DEVELOPMENT OF A BIO-INSPIRED LOWER EXTREMITY EXOSKELETON WITH A PASSIVE-POWERING SYSTEM

R. K. P. S. Ranaweera

158048M

Doctor of Philosophy in Biomedical Engineering

Department of Mechanical Engineering Faculty of Engineering

> University of Moratuwa Sri Lanka

> > January 2023

DEVELOPMENT OF A BIO-INSPIRED LOWER EXTREMITY EXOSKELETON WITH A PASSIVE-POWERING SYSTEM

R. K. P. S. Ranaweera

158048M

Thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biomedical Engineering

> Department of Mechanical Engineering Faculty of Engineering

> > University of Moratuwa Sri Lanka

> > > January 2023

DECLARATION

I declare that this is my own work and this Thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature Date: 02/01/2024

The supervisors should certify the Thesis with the following declaration.

The above candidate has carried out research for the Doctor of Philosophy in Biomedical Engineering Thesis under our supervision. We confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Prof. R.A.R.C. Gopura, University of Moratuwa, Sri Lanka

Signature of the Supervisor:

Date: 02 / 01 / 2024

Name of Supervisor: Prof. T.S.S. Jayawardena, University of Moratuwa, Sri Lanka

Signature of the Supervisor:

Date: 02 / 01 / 2024

Name of Supervisor: Prof. G.K.I. Mann, Memorial University of Newfoundland, Canada

Signature of the Supervisor:

Date: 02 / 01 / 2024

DEDICATION

To my loving parents, late Mr. Hemachandra Ranaweera and Mrs. Jayanthi Samaradiwakara, and my loving family who keep lifting me and inspiring me in every aspect of my life.

ACKNOWLEDGEMENT

The tremendous support and guidance rendered by many individuals has enabled me to complete my research work successfully. Hereby, I wish to express my sincere gratitude to all the selfless people who have contributed to reach my goal.

I am indebted to my principal supervisor, Prof. R.A.R.C. Gopura, for the relentless encouragement and guidance for the entirety of the research. He has been a great mentor and a role model to me personally and I am very thankful for his invaluable insight to complete the research work. Furthermore, I am incredibly grateful to my co-supervisors, Prof. T.S.S. Jayawardena and Prof. G.K.I. Mann, for their precious ideas and suggestions during the crucial stages of the research. I owe my deepest gratitude to both them for shaping my research and directing me in the righteous path.

I wish to also express my sincere gratitude to the head of department Prof. H.K.G. Punchihewa and Mr. K.H. Janaka Mangala for their overwhelming support at difficult times to complete my work. I would also like to extend my sincere gratitude towards the technical staff of Department of Mechanical Engineering and Mechanical Workshop for their unwavering assistance during the fabrication of the prototypes. If not for the selfless dedication of such individuals the completion of the research may have not been possible. In particular, I am tremendously thankful to Mr. I.M. Janath Priyankara at Die and Mould Facilitation and Development Centre, Mrs. Iresha Jayasinghe Arachchi at Bionics and Motions Analysis Laboratories and Mrs. Kumudinee Kumari at Applied Mechanics Laboratory for their technical assistance. I would also like to deeply appreciate Dr. Damith Chathuranga and Dr. Nalaka Samaraweera for the administrative support and guidance throughout the degree program. Similarly, I am very thankful to Prof. Buddhika Jayasekara and Dr. Angelo Karunaratne for their insightful comments and suggestions to refine the research work.

I would be amiss if I did not mention my colleagues, Dr. Thilina Lalitharatne, late Dr. Kanishka Madushanka, Mr. Viraj Nimarshana, Mr. Sanka Chandrasiri, Mr. Achintha Abayasiri, Mr. Dulanjana Perera, Mr. Prasad Viduranga, Mr. Achintha Iroshan, and Dr. Viraj Mutugala, who were supporting me to complete my research.

I take this opportunity to express my gratitude towards the Senate Research Committee of University of Moratuwa for the financial support under the under Grant No. SRC/CAP/2014/08 to conduct the research throughout the study period.

I am also very grateful for the continual support and encouragements given by my mother, my sister Mrs. Dinusha Ranaweera and my brother-in-law Dr. Rajitha Gunarathne. Last but not least, I am in debt for all the sacrifices made my loving wife Dr. Piumanthi Karunarathne, my daughter Nethumi Ranaweera and my son Nethuja Ranaweera and for their unlimited support to successfully complete my PhD.

