, Figures 4.22 and 4.23 showcase the scatter plots and hydrographs 

obtained for the training data set of the model developed for the Wellawaya sub-basin 

of the Kirindi Oya basin, respectively. Figure 4.24 depicts the flow duration curves 

plotted for the training period of the model developed for the Wellawaya sub-basin. 

Simultaneously, Figures 4.25 and 4.26 display the scatter plots and hydrographs 

obtained for the testing data set of the model developed for the Wellawaya sub-basin, 

respectively, while Figure 4.27 depicts the flow duration curves plotted for the testing 

period of the model developed for the Wellawaya sub-basin. 

 

Figure 4.22: Scatter plots obtained from the RF model developed for the Wellawaya 

sub-basin (Training period) 
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Figure 4.23: Hydrographs obtained from the RF model developed for the Wellawaya 

sub-basin (training period) 

 

Figure 4.24: Flow Duration Curves obtained for the training period for the 

Wellawaya sub-basin 
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Figure 4.25: Scatter plots obtained from the RF model developed for the Wellawaya 

sub-basin (Testing period) 

 

Figure 4.26: Hydrographs obtained from the RF model developed for the Wellawaya 

sub-basin (testing period) 
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Figure 4.27: Flow Duration Curves obtained for the testing period for the Wellawaya 

sub-basin 

The low flow simulation of the model developed for the Wellawaya sub-basin has 

exhibited better performance compared to the model developed for the Padiyathalawa 

sub-basin, although the similar deviation of overestimation can be observed. 

4.8 Hydrological Drought Assessment Based on SDI 

The Streamflow Drought Index (SDI) was estimated using the monthly mean 

streamflow for three selected time scales (3-month, 6-month, and 12-month) at 

Padiyathalawa and Wellawaya gauging stations of the Maduru Oya basin and Kirindi 

Oya basin, respectively. This estimation was conducted for both current and future 

climate scenarios. 

Figures 4.28 and 4.29 illustrate the variation of the Streamflow Drought Index (SDI) 

for different time scales from the 1985/1986 water year to the 2014/2015 water year 

(historical period) in the Padiyathalawa sub-basin and Wellawaya sub-basin, 

respectively. 
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Figure 4.28: Variation of Streamflow Drought Index (SDI) during the historical 

period at different time scales at the Padiyathalawa gauging station 

 

Figure 4.29: Variation of Streamflow Drought Index (SDI) during the historical 

period at different time scales at the Wellawaya gauging station 

At the Padiyathalawa gauging station, the hydrological years of 1989/1990 and 

2010/2011 exhibited two drought events at the three-month time scale (October to 

December). Additionally, the years 1986/1987 and 2010/2011 manifested drought 

conditions at all three time scales. Conversely, the water years 1994/1995 and 

2008/2009 indicated drought conditions at the six-month time scale (October to 

March). At the Wellawaya gauging station, the hydrological years of 1989/1990, 
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2008/2009, and 2010/2011 exhibited drought events at the three-month time scale 

(October to December). The drought event of 1989/1990 was observed at all three time 

scales, while the drought event of 2010/2011 was noted at the three-month and six-

month scales. 

At the Padiyathalawa gauging station of the Maduru Oya basin, the drought event 

observed in the year 2010/2011, manifested across all three time scales, is 

characterized as an extreme drought event (SDI ≤ -2). In contrast, it is classified as a 

moderate drought event (-1.5 ≥ SDI < –1.0) for the Wellawaya Gauging station of the 

Kirindi Oya basin at both three-month and six-month time scales. The drought event 

of 1989/1990 observed at the Wellawaya station is identified as an extreme drought 

event. Additionally, it is evident at the Padiyathalawa station at the three-month scale, 

exhibiting a severe drought condition (–2.0 ≥ SDI < –1.5). Therefore, the two drought 

events noted in the 1989/1990 and 2010/2011 water years hold significant importance. 

Moreover, the drought event noticed in 1986/1987 is also noteworthy, as significant 

agricultural losses were recorded in the dry zone of Sri Lanka due to the drought 

prevailing in the year 1987 as stated in the Sri Lanka National Report on Disaster Risk, 

Poverty and Human Development Relationship. 

