RISK-BASED CHEMICAL PROCESS ROUTE SELECTION CONSIDERING INHERENT ENVIRONMENTAL FRIENDLINESS

Prabuddhi Kalpana Rathnasekara

178023C

Doctor of Philosophy

Department of Chemical and Process Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

April 2024

RISK-BASED CHEMICAL PROCESS ROUTE SELECTION CONSIDERING INHERENT ENVIRONMENTAL FRIENDLINESS

Palakatiyage Prabuddhi Kalpana Rathnasekara

178023C

Thesis submitted in partial fulfillment of the requirements for the degree

Doctor of Philosophy

Department of Chemical and Process Engineering

Faculty of Engineering

University of Moratuwa

Sri Lanka

April 2024

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 29.03.2024

The above candidate has carried out research for the PhD thesis under my supervision.

Name of Supervisor: Prof. (Ms.) Manisha Yasanthi Gunasekera

Signature of the Supervisor:

Date: 01.04.2024.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor, Professor Manisha Yasanthi Gunasekera, Department of Chemical and Process Engineering, University Moratuwa, for her exceptional mentorship and supervision throughout this research endeavour. Her profound expertise, scholarly guidance, and unwavering encouragement have been invaluable in completing this thesis. I am immensely grateful for her patience, availability, and continuous support, which have greatly enriched both my academic and personal growth.

I would also like to express my heartfelt gratitude to Professor P.G. Rathnasiri, former Head of the Department of Chemical and Process Engineering, University Moratuwa and Professor H. M. R. Premasiri, Department of Earth Resources Engineering, University Moratuwa for their insightful feedback, constructive criticism, and encouragement as the members in the progress review committee.

Furthermore, I am truly grateful to the academic and non-academic staff, and fellow research students of the Department of Chemical and Process Engineering, University of Moratuwa for supporting me whenever I needed it.

I would also like to express my sincere appreciation for the financial support provided by the University of Moratuwa Senate Research Grant. This research work was supported by the University of Moratuwa Senate Research Grant Number SRC/LT/2017/05.

I would like to extend my gratitude to my family for their love and support throughout my academic journey. I am also deeply appreciative of my friends, who have been there for me with uplifting conversations in challenging times. Finally, I want to express my gratitude to my loving husband Salika, for his constant patience, encouragement, and positive attitude throughout this entire journey.

Abstract

Chemical process route selection is one of the key decisions taken during the preliminary design stage of process plant development. A chemical process route is defined as the raw material(s) and the sequence of reaction step(s) that convert them to the desired product. In the past, the 'best' process route was selected solely considering economic factors. However, with the disastrous chemical plant accidents experienced in the past, attention has been drawn to select process routes considering other factors such as inherent environmental friendliness. Therefore, methodologies that assess chemical process routes considering environmental aspects are needed for the development of inherently environmentally friendly chemical process plants. The work presented in this thesis proposes a risk-based methodology to assess and rank chemical process routes considering inherent environmental friendliness using the data available during preliminary design stage of chemical process plant design and development. The environmental impacts that could occur due to chemical plant accidents such as accidental chemical releases, fires and explosions are considered when developing the methodology. In the proposed methodology, the chemical process routes are assessed in three approaches. They are fires and explosions, accidental chemical releases and all these three accidents in combination. Therefore, three risk indices are proposed namely, the Inherent Environmental Risk Index for Fires and Explosions (F&E-IERI), the Inherent Environmental Risk Index for accidental Chemical Releases (Chem-IERI), and the Inherent Environment Risk Index (Chem F&E-IERI). A lower risk index of a process route indicates a lower environmental risk and, thus the most inherently environmentally friendly route among the alternate process routes. The proposed methodology is applied in four potential process routes in acetone production. The results obtained show that the process route that has the lowest environmental risk due to fires and explosions in the chemical plant is the p-diisopropyl benzene oxidation process. The dehydrogenation of 2-propanol process route shows the lowest environmental risk due to accidental chemical release. The chemical route that has the lowest environmental risk due to all three major chemical plant accidents, fires, explosions, and chemical releases is the dehydrogenation of 2-propanol process.