ABSTRACT

Manual handling is an indispensable activity in any occupational setting. It is any activity that requires the use of human force for lifting, carrying or moving an object. Such repetitive and tiring tasks may cause work-related musculoskeletal disorders and adversely affect productivity of manual workers. In that context, the goal of this research was to develop a wearable device or exoskeleton for providing lift assistance during squat lifting. The outcome of the research was to reduce human effort and improve human comfort. The objectives or contributions of the work include conceptualization of a biomechanical energy management approach for squat lifting, development of an anthropomorphic passively powered multi-joint lower extremity exoskeleton for lift assistance, and investigation of the effectiveness of the proposed lift-assist system. Initially, a literature review was conducted on lower extremity exoskeletons to identify the research gap. The analysis on the state-of-the-art of exoskeletons revealed the need for introducing sustainable powering systems and minimizing interference issues at the human robot interface. Next, the biomechanical energy management approaches were conceptualized. The work includes the biomechanical modelling of squat lifting activity and the investigation of feasibility of proposed energy recycling strategies. Subsequently, design of anthropomorphic mechanical structure for the exoskeleton, design of bio-inspired passive-dynamic powering system for ankle and knee joints, and design of passive and active controlling systems were carried out. Thereafter, prototype of the ankle knee exoskeleton was fabricated as per the design specifications. Finally, performance with the proposed lift-assist system was experimentally evaluated. Results from the biomechanical analysis show that, when wearing the exoskeleton, energetic consumption at ankle and knee got reduced by 23-24% and 38-40%, respectively. The effectiveness of proposed system was also verified by evaluating muscle activities of lower and upper leg. All in all, the ankle knee exoskeleton with proposed passive actuators made a positive influence on the lower limb's muscular system. Therefore, the proposed exoskeleton has proven to be an effective solution for industrial use.

Keywords: Bio-inspired Design, Biomechanical Energy Harvesting, Lower Extremity Exoskeleton, Leg/Squat Lifting, Motion Analysis, Passive Actuator, Power Assistance, Surface Electromyography

TABLE OF CONTENTS

De	eclarat	tion of t	he Candidate & Supervisor	i
Dedication			ii	
Acknowledgement			iii	
Ał	ostraci	t		iv
Та	ble of	Conten	its	V
Li	st of F	Figures		viii
Li	st of 7	Tables		XV
Li	st of A	Abbrevia	ations	XV
Li	st of A	Appendi	ces	xviii
1	Introduction			1
	1.1	Lower	Extremity Exoskeletons	5
		1.1.1	Classifications	5
		1.1.2	Applications	7
	1.2	2 Motivation		11
	1.3	Research Problem		12
	1.4	Contribution of Thesis		13
	1.5	j Thesis Overview		14
2	Literature Review			15
	2.1	Load I	Lifting	15
		2.1.1	Lifting Standards	15
		2.1.2	Lifting Technique	17
	2.2	Design	n Challenges	20
		2.2.1	Anatomical Considerations	21
		2.2.2	Functional Considerations	28
	2.3	Relate	d Work	30
		2.3.1	Joint Mechanisms	30
		2.3.2	Lift Assist Systems	40

	2.4	Literat	ture Findings	46
		2.4.1	Kinematic Compliance	46
		2.4.2	Joint Actuation	48
		2.4.3	Energy and Power	49
3	Bior	nechani	cal Modelling and Simulations	51
	3.1	Metho	odology	51
	3.2	Model	Formulation	54
		3.2.1	Anthropometric Measures	54
		3.2.2	Kinematic Modelling	55
		3.2.3	Dynamic Modelling	58
	3.3	Propos	sed Models	67
		3.3.1	Squat	68
		3.3.2	Squat/Leg Lift	72
	3.4	Model	Validation	73
		3.4.1	Musculoskeletal Modelling Software	73
		3.4.2	Squat Model	74
		3.4.3	Simulation Results	76
4	Con	cept of l	Passively-Powered Actuator	80
	4.1	Passiv	ely-Powered Actuation	80
		4.1.1	Power and Energy of Squat Cycle	82
		4.1.2	Spring-based Energy Harvesting Approach	85
	4.2	Model	lling of Passive Actuator	87
		4.2.1	Conceptual Models	87
		4.2.2	Performance Indicators	96
		4.2.3	Analyses on Systems	97
	4.3	Actuat	tor Selection	103
		4.3.1	Ankle Actuator	103
		4.3.2	Knee Actuator	104
		4.3.3	Hip Actuator	105
	4.4	Simula	ations	107