Figures 4.30 and 4.31 depict the variation of SDI at the Padiyathalawa gauging station 

in the Maduru Oya basin for the future under SSP1-2.6 and SSP5-8.5 scenarios, 

respectively. The SDI values were estimated based on the predicted streamflow for the 

projected period from 2015 to 2100. According to the results, under SSP1-2.6, 

although the Padiyathalawa sub-basin will not be vulnerable to frequent extreme 

droughts in the future, it will be susceptible to severe droughts more frequently. The 

water years 2031/2032, 2058/2059, and 2090/2091 show drought events at all time 

scales. On the other hand, the year 2087/2088 exhibits an extreme drought condition 

at the three-month (October-December) time scale. Most importantly, the sub-basin is 

more vulnerable to moderate droughts under the SSP1-2.6 scenario. This vulnerability 

was also evident in the meteorological drought assessment using SPI. 
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Figure 4.30: Variation of SDI at the Padiyathalawa gauging station in the Maduru 

Oya basin for the future under SSP1-2.6 

 

Figure 4.31: Variation of SDI at the Padiyathalawa gauging station in the Maduru 

Oya basin for the future under SSP5-8.5 
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-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

2
0

1
5
 -

 2
0
1

6

2
0

1
9
 -

 2
0
2

0

2
0

2
3
 -

 2
0
2

4

2
0

2
7
 -

 2
0
2

8

2
0

3
1
 -

 2
0
3

2

2
0

3
5
 -

 2
0
3

6

2
0
3
9
 -

 2
0
4
0

2
0
4
3
 -

 2
0
4
4

2
0

4
7
 -

 2
0
4

8

2
0

5
1
 -

 2
0
5

2

2
0

5
5
 -

 2
0
5

6

2
0

5
9
 -

 2
0
6

0

2
0

6
3
 -

 2
0
6

4

2
0

6
7
 -

 2
0
6

8

2
0

7
1
 -

 2
0
7

2

2
0

7
5
 -

 2
0
7

6

2
0

7
9
 -

 2
0
8

0

2
0

8
3
 -

 2
0
8

4

2
0
8
7
 -

 2
0
8
8

2
0
9
1
 -

 2
0
9
2

2
0

9
5
 -

 2
0
9

6

2
0

9
9
 -

 2
1
0

0

S
D

I

Hydrological year

Oct-Dec Oct-Mar Oct-Sep

-3

-2

-1

0

1

2

3

4

2
0

1
5
 -

 2
0
1
6

2
0

1
8
 -

 2
0
1
9

2
0
2
1
 -

 2
0
2

2
2

0
2

4
 -

 2
0
2
5

2
0

2
7
 -

 2
0
2
8

2
0

3
0
 -

 2
0
3
1

2
0

3
3
 -

 2
0
3
4

2
0
3
6
 -

 2
0
3

7
2

0
3

9
 -

 2
0
4
0

2
0

4
2
 -

 2
0
4
3

2
0

4
5
 -

 2
0
4
6

2
0

4
8
 -

 2
0
4
9

2
0

5
1
 -

 2
0
5
2

2
0

5
4
 -

 2
0
5
5

2
0

5
7
 -

 2
0
5
8

2
0

6
0
 -

 2
0
6
1

2
0

6
3
 -

 2
0
6
4

2
0

6
6
 -

 2
0
6
7

2
0

6
9
 -

 2
0
7
0

2
0

7
2
 -

 2
0
7
3

2
0

7
5
 -

 2
0
7
6

2
0

7
8
 -

 2
0
7
9

2
0

8
1
 -

 2
0
8
2

2
0
8
4
 -

 2
0
8

5
2

0
8

7
 -

 2
0
8
8

2
0

9
0
 -

 2
0
9
1

2
0

9
3
 -

 2
0
9
4

2
0

9
6
 -

 2
0
9
7

2
0
9
9
 -

 2
1
0

0

S
D

I

Hydrological year

Oct-Dec Oct-Mar Oct-Sep



59 

 

(October to September) scales, while at the three-month (October to December), a 

severe drought condition is depicted. Simultaneously, the years 2050/2051 and 

2066/2067 indicate severe drought conditions at all three time scales. Moreover, under 

this scenario, the basin is more vulnerable to moderate droughts compared to other 

drought categories. 