Keywords: Environmental risk assessment, chemical process route selection, accidental chemical releases, fires and explosions, inherent safety

TABLE OF CONTENTS

Declara	tion	i
Acknow	vledgement	ii
Abstrac	t	iii
Table of	f Contents	iv
List of I	Figures	x
List of	Tables	xii
List of A	Abbreviations	xiv
List of A	Appendices	xvi
Chapter	1	1
Introduc	ction	1
1.1	Research Objectives	5
1.2	Thesis structure	6
Chapter	2	8
Literatu	re Review	8
2.1	Inherent environmental friendliness	8
2.2	Environmental risk and hazard	9
2.3	Development of chemical process route assessment methodologies	10
2.3.	1 Methodologies to select chemical process routes considering environmental impacts	11
2.3.	1.1 Consequence-based route assessment methodologies	12
2.3.	1.2 Risk-based route assessment methodologies	16
2.3.	2 Types of accidents in plants causing environmental impacts	18
2.4	Occurrence frequency estimation of chemical plant accidents	19
2.4.	Methodologies to estimate accident event occurrence frequencies	20

2.4.2	2	Loss of containment of process equipment leading to accident events	22
2.5	Vulner impact	ability of environmental elements to environmental s	22
2.6	Enviro	nmental impacts and their quantification methodologies	24
2.6.1	l	Environmental impacts due to accidental chemical releases	24
2.6.1	1.1	Global warming impact	24
2.6.1	1.2	Stratospheric ozone depletion	25
2.6.1	1.3	Animal toxicity impacts	26
2.6.1	1.4	Acid deposition	28
2.6.1	1.5	Photochemical smog	28
2.6.1	1.6	Human inhalation toxicity	29
2.6.2	2	Environmental impacts due to fires and explosion	29
2.6.2	2.1	Burn injury impact	30
2.6.2	2.2	Structural damage	31
2.6.3	3	Environmental fate of chemicals after accidental chemical releases	31
2.7	Concep method	pt diagram of chemical routes assessment and selection dologies	33
Chapter	3		36
Inherent	t enviro	nmental risk index	36
3.1	Framev	work of the proposed methodology	36
3.1.1	1	Development of route block diagram, identification of major process equipment, and estimation of chemical inventory	38
3.1.2	2	Identification of environmental impacts and affected environmental elements	39
3.1.3	3	Estimation of Risk Index (RI) for environmental impacts	40
3.1.4	4	Estimation of F&E-IERI	41
3.1.5	5	Estimation of Chem-IERI	42

3.1.6	Estimation of Chem F&E-IERI	43
3.2 Estimaccide	ation of the occurrence frequencies of chemical plant ents and frequency indices	44
3.2.1	Estimation of occurrence frequencies of chemical plant accidents	44
3.2.1.1	The framework of the methodology proposed to estimate occurrence frequencies	44
3.2.1.2	Estimation of occurrence frequency of the critical event	47
3.2.1.3	Estimation of occurrence frequencies of end events	50
3.2.2	Frequency index estimation	53
3.3 Vulne	rability estimation methodology	53
3.3.1	Framework of the vulnerability estimation methodology	54
3.3.2	Vulnerability estimation methodology for environmental elements affected by accidental fire events	57
3.3.2.1	Vulnerability of climate to global warming due to fires	57
3.3.2.2	Vulnerability of terrestrial animals to burn injury impact	58
3.3.3	Vulnerability estimation methodology for structures and buildings in the environment to accidental explosion events	59
3.3.4	Vulnerability estimation methodology for environmental elements affected by accidental chemical releases	59
3.3.4.1	Vulnerability of 'climate' to global warming impact and vulnerability of 'stratospheric ozone' to stratospheric ozone depletion impact due to chemical releases	59
3.3.4.2	Vulnerability of terrestrial animals to terrestrial toxicity impact	60
3.3.4.3	Vulnerability of terrestrial animals to animal inhalation toxicity impact	63
3.3.4.4	Vulnerability of vegetation to acid deposition impact	63
3.3.4.5	Vulnerability of vegetation to photochemical smog impact	64
3.3.4.6	Vulnerability of terrestrial habitants to inhalation toxicity impact	64