5	Dev	elopmer	nt of Lower Extremity Exoskeleton	117
	5.1	Ankle	Device	117
		5.1.1	Passive-Dynamic Ankle Mechanism	117
		5.1.2	Actuation and Control System	125
		5.1.3	Prototype	131
	5.2	Knee I	Device	135
		5.2.1	Mechanical System	135
		5.2.2	Actuation System	136
		5.2.3	Passive Control Mechanism	139
		5.2.4	Active Control System	143
		5.2.5	Prototypes	149
	5.3	Ankle	Knee Exoskeleton	155
6	Exp	eriments	s and Discussion	160
	6.1	Contro	ol System Performance	160
		6.1.1	Experimental Protocol and Setup	160
		6.1.2	Data Acquisition and Processing Method	165
		6.1.3	Results on Control System	167
	6.2	Huma	n Performance	171
		6.2.1	Experimental Protocol	171
		6.2.2	Experimental Setups: Sensor, Motion and sEMG Data	175
		6.2.3	Data Acquisition and Processing: Sensor, Motion and sEMG	182
		6.2.4	Results on Human	194
7	Con	clusion	and Future Work	222
	7.1	Conclu	ision	222
	7.2	Future	Work	225
Re	eferen	ces		229
A	opend	ix A Fa	abrication and Assembly	239
A	opend	ix B S	pring Testing	241
A	opend	ix C C	ircuit Diagram	244
A	opend	ix D P	rogramming Codes	245

LIST OF FIGURES

Figure	Description	Page
Figure 1.1	Rate of long-standing WRMSD in UK over 10 years	2
Figure 1.2	Statistics of WRMSD by task and body part affected: (a) Percentage of	
	tasks for cases of WRMSD reported by THOR-GP, and (b) Proportion	
	of actual cases of WRMSD per diagnostic category reported by OPRA	
	and THOR-GP	3
Figure 1.3	Medical LEE robots for walking gait assistance and gait training: (a)	
	ReWalk, (b) Ekso GT, (c) Indego, (d) PhoeniX, (e) Exoatlet, (f) REX	8
Figure 1.4	Medical LEE robots for gait rehabilitation/ therapy: (a) Lokomat, (b)	
	AutoAmbulator, (c) Walkbot, (d) KineAssist, (e) LokoHelp, (f) G-EO,	
	(g) WalkTrainer, (h) MotionMaker	8
Figure 1.5	Non-medical LEE robots for military, occupational and recreational	
	use: (a) Guardian XO, (b) RB3D Hercule,(c) HULC, (d) HAL, (e)	
	Kawasaki Suit, (f) Panasonic PowerLoader, (g) Honda Walking & Body-	
	weight Support, (h) Nonee, (i) Fortis, (j) LEGX, (k) Genworth R70i, (j)	
	AxonSuit	9
Figure 2.1	Geometric task variables of load lifting	17
Figure 2.2	Load lifting techniques: (a) squat lifting, and (b) stoop lifting	18
Figure 2.3	Anatomical terminology: (a) anatomical planes of human body, and (b)	
	lower extremity joints and motions	20
Figure 2.4	Classification of design challenges	21
Figure 2.5	Ankle joint: (a) talocrural axis, and (b) subtalar axis	22
Figure 2.6	Knee joint: (a) moving axis of rotation and evolute path of motion, and	
	(b) inclination of anatomical and mechanical axes	23
Figure 2.7	Hip joint: (a) moving axis of rotation in transverse plane, and (b) effect	
	of axis offset in frontal plane	24
Figure 2.8	Key muscles of the lower extremity: anterior and posterior views	25
Figure 2.9	Range of flexion and extension at (a) ankle, (b) knee and (c) hip dur-	
	ing walking (preferred stride), stair ascending, stair descending, squat	
	lifting and stoop lifting	29
Figure 2.10	Range of extension and flexion moment at (a) ankle, (b) knee and (c)	
	hip during walking (preferred stride), stair ascending, stair descending,	
	squat lifting and stoop lifting	29