Figures 4.32 and 4.33 depict the variation of SDI at the Wellawaya gauging station in 

the Kirindi Oya basin for the future under SSP1-2.6 and SSP5-8.5 scenarios, 

respectively. 

 

Figure 4.32: Variation of SDI at the Wellawaya gauging station in the Kirindi Oya 

basin for the future under SSP1-2.6 

Under the SSP1-2.6 scenario, the year 2094/2095 demonstrates extreme hydrological 

drought conditions at all three time scales, and the 2058/2059 year indicates an extreme 

hydrological drought event at the 6-month and 12-month scales. The year 2075/2076 

also indicates an extreme drought at the six-month scale in the Wellawaya sub-basin 

of the Kirindi Oya basin. Therefore, the Kirindi Oya basin is more vulnerable to 

extreme droughts under the SSP1-2.6 scenario during the Maha season (October to 

March). 

Under the SSP5-8.5 scenario, the Wellawaya sub-basin of the Kirindi Oya basin is 

more vulnerable to extreme droughts at the 3-month scale compared to other time 

scales. The year 2032/2033 indicates an extreme drought event at the 12-month time 

scale. More frequent moderate hydrological droughts are demonstrated under the 

SSP5-8.5 scenario. 
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Figure 4.33: Variation of SDI at the Wellawaya gauging station in the Kirindi Oya 

basin for the future under SSP5-8.5 

Tables 4.4, 4.5, and 4.6 present the occurrence percentages of different drought 

categories based on the frequencies in the historical period (1985-2015), under SSP1-

2.6 and SSP5-8.5 for the projected period from 2015 to 2100, respectively. In Tables 

4.4, 4.5, and 4.6, the Padiyathalawa subbasin of the Maduru Oya basin and Wellawaya 

subbasin of the Kirindi Oya basin are denoted as Basin 1 and Basin 2, respectively. 

Table 4.4: Occurrence percentages of different drought categories based on SDI in 

the historical period 

Basin 

Extreme drought (%) Severe drought (%) Moderate drought (%) 

3-mon 6-mon 12-mon 3-mon 
6-

mon 
12-mon 3-mon 

6-

mon 
12-mon 

Basin 

1 
0 6.45 3.23 6.45 3.23 0 6.45 3.23 3.23 

Basin 

2 
0 3.23 3.23 3.23 0 3.23 12.90 16.13 6.45 
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Table 4.5: Occurrence percentages of different drought categories based on SDI 

under the SSP1-2.6 scenario 

Basin 

Extreme drought (%) Severe drought (%) Moderate drought (%) 

3-mon 6-mon 12-mon 
3-

mon 
6-mon 12-mon 

3-

mon 
6-mon 12-mon 

Basin 

1 
1.16 0 0 3.49 4.65 3.49 9.30 10.46 13.95 

Basin 

2 
4.65 4.65 2.33 4.65 5.81 2.33 3.49 3.49 6.98 

 

Table 4.6: Occurrence percentages of different drought categories based on SDI 

under the SSP5-8.5 scenario 

Basin 

Extreme drought (%) Severe drought (%) Moderate drought (%) 

3-mon 6-mon 12-mon 
3-

mon 
6-mon 12-mon 

3-

mon 
6-mon 12-mon 

Basin 

1 
0 1.16 1.16 6.98 3.49 3.49 6.98 9.30 11.63 

Basin 

2 
4.65 5.81 2.33 2.33 3.49 5.81 3.49 8.14 10.47 

 

The highlighted values in Table 4.5 and Table 4.6 represent the drought categories that 

exhibit increasing trends under the SSP1-2.6 and SSP5-8.5 projection scenarios in 

comparison to the historical period. It is evident that both Basin 1 (Padiyathalawa sub-

basin of the Maduru Oya basin) and Basin 2 (Wellawaya sub-basin of the Kirindi Oya 

basin) are susceptible to moderate drought conditions under both projection scenarios. 