3.3.4	7 Vulnerability of aquatic life to aquatic toxicity impact 6	6
3.4	Estimation of the environmental impact magnitudes (M) and 6 caled magnitudes (SM)	8
3.4.1	Estimation of environmental impact magnitude (M) 6	8
3.4.2	Impact magnitude estimation for impacts occurring due 6 to fires and explosions	i9
3.4.2	Burn injury impact (BI) 6	i9
3.4.2	2 Structural damage from explosion events (SD) 7	3
3.4.2	Global warming (GWfire) due to fire emissions 7	4
3.4.3	Impact magnitude estimation methods for impacts 7 caused by accidental chemical releases	4
3.4.3	I Global warming (GWchem) 7	5
3.4.3	2 Stratospheric ozone depletion (OD) 7	5
3.4.3	3 Terrestrial toxicity (TT) 7	5
3.4.3	4 Animal inhalation toxicity (AIT) 7	6
3.4.3	5 Acid deposition (AD) 7	6
3.4.3	6 Photochemical smog (PO) 7	7
3.4.3	7 Human inhalation toxicity (HIT) 7	7
3.4.3	Aquatic toxicity (AT) 7	7
3.5	stimation of scaled magnitude (SM) 7	'9
3.6	Veighting factor 8	2
3.6.1	Estimation of weighting factor 8	2
3.6.1	Estimation of weighting factors for F&E-IERI 8	3
3.6.1	2 Estimation of weighting factor for Chem-IERI 8	4
3.6.1	B Estimation of weighting factor for Chem & F&E-IERI 8	5
Chapter	8	7
Case Stu	y Application 8	7
4.1	rocess routes to produce acetone 8	7
4.1.1	Cumene oxidation process - route 1 8	8

4.1.	2 Dehydrogenation of the 2-propanol process – route 2	88
4.1.	3 Propene oxidation process – route 3	89
4.1.	4 p-diisopropyl benzene oxidation process – route 4	89
4.2	Regional and meteorological data for vulnerability estimation	89
Chapter	: 5	92
Results	and Discussion	92
5.1	Vulnerability of the environmental elements	92
5.2	Accident occurrence frequency	93
5.3	Scaled impact magnitude values	95
5.4	Risk index associated with environmental impacts of process routes (RIk)	95
5.5	Ranking of process routes based on F&E-IERI, Chem-IERI and Chem F&E-ERI	99
5.6 Se	ensitivity analysis	101
5.6.1	The sensitivity of results to variations in the severity scale impact magnitude values	102
5.6.2	Testing the sensitivity by varying the vulnerability assignment definition	103
5.7	Validation of the proposed methodology	104
Chapter 6		107
Conclus	sions and Recommendations	107
6.1	Conclusions	107
6.2	Recommendations for further work	108
Referen	ices	110
Append	lices	126
Append	lix A	126
Appendix B		127
Appendix C		129
Appendix D		130
Append	Appendix E	