Figure 2.11	Range of power generated and absorbed at (a) ankle, (b) knee and (c)	
	hip during walking (preferred stride), stair ascending, stair descending,	
	squat lifting and stoop lifting	29
Figure 2.12	Ankle devices: (a) Posterior AFO, (b) PneumaFlex AFO, (c) AssistON-	
	Ankle, (d) Parallel Ankle Joint, (e) Anklebot, (f) Multi-functional AE,	
	(g) Autonomous AE, (h) Unpowered AE, (i) Compatible-joint AE, (j)	
	EXO-PANTOE 1, and (k) Adaptable AAFO	31
Figure 2.13	Knee devices: (a) Self-adjusting KE, (b) AssistON-Knee, (c) BioKEX,	
	(d) iT-Knee, (e) PCCP/PEB-spring based Smart Knee Brace, (f) GEMS	
	Adjustable KE, and (g) Pneumatic Bending Actuator based KE	35
Figure 2.14	Hip devices: (a) Wearable Power Assist HE, (b) Five-Revolute Two-	
	Prismatic HE, (c) Fully Autonomous HE, (d) Compatible HE, (e) Mis-	
	alignment compensating HE, (f) HE with Balance Capacities, and (g)	
	Active Pelvis Orthosis	36
Figure 2.15	Multi-joint devices: (a) Walking Supporting Exoskeleton, (b) Mind-	
	walker, (c) BLEEX, (d) HEXAR, (e) Anthro-X, (f) KUEX-R, and (g)	
	S-Assist	38
Figure 2.16	Lift-assist devices: (a) Raytheon XOS 2, (b) Sarcos Guardian XO, (c)	
	Robot Suit HAL, (d) legX, (e) Wearable-Agri-Robot, (f) XoR2, (g)	
	PLAD, (h) Power-assist knee, (i) KAS, (j) Power-assist suit for knee	
	auxiliary, (k) Power-assist suit for squat lifting, and (l) Semi-active knee	
	exoskeleton	43
Figure 3.1	Mathematical modelling of squat and squat/leg lift	52
Figure 3.2	Techniques of squatting and squat/ leg lifting	53
Figure 3.3	Body segment lengths expressed as proportions of body height, H	55
Figure 3.4	Limb-segment angles for the lower limb	57
Figure 3.5	Single-segment dynamic coplanar model for forearm-hand flexion about	
	elbow	61
Figure 3.6	Two-segment dynamic coplanar model for lower arm and upper arm	
	flexion about elbow and shoulder	63
Figure 3.7	Graphical user interface of Mechanical Expressions	67
Figure 3.8	Step-by-step process of determining biomechanical parameters	68
Figure 3.9	Squat model: (a) joint and segment description of human, and (b) pla-	
	nar, four segment, link segment model	69
Figure 3.10	Squat/Leg lift model: (a) joints, segments and load description, and (b)	
	planar, four segment, link segment model	72
Figure 3.11	Anybody Modelling System: a state-of-the-art musculoskeletal model-	
	ing and simulation software	74
Figure 3.12	Squat simulation using Anybody Modelling System: (a) frontal plane,	
	and (b) sagittal plane	76