Additionally, both basins are prone to extreme drought events at the 3-month (October 

to December) and 6-month scales (October to March). 

When considering the 12-month time scale, the Padiyathalawa sub-basin of the 

Maduru Oya basin is more vulnerable to moderate droughts under both future 

scenarios. The occurrence percentages are approximately 14% and 12% under the 

SSP1-2.6 and SSP5-8.5 scenarios, respectively, representing a significant increase 

compared to the historical period. This highlights the likelihood of more frequent 

occurrences of hydrological years with moderate drought conditions, exacerbating 

water scarcities in the future. Conversely, the occurrence percentage of severe droughts 

under both scenarios remains unchanged at the 12-month scale. However, no extreme 

droughts have been recorded under the SSP1-2.6 future scenario. Under the SSP5-8.5 

scenario, there is a value of 1.2%, which is relatively small. Therefore, the 

vulnerability of the subbasin to extreme droughts is not significant in the future. At the 

3-month scale, the subbasin is more vulnerable to extreme and moderate hydrological 
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conditions under the SSP1-2.6 scenario compared to the historical period. However, 

the vulnerability to moderate droughts remains significant. Moreover, when 

considering all three time scales, frequent hydrological droughts can be identified 

under the SSP5-8.5 scenario compared to the historical period. 

he Wellawaya sub-basin of the Kirindi Oya basin is also susceptible to frequent 

moderate hydrological droughts in the future under both projection scenarios, with 

occurrence percentages of 7% and 10% under SSP1-2.6 and SSP5-8.5, respectively, at 

the 12-month timescale. Conversely, the sub-basin has exhibited a considerable 

increase in vulnerability to extreme hydrological droughts at the 3-month and 6-month 

timescales under both projection scenarios, indicating the likelihood of frequent water 

scarcities during the Maha season (October to March) in the future. Moreover, an 80% 

increase in the occurrence of severe hydrological droughts can be observed under the 

SSP5-8.5 scenario at the 12-month scale, which represents a significant escalation 

compared to the historical period. Conversely, under the SSP1-2.6 scenario, there is a 

decrease of 27%. Therefore, the vulnerability of the basin to severe hydrological 

droughts is notable under the high emission scenario. 
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5. DISCUSSION 

5.1 Bias Correction of GCM Outputs 

Currently, significant progress has been achieved in global climate modelling, marked 

by enhanced spatial resolution and a more comprehensive representation of 

physicochemical processes, leading to improved accuracy in General Circulation 

Models (GCMs) (Grillakis et al., 2013). Specifically, the small-scale patterns of daily 

precipitation exhibit a strong dependence on both model resolution and 

parameterization. Consequently, they frequently prove unsuitable for direct 

application in studies evaluating the impacts of climate change (Themeßl et al., 2011). 

As a result, it is imperative to address the biases inherent in GCM outputs before 

employing them in investigations related to climate change impacts. In this study, the 

empirical downscaling method was utilized. 

Among the two approaches of empirical downscaling, the bias correction approach 

was selected. This study selected the statistical bias correction approach, which 

establishes statistical relationships between observed and simulated precipitation by 

equalizing key statistical characteristics, including the mean and variance, between 

modelled and observed precipitation (Grillakis et al., 2013). Two statistical bias 

correction methods, namely the mean-based and variance-based methods, were 

employed to calculate monthly bias factors. The selected objective function, the 

coefficient of determination (R2), showed satisfactory values. In Chapter 4, Figures 4.1 

and 4.2 illustrate the coefficient of determination (R2) values obtained for each gauging 

station in the Maduru Oya basin and Kirindi Oya basin, respectively. Notably, the 

mean-based approach exhibited better performance compared to the variance-based 

method Notably, the mean-based approach exhibited better performance compared to 

the variance-based method. 