Appendix F	140
Appendix G	141

LIST OF FIGURES

Figure	Description	Page
Figure 2.1	Cross section of the unit world environment	33
Figure 2.2	Visual representation showing the chemical route assessment and selection methodologies considering 'inherent environmental friendliness'	34
Figure 2.3	Visual representation of the chemical routes risk-based assessment methodologies and consequence-based assessment methodologies considering inherent environmental friendliness	35
Figure 3.1	Framework to estimate inherent environmental risk indices F&E-IERI, Chem-IERI, and Chem F&E-IERI for a chemical process route	37
Figure 3.2	Overall structure of environmental elements affected, and environmental impacts caused by fires, explosions, and chemical releases	40
Figure 3.3	Framework to estimate risk indices (RIk)	42
Figure 3.4	Framework to estimate occurrence frequencies of end event	45
Figure 3.5	Generic bow-tie model for the occurrence frequency analysis of end events of non-flammable and non-explosive substances	46
Figure 3.6	Generic bow-tie model for the occurrence frequency analysis of end events of flammable and non-explosive substances	46
Figure 3.7	Generic bow-tie model for the occurrence frequency analysis of end events of flammable and explosive substances	46
Figure 3.8	Potential causes for the critical event of a reactor	48
Figure 3.9	Potential causes for the critical event in a separator	48
Figure 3.10	Potential causes for the critical event of a storage tank	48
Figure 3.11	Schematic diagram of the proposed vulnerability estimation methodology	55

- Figure 3.12 The influencing factor tree for toxicity impact on terrestrial 60 animal population resulting from liquid chemical release
- Figure 3.13 The influencing factor tree for terrestrial animal toxicity 62 impact resulting from gaseous chemical release
- Figure 3.14 The influencing factor tree for human inhalation toxicity 65 impact resulting from gas release
- Figure 3.15 The influencing factor tree for aquatic toxicity impact 67 resulting from liquid chemical release
- Figure 3.16 The influencing factor tree for aquatic toxicity impact 68 resulting from gaseous chemical release
- Figure 3.17 Hierarchy showing the environmental risk indices (RI_k) 84 contributing to the F&E-IERI
- Figure 3.18 Hierarchy showing the environmental risk indices (RI) 85 contributing to the Chem-IERI
- Figure 3.19 Hierarchy showing the environmental risk indices (RI_k) 86 contributing to the Chem F&E-IERI
- Figure 4.1 Chemical process route block diagrams of (a) cumene 91 oxidation process (b) dehydrogenation of 2-propanol (c) propene oxidation process and (d) p- diisopropyl benzene (p-DIPB) oxidation process
- Figure. 5.1 Relationship between terrestrial toxicity impact and the 105 number of people affected

LIST OF TABLES

Table	Description	Page
Table 2.1	Summary of consequence-based methodologies to assess process routes considering inherent environmental impact	14
Table 2.2	Summary of environmental risk-based methods to assess chemical manufacturing processes	17
Table 2.3	Methodologies developed considering different types of chemical plant accidents	19
Table 3.1	Failure rates due to mechanical failure of major process equipment	49
Table 3.2	Failure rates due to process upsets of major process equipment	50
Table 3.3	Probability values for the event tree side of the bow-tie	51
Table 3.4	Vulnerability score assignment definitions for burn injury impact and structural damage impact	58
Table 3.5	Vulnerability score assignment definitions for influencing factors permeability of soil and viscosity of substance	61
Table 3.6	Vulnerability score assignment definitions for influencing factors rainfall intensity	63
Table 3.7	Vulnerability score assignment definitions for distance maintained to animal and vegetation	64
Table 3.8	Vulnerability score assignment definitions for influencing factors of human inhalation toxicity impact	65
Table 3.9	Vulnerability score assignment definitions for distance maintained to animal and vegetation	67
Table 3.10	Summary of the impact magnitude estimation methods	79
Table 3.11	Scaling impact severity	80
Table 3.12	Weights for pairwise comparison	83
Table 3.13	Estimated weights for risk indices for F&E-IERI	84
Table 3.14	Estimated weights for risk indices for Chem-IERI	85
Table 3.15	Estimated weights for risk indices for Chem F&E-IERI	86

Table 4.1	Regional and meteorological information for the acetone plant	90
Table 5.1	Estimated vulnerability values of environmental elements	93
Table 5.2	Estimated frequency indices	94
Table 5.3	Scaled Magnitude values of environmental impacts	96
Table 5.4	Estimated risk indices associated with environmental impacts	98
Table 5.5	Ranking of process routes based on F&E-IERI	99
Table 5.6	Ranking of process routes based on Chem-IERI	100
Table 5.7	Ranking of process routes based on Chem F&E-IERI	100
Table 5.8	Sensitivity of F&E-RISD to severity scale variation	102
Table 5.9	Sensitivity of Chem-IERI to vulnerability score variation score	103
Table 5.10	Number of affected people due to terrestrial toxicity impact	105