Figure 3.13	Comparison of kinematic results: (a) ankle, (b) knee, and (c) hip	77
Figure 3.14	Comparison of kinetic results of ankle, knee, and hip	78
Figure 3.15	Comparison of ground reaction force in X-direction and Y-direction	78
Figure 4.1	Joint moment and power evolution: (a) ankle, (b) knee, and (c) hip	83
Figure 4.2	Conceptualized spring configurations for the passive actuator: (a) Type-	
	I, (b) Type-II, and (c) Type-III	88
Figure 4.3	Schematic of power transmission mechanism and passive actuator ar-	
	rangement for knee joint	89
Figure 4.4	Performance results of Type-I spring configuration: (a) spring exten-	
	sion and force, (b) moment, and (c) energy	93
Figure 4.5	Performance results of Type-II spring configuration: (a) spring exten-	
	sion and force, (b) moment, and (c) energy	94
Figure 4.6	Performance results of Type-III spring configuration: (a) spring exten-	
	sion and force, (b) moment, and (c) energy	95
Figure 4.7	Responses of moment- and energy-based performance indicators: (a)	
	Type-I, (b) Type-II, and (c) Type-III spring configurations	98
Figure 4.8	Percent difference of mean joint moment assistance for Type-II vs.	
	Type-I	100
Figure 4.9	Percent difference of mean joint moment assistance for Type-III vs.	
	Type-I	100
Figure 4.10	Percent difference of mean joint energy assistance for Type-II vs. Type-	
	Ι	101
Figure 4.11	Percent difference of mean joint energy assistance for Type-III vs. Type-	
	Ι	101
Figure 4.12	Comparison of performance of Type-I, Type-II and Type-III spring con-	
	figurations	102
Figure 4.13	Assist ratios for ankle actuator with increasing spring rate	103
Figure 4.14	Assist ratios for knee actuator with increasing spring rate	105
Figure 4.15	Assist ratios for hip actuator with increasing spring rate	106
Figure 4.16	Lift scenarios based on lift condition: (a) ascend with weight (AWW),	
	and (b) descend with weight (DWW)	107
Figure 4.17	Simulation results for AWW: (a) load lifted, (b) GRF	109
Figure 4.18	Joint moment and power in AWW cycle: (a) ankle, (b) knee, and (c) hip	110
Figure 4.19	Percent changes in energy consumption: (a) ankle, (b) knee, and (c) hip	111
Figure 4.20	Assist ratios during AWW cycle: (a) ankle actuator, (b) knee actuator,	
	and (c) hip actuator	112
Figure 4.21	Simulation results for DWW: (a) load lifted, (b) GRF	113
Figure 4.22	Joint moment and power in DWW cycle: (a) ankle, (b) knee, and (c) hip	114
Figure 4.23	Assist ratios during DWW cycle: (a) ankle actuator, (b) knee actuator,	
	and (c) hip actuator	115

Figure 5.1	CAD model of passive-dynamic structure of AD: (a) shank, ankle and	
	foot units, and (b) anterior-view of novel ankle mechanism	118
Figure 5.2	RoM of ankle unit: pronation \rightarrow DF+EV+ER, and (b) supination \rightarrow	
	PF+IN+IR	119
Figure 5.3	Biomometic stabilization of ankle unit: posterior-views of (a) IN, (b)	
	neutral, and (c) EV	119
Figure 5.4	Biomimetic shock absorption and kinematic conformity of ankle unit:	
	(a) heel strike, and (b) loading response of gait	119
Figure 5.5	Link segment models of (a) simplified human ankle and foot, and (b)	
	proposed passive-dynamic AD	121
Figure 5.6	Comparsion of workspaces of human ankle and proposed passive-dynamic	:
	AD with novel ankle mechanism	121
Figure 5.7	Detemination of manipulability measures: (a) process flow of manipu-	
	lability anaysis, and (b) link model in MATLAB RTB	122
Figure 5.8	Variations of manipulability index for PF/DF and IN/EV	123
Figure 5.9	Variations of condition number for (a) PF/DF, and (b) IN/EV	124
Figure 5.10	Manipulability ellipsoids during IN/EV at discrete points	125
Figure 5.11	Passively-powered AD with passive control mechanism: (a) isometric-	
-	view, (b) front-view, and (c) bilateral ADs on human CAD model	126
Figure 5.12	System arrangement of the passively-powered actuator and passive con-	
	trol mechanism of AD	127
Figure 5.13	Working sequence of passively-powered AD: (a) ankle neutral position,	
-	(b) $DF = 6^{\circ}$, and (c) $DF = 25^{\circ}$	128
Figure 5.14	Operation of the spring engaging/ disengaging mechanism: (a) PF =	
-	20° , (b) ankle neutral position, (c) DF = 6° , and (d) DF = 25°	130
Figure 5.15	Prototype of AD with passive actuation system (right): (a) front-view,	
-	(b) side-view, and (c) back-view	132
Figure 5.16	Prototypes of proposed passively-powered AD with passive control mech-	
-	anism worn by 50^{th} percentile male	134
Figure 5.17	Mechanical Structure of KD: (a) front-view, and (b) lateral-view	136
Figure 5.18	Passively-powered KD included with (a) passive control mechanism,	
-	and (b) active control system	137
Figure 5.19	Human CAD model and KD with (a) passive control mechanism, and	
-	(b) active control system	137
Figure 5.20	Semi-exploded view of the actuation system of KD with passive control	
-	mechanism	138
Figure 5.21	Operational modes of KD	139
Figure 5.22	System arrangement of the passively-powered knee actuator and pas-	
-	sive control mechanism of KD	140