Although R2 values were greater than 0.5, it is acknowledged that a method like 

quantile mapping could potentially provide superior results. Quantile mapping, a 

statistical bias correction technique, establishes statistical relationships between 

cumulative density functions (CDFs) from a common time frame in observed and 

simulated precipitation, subsequently applying this method to projected precipitation 

(Grillakis et al., 2013). Additionally, quantile mapping extends the correction to the 

entire distribution, including the tails, rendering it suitable for assessing extreme 

climatic events. This approach addresses biases in the distribution shape and rectifies 

errors in variability (Miao et al., 2016). Consequently, the utilization of quantile 

mapping for bias correction may offer enhanced performance compared to other 

statistical bias correction approaches based on the equalization of statistical 

characteristics when correcting GCM outputs. 

Even though the conventional quantile mapping approach offers a more accurate 

representation of observed precipitation in comparison to bias correction methods 
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based on the equalization of statistical characteristics, it operates under the assumption 

that biases in climate models remain stationary over time. However, the probabilistic 

structure of climatic variables may undergo changes (Miao et al., 2016). Hence, it is 

recommended to employ an updated, dynamic cumulative distribution function 

matching technique for improved GCM output bias correction in future research. 

5.2 Streamflow Prediction by Machine Learning Methods 

This study primarily utilized two supervised machine learning methods, namely the 

Recurrent Neural Network (RNN) model and the Random Forest (RF) model. The 

results indicated that the Long Short-Term Memory (LSTM) RNN models developed 

for the two basins exhibited inferior performance compared to the RF model, as 

evident by the values of objective functions presented in Table 4.2 and Table 4.3 in 

Chapter 4. Additionally, Figures 4.14 and 4.15 present the subpar performance of the 

developed RNN models. Despite this, literature acknowledges the potency of LSTMs 

in addressing time series predictions, as they can effectively capture both the periodic 

and chaotic behaviours of time series data, learning their long-range dependencies with 

increased accuracy (Wang et al., 2022).  

Several researchers have recognized the suitability of LSTMs in rainfall-runoff 

modelling. However, it is important to note some limitations in this study that may 

have influenced the subpar performance of LSTM models. In assessing the 

performance of the models on data not previously encountered, a standard procedure 

in supervised machine learning involves partitioning the data into three distinct sets. 

These sets are utilized at various stages in the model creation process.  

The model is first trained on a designated training dataset. Subsequently, the trained 

model is employed to forecast responses for the observations within a second dataset 

known as the validation dataset. The optimal combination of hyperparameters, 

determined by the best performance on the validation dataset, is then selected for the 

machine learning model. Ultimately, an impartial assessment of the final model is 

conducted using the test dataset.  

In this study, monthly rainfall values and streamflow values were employed, resulting 

in a dataset of 360 values for both model training and testing. Specifically, 80% of the 

data was allocated for model training, 15% for validation, and the remaining 5% for 

testing, potentially impacting the performance of the model due to the relatively short 

data period. The validation and testing datasets are comparatively small, and the 

trained model exhibited suboptimal performance on these datasets. Sufficient data is 

essential for effective model training, and the utilization of a more extended data 

period is preferable. 

Conversely, the Thiessen average rainfall for the chosen sub-basin was utilized as the 

input data based on literature suggesting that gauging stations located within or near 

the watershed exhibit superior performance when predicting streamflow using LSTM 
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models (Li et al., 2020). However, it is advisable to incorporate all available rain 

gauges within and in proximity to the watershed to assess the performance of gauges 

that align with physical intuition based on statistical tests. Furthermore, the 

consideration of only rainfall as an input variable may contribute to model limitations. 

Enhancing the performance of the model could involve incorporating additional 

factors such as evapotranspiration, humidity, and temperature. 

On the other hand, although the random forest models have exhibited better 

performance compared to LSTM models, indicating superior values for all selected 

objective functions, an analysis of the plotted flow duration curves for both training 

and testing periods reveals that the simulated low flow values are comparatively high 

in relation to the observed streamflow values. While high low flow values are 

significant in the context of a drought-related study, where the assessment of 

hydrological drought relies on streamflow values, this discrepancy remains a limitation 

of the black box model approach. This limitation arises from the inability to adjust 

only the low flow conditions, as parameters associated with low flow conditions 

cannot be altered, unlike in physically based hydrological models. 