LIST OF ABBREVIATIONS

Abbreviation	Description
AcTL _j	Minimum risk level of chemical j that is likely to be without appreciable risk of adverse non-cancer human health effects
aqlife	Aquatic life
BI	Burn injury impact
Chem-IERI	Inherent environmental risk index for accidental chemical release
CLj	Concentrations (mol/m ³) in the atmosphere above which direct adverse effects on plants may occur according to present knowledge
F&E-IERI	Inherent Environmental Risk Index for Fires and Explosions
fk,i,j	Frequency Index of chemical plant accident that results in environmental impact k due to chemical j in process equipment i
fref	Reference frequency of occurrence of fire and explosion event
GW	Global warming impact
i	Process equipment
$inhLC50_{j}$	Inhalation lethal concentration of chemical <i>j</i> that kills 50% of the test population of an animal species in 4 hours by inhalation, mol/m^3
IR _{abs j}	IR absorption strength of the chemical j in the interval of 500–1400 cm ⁻¹ , cm ⁻² atm ⁻¹
j	Chemical in process equipment i
k	Environmental impact
$k_{OH(C_3H_6)}$	Rate constant for the reaction between the OH radical and propene
$k_{OH(j)}$	Rate constant for the reaction between the OH radical and substance j
LC _{50j}	Concentration of chemical j in water, which kills 50% of a test population of the most sensitive species over a 96 h period, mol/m ³
LD_{50j}	Lethal dose of chemical j that kills 50% of the test population (mg/kg)
LOC	Loss of containment
\mathbf{MM}_{j}	Molecular mass of chemical j , g mol ⁻¹
$M_{k,i,j}$	Magnitude of environmental impact k

$n_{\rm Cl}, n_{\rm Br}$	Number of Cl atoms per molecule, number of Br atoms per molecule
PECa,j	Predicted environmental concentration of the chemical j in the atmospheric compartment (mol/m ³)
PECa(j)	Predicted environmental concentration of substance j in ppbC in the atmospheric compartment when a quantity Qj is released
PEC _{sj}	Predicted environmental concentration of chemical j in soil compartment (mol/m ³)
PEC _{wj}	Predicted environmental concentration of chemical j in water compartment (mol/m ³)
\mathbf{Q}_j	Quantity of the chemical <i>j</i> released into the atmosphere
g	acceleration due to gravity
RI _k	Risk index of environmental impact k
SD	Structural damage impact
$\mathbf{SM}_{k,i,j}$	Scaled magnitude of environmental impact k of chemical j in process equipment i
s ⁿ	Vulnerability score of n th influencing factor
TDI _{f,x} ,	Daily food intake of species x (m ³ /day)
TDI _{w,x}	Daily fluid intake of species x (m ³ /day)
terran	Terrestrial animal population
terrhab	Terrestrial habitants
veg	Vegetation
Vgas _k	Vulnerability score of the environmental element affected by environmental impact k due to accidental gas release
Vliquid _k	Vulnerability score of the environmental element affected by environmental impact k due to accidental liquid release
Wk	Weighting factor for environmental impact k
Wt _x	Weight of species x (kg)
τ _j	Atmospheric life (years) of chemical <i>j</i>

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Chemical inventory and PEC estimation	126
Appendix B	Properties of chemicals present in acetone production process routes	127
Appendix C	Impact magnitude estimation	129
Appendix D	Example calculation for F&E-IERI for cumene oxidation process route (route 1)	130
Appendix E	Example calculation for Chem-IERI for cumene oxidation process route (route 1)	135
Appendix F	Example calculation for IERI	140
Appendix G	AHP comparison matrix and consistency ratio	141