Figure 5.23	Working sequence of passively-powered KD with passive control mech-	
	anism: (a) knee neutral position or $FL = 0^{\circ}$, (b) $FL = 50^{\circ}$, and (c) $FL =$	
	120°	142
Figure 5.24	Operation of the spring engaging/ disengaging unit of KD: (a) knee	
	neutral position or FL = 0° , (b) FL = 50° , and (c) FL = 120°	142
Figure 5.25	Arrangement of active control system for KD	144
Figure 5.26	Block diagram of low-level control architecture	146
Figure 5.27	Flowchart of control algorithm	147
Figure 5.28	Working sequence of KD with active control system: (a) knee neutral	
	position or FL = 0° , (b) FL = 10° , and (c) FL = 120°	148
Figure 5.29	Operation of the active control system of KD: (a) knee neutral position	
	or $FL = 0^{\circ}$, (b) $FL = 10^{\circ}$, and (c) $FL = 120^{\circ}$	148
Figure 5.30	Prototypes of proposed passively-powered KD with passive control mech-	
	anism worn by 50^{th} percentile male	150
Figure 5.31	Prototypes of proposed passively-powered KD with active control sys-	
	tem worn by 50^{th} percentile male	153
Figure 5.32	Controller hardware for KD with active control system	153
Figure 5.33	Passively-powered AKE included with: (a) passive control mechanism,	
	and (b) active control system	157
Figure 5.34	Human CAD model and AKE with (a) passive control mechanism, and	
	(b) active control system	157
Figure 5.35	Operational sequence of AKE with passive control mechanisms: (a)	
	ankle & knee neutral position or DF = FL = 0° , (b) DF = 6° & FL =	
	24.8°, (c) DF = 13.7° & FL = 50° , and (d) DF = 25° & FL = 120°	158
Figure 5.36	Operational sequence of AKE with active control system: (a) ankle &	
	knee neutral position or DF = FL = 0° , (b) DF = 2.4° & FL = 10° , (c)	
	DF = 6° & FL = 24.8°, and (d) DF = 25° & FL = 120°	158
Figure 5.37	Prototypes of proposed passively-powered AKE with passive control	
	mechanisms worn by 50^{th} percentile male	159
Figure 5.38	AKE with passive and active control systems worn by 50^{th} percentile	
	male: (a) front, (b) right, (c) back, and (d) left	159
Figure 6.1	Experimental protocol: walking	162
Figure 6.2	Experimental protocol: squatting	162
Figure 6.3	Experimental setup for active control system	163
Figure 6.4	Post-processing procedure of the acquired data	166
Figure 6.5	Experimental results on control system: walking	168
Figure 6.6	Experimental results on control system: squatting	170
Figure 6.7	Sequence of events in a single cycle of experiment	174
Figure 6.8	Cyclic events in ascend with weight (AWW) cycle	174
Figure 6.9	Cyclic events in descend with weight (DWW) cycle	174
-		