5.3 Vulnerability of the Maduru Oya and Kirindi Oya Basins to Droughts in 

the Future 

In this study, two primary assessments were conducted for drought monitoring. 

Meteorological drought monitoring was performed using the Standardized 

Precipitation Index (SPI), while hydrological drought monitoring was based on the 

Streamflow Drought Index (SDI). Maps were generated to visualize the spatial 

distribution of meteorological droughts. A comparison of the two results can be 

undertaken only by considering the upstream parts of the two basins, as the 

hydrological drought assessment was conducted solely for the two upstream sub-

basins. 

According to the results, the upstream part of the Maduru Oya basin exhibits greater 

vulnerability to moderate meteorological droughts during the historical period 

compared to the two future scenarios. Additionally, based on the hydrological drought 

assessment, the Padiyathalawa sub-basin, which constitutes the upstream portion of 

the Maduru Oya basin, demonstrates increased vulnerability to moderate droughts 

under the two projected scenarios across all three time scales. As a consequence, the 

upstream region is rendered more susceptible to moderate meteorological droughts and 

moderate hydrological droughts. This heightened vulnerability is anticipated to 

significantly impact water availability downstream as well. Consequently, the Maduru 

Oya basin emerges as more vulnerable to moderate hydrological droughts in the future. 

Furthermore, a significant variation is not apparent in the generated maps depicting 

the meteorological drought status of the two basins, particularly concerning extreme 

drought conditions. This holds true for both the historical period and the projection 
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scenarios, where the occurrence percentages, on average, have exhibited noteworthy 

increases. In the Maduru Oya basin, the occurrence percentages have shown 

increments of 18% and 31% under the SSP1-8.5 and SSP5-8.5 scenarios, respectively. 

Similarly, in the Kirindi Oya basin, percentage increments of 49% and 37% have been 

observed under the SSP1-2.6 and SSP5-8.5 scenarios, respectively. 

On the other hand, the vulnerability of both Kirindi Oya and Maduru Oya basins to 

moderate meteorological drought conditions has been reduced under the SSP5-8.5 

scenario compared to the SSP1-2.6 scenario. According to Zhai et al. (2020), Sri Lanka 

belongs to the South-East (SE) dryness region among the five homogeneous dryness 

regions of South Asia. The projections indicate a significant increase in precipitation 

under the SSP5-8.5 scenario, while there is a considerable decrease rate under the 

SSP1-2.6 scenario in the SE region, leading to reduced meteorological drought 

vulnerability under SSP5-8.5 compared to SSP1-2.6. Moreover, the drought frequency 

per decade projected by CMIP6 models is in the range of 4-6% for Sri Lanka. 

Therefore, the results can be verified. 

Moreover, the Padiyathalawa sub-basin of the Maduru Oya basin is more vulnerable 

to severe hydrological droughts at the 6-month (October-March) and 12-month scale 

(October-September) under the two projected scenarios. Therefore, frequent droughts 

and water scarcities can be expected in the future. On the other hand, the increment in 

the occurrence of extreme hydrological drought events in the future in the Wellawaya 

sub-basin of the Kirindi Oya basin is comparatively high at the 3-month and 6-month 

time scales under both projection scenarios. Therefore, considerable water scarcities 

can be expected in the Kirindi Oya basin in comparison to the Maduru Oya basin. 

The SSP1-2.6 scenario outlines a trajectory characterized by minimal challenges in 

terms of mitigation and adaptation. This results in a future global landscape where both 

social and economic development adhere to sustainability goals. In contrast, the SSP5-

8.5 scenario assumes a global socio-economic development focus on economic 

growth, high energy demand, and limited efforts to mitigate climate change. While 

SSP1-2.6 envisions a future marked by ambitious climate change mitigation efforts, 

aiming to restrict global warming to levels significantly below 2°C above pre-

industrial levels, an assessment of all five scenarios by Working Group I (WGI) of the 

Intergovernmental Panel on Climate Change (IPCC) indicates a probability exceeding 

50% that global warming will attain or surpass 1.5°C in the near term. This likelihood 

persists even for the very low greenhouse gas emissions scenario (SSP1-2.6) (IPCC, 

2023). Consequently, it is evident that both basins will encounter frequent 

meteorological and hydrological droughts in the future, given their heightened 

vulnerability to droughts, even under the low emission scenario, which is projected to 

be surpassed in the near future. Consequently, the susceptibility of the two basins to 

drought conditions is anticipated to significantly increase in the future. 
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6. CONCLUSIONS 

In summary, the study findings and insights contribute valuable perspectives to the 

understanding of the effect of climate change on the occurrence of meteorological and 

hydrological droughts in Maduru Oya and Kirindi Oya dry zone basins, and the 

following key conclusions emerge. 

1. According to the results of the meteorological drought assessment of the Maduru 

Oya basin, under the SSP1-2.6 scenario, the occurrence of extreme, severe, and 

moderate droughts shows percentage increases of 18%, 16%, and -6%, 

respectively, in comparison to the historical period. The occurrence of moderate 

droughts has shown a considerable increase in the upstream part of the basin. 

2. Under the SSP5-8.5 scenario, the percentage increments in the occurrence of 

meteorological droughts in the Maduru Oya basin for extreme, severe, and 

moderate drought conditions are 31%, 2%, and -4%, respectively, compared to the 

historical period (1985-2015). Therefore, the frequency of moderate 

meteorological droughts in the future is lower compared to the historical period. 

3. The results of the meteorological drought assessment for the Kirindi Oya basin 

elaborate that the occurrence percentages of moderate droughts exhibit relatively 

higher values across all three scenarios compared to the occurrence percentages of 

extreme and severe droughts. 

4. The analysis reveals that, in the Kirindi Oya basin, under the SSP1-2.6 scenario, 

the occurrence of extreme, severe, and moderate meteorological droughts shows 

percentage increases of 49%, -8%, and 8%, respectively, compared to the historical 

period. 

5. For the SSP5-8.5 scenario, the percentage increments of the Kirindi Oya basin for 

extreme, severe, and moderate meteorological drought conditions are 37%, -5%, 

and 4%, respectively. Importantly, it is noteworthy that the occurrence of extreme 

droughts is projected to surge by more than 35% under both projection scenarios. 

6. According to the results of the hydrological drought assessment, the Padiyathalawa 

sub-basin of the Maduru Oya basin is anticipated to experience frequent moderate 

hydrological droughts. The basin has shown a substantial increase in occurrence 

percentages under both future scenarios across all three time scales. Particularly 

noteworthy is the heightened susceptibility observed at the 12-month time scale 

under both future scenarios, with occurrence percentages of 14% under SSP1-2.6 

and 12% under SSP5-8.5. This underscores the likelihood of more frequent 

occurrences of hydrological years characterized by moderate drought conditions, 

which in turn exacerbates water scarcities in the future. 
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7. Additionally, the occurrence percentages of severe droughts remain unchanged at 

the 12-month scale under both scenarios. Furthermore, no extreme droughts have 

been recorded under SSP1-2.6, with only a small occurrence (1.2%) observed 

under SSP5-8.5 in the Padiyathalawa sub-basin. 

8. The Wellawaya sub-basin of the Kirindi Oya basin is susceptible to frequent 

moderate hydrological droughts in the future under both projection scenarios at the 

12-month timescale (7% under SSP1-2.6 and 10% under SSP5-8.5). Moreover, an 

80% increase in the occurrence of severe hydrological droughts under SSP5-8.5 at 

the 12-month scale, which represents a significant escalation compared to the 

historical period, has been indicated. 

9. Furthermore, there is a considerable increase in vulnerability to extreme 

hydrological droughts at the 3-month and 6-month timescales under both 

scenarios, emphasizing the likelihood of frequent water scarcities during the Maha 

season (October to March) in the future in the Wellawaya sub-basin of the Kirindi 

Oya basin. 

10. Both river basins are vulnerable to hydrological droughts, with the Kirindi Oya 

basin being more susceptible to extreme droughts compared to the Maduru Oya 

basin. Conversely, the Maduru Oya basin is found to be more vulnerable to 

moderate hydrological drought events in the future. 

11. In conclusion, both river basins may experience water scarcities more frequently 

during the Maha season (October to March), which influences rainfall patterns in 

the dry zone, thereby increasing susceptibility to water shortages in the subsequent 

Yala season in the future. Therefore, the findings of this research are crucial for 

effective water management in these basins. The results are of great significance 

for decision-making authorities, emphasizing the importance of implementing 

proactive measures to ensure a reliable water supply for irrigation and domestic 

purposes. 
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7. RECOMMENDATIONS 

Based on the findings of this research, several recommendations are proposed. It is 

suggested to implement sustainable water management practices in both the Maduru 

Oya and Kirindi Oya basins to optimize the utilization of available water resources. 

According to the meteorological drought assessment, both river basins have indicated 

an increasing vulnerability to extreme meteorological drought, with increment 

percentages exceeding 30% under the SSP5-8.5 scenario. Simultaneously, both basins 

have shown an increasing vulnerability to extreme meteorological droughts under the 

low emission scenario, which is projected to be surpassed in the near future. Moreover, 

both river basins are susceptible to hydrological droughts, with the Kirindi Oya basin 

being more vulnerable to extreme hydrological droughts, with an increasing 

occurrence percentage of 80% in the future under the SSP5-8.5 scenario. Encouraging 

the promotion of alternative water supply options, such as rainwater harvesting, 

groundwater recharge, and the adoption of efficient water storage facilities, is crucial. 

This initiative aims to ensure a reliable water supply, particularly during the Yala 

cultivation season, due to the expected frequent water scarcities during the Maha 

season (Northeast monsoon period), which influences the rainfall patterns of the dry 

zone. 

Furthermore, there is a recommendation to conduct additional research, expanding the 

dataset to include longer time periods and additional variables such as evaporation, 

humidity, and temperature. This expansion is anticipated to enhance the accuracy and 

performance of predictive models. 

In addition, fostering collaboration among relevant stakeholders, including 

governmental agencies, local communities, and research institutions, is encouraged. 

This collaborative effort aims to collectively address water scarcity challenges and 

implement sustainable solutions. Given the substantial impact of climate change on 

watershed hydrology, the insights gained from this research are deemed imperative for 

proactively devising effective strategies to enhance the efficient management of water 

resources within the basin. This emphasizes the importance of integrating these 

findings into future planning initiatives. 
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APPENDIX A: DOUBLE MASS CURVES 

 

Figure A.1: Double mass curve for Kandaketiya rainfall station 

(Maduru Oya river basin) 

 

Figure A.2: Double mass curve for Kudasigiriya rainfall station 

(Maduru Oya river basin) 
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Figure A.3: Double mass curve for Angamedilla rainfall station 

(Maduru Oya river basin) 

 

Figure A.4: Double mass curve for Aluthnuwara rainfall station 

(Maduru Oya river basin) 
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Figure A.5:Double mass curve for Thissamaharama Irrigation rainfall station 

(Kirindi Oya river basin) 

 

Figure A.6: Double mass curve for Thanamalwila rainfall station 

(Kirindi Oya river basin) 
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Figure A.7: Double mass curve for Wellawaya rainfall station 

(Kirindi Oya river basin) 
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APPENDIX B: ETCCDI INDICES 

 

Figure B.1: RX1day variation in the Maduru Oya basin 
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Figure B.2: RX1day variation in the Kirindi Oya basin 
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Figure B.3: RX5day variation in the Maduru Oya basin 
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Figure B.4: RX5day variation in the Kirindi Oya basin 
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Figure B.5: CWD variation in the Maduru Oya basin 
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Figure B.6: CWD variation in the Kirindi Oya basin 
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Figure B.7: CDD variation in the Maduru Oya basin 
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Figure B.8: CDD variation in the Kirindi Oya basin 
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Figure B.9: R10 variation in the Maduru Oya basin 
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Figure B.10: R10 variation in the Kirindi Oya basin 
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Figure B.11.: R20 variation in the Maduru Oya basin 
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Figure B.12: R20 variation in the Kirindi Oya basin 
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Figure B.13: SDII variation in the Maduru Oya basin 
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Figure B.14: SDII variation in the Kirindi Oya basin 
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