Figure 6.10	Sensor arrangement on prototype for data acquisition	176
Figure 6.11	Experimental setup for acquiring sensor data	176
Figure 6.12	Marker placement for motion capture	177
Figure 6.13	Experimental setup for acquiring motion data	178
Figure 6.14	Loading plot from PCA for upper leg	181
Figure 6.15	Loading plot from PCA for lower leg	181
Figure 6.16	Electrode placement for sEMG acquisition	183
Figure 6.17	Experimental setup for acquiring sEMG data (shown for left leg only)	183
Figure 6.18	Overall experimental procedure for each test condition	184
Figure 6.19	Post-processing procedure for sensor data (e.g. LC force - knee actua-	
	tor)	185
Figure 6.20	Procedure for acquiring and processing motion data	186
Figure 6.21	Data acquisition process in SIMI Motion software: (a) assigning mark-	
	ers on static frame, (b) model-marker association after 3D tracking, (c)	
	visualizing tracked data on stick diagram, and (d) exporting C3D data	
	using Mokka software	187
Figure 6.22	Post-processing procedure for motion data (e.g. knee - right leg)	188
Figure 6.23	Procedure for biomechanical analysis	189
Figure 6.24	Procedure for acquiring and processing sEMG data	191
Figure 6.25	Conducting experiments: (b) AWW cycles, and (b) DWW cycles	192
Figure 6.26	Post-processing procedure for RMS of sEMG data (e.g. RF - right leg)	193
Figure 6.27	Comparing angular position of ankle and knee joints under different	
	load conditions: (a) WE, and (b) AKE	196
Figure 6.28	Generalized joint kinematics - angular position, velocity, and accelera-	
	tion: (a) ankle, (b) knee, and (c) hip	197
Figure 6.29	Actuator force: (a) LC of ankle actuator, and (b) lateral and mdeial LCs	
	of knee actuator	198
Figure 6.30	FSR readings at toe and heel: (a) Right, and (b) Left	199
Figure 6.31	Human performance for WE and AKE during AWW cycle: (a) GRF,	
	(b) power at ankle, and (c) power at knee	200
Figure 6.32	Human performance for WE and AKE during DWW cycle: (a) GRF,	
	(b) Power at ankle, and (c) Power at knee	201
Figure 6.33	Percent increase in energy consumption for ankle during AWW cycle	203
Figure 6.34	Percent increase in energy consumption for ankle during DWW cycle	203
Figure 6.35	Percent reduction in energy consumption at ankle during complete cycle	203
Figure 6.36	Percent increase in energy consumption for knee during AWW cycle	205
Figure 6.37	Percent increase in energy consumption for knee during DWW cycle	205
Figure 6.38	Percent reduction in energy consumption at knee during complete cycle	206
Figure 6.39	RF activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	208

Figure 6.40	BF activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	210
Figure 6.41	SE activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	211
Figure 6.42	TA activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	214
Figure 6.43	GM activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	216
Figure 6.44	GL activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	218
Figure 6.45	PB activity with and without exoskeleton for AWW and DWW cycles:	
	(a) 0% BW, (b) 10% BW, and (c) 20% BW	219
Figure A.1	Fabricated parts of AKE	239
Figure A.2	Sub-assemblies of AKE	240
Figure B.1	Testometric universal tensile testing machine and test setup	241
Figure B.2	Force vs. Displacement plot for spring in ankle actuator	242
Figure B.3	Force vs. Displacement plot for spring in knee actuator	243
Figure C.1	Circuit diagram of active control system	244
Figure D.1	Arduino code 1 of 3	245
Figure D.2	Arduino code 2 of 3	246
Figure D.3	Arduino code 3 of 3	247

LIST OF TABLES

TableDescription

Page

Table 1.1	Manual Handling Risk Factors	4
Table 1.2	Classification of Lower Extremity Exoskeletons	6
Table 2.1	Ranges of Motion of Lower Extremity Joints	20
Table 3.1	Mass, CoM and RoG of Segments	56
Table 3.2	Simulation settings for AMS squat model	75
Table 3.3	Fundamental anthropometric measurements	75
Table 3.4	Correlation coefficients (r) of kinematic and kinetic results	79
Table 4.1	Positive and Negative Work at Ankle, Knee and Hip during Squat Activity	y 84
Table 4.2	Mean of assist-ratios for Spring Configurations	102
Table 4.3	Means of the Assist Ratios for different Spring Rates: Ankle Actuator	103
Table 4.4	Means of the Assist Ratios for different Spring Rates: Knee Actuator	105
Table 4.5	Means of the Assist Ratios for different Spring Rates: Hip Actuator	106
Table 4.6	Recommended limits for mass and frequency for different lifting duration	<mark>n</mark> 108
Table 5.1	DH parameters of proposed passive-dynamic AD	122
Table 5.2	Maximum RoM of Ankle during gait Cycle	129
Table 5.3	Spring Specifications for AD	133
Table 5.4	Spring Specifications for KD	151
Table 5.5	Design Specifications of AKE	155
Table 6.1	Specification for Energy Springs in AKE prototype	164
Table 6.2	Motor current and power during walking	169
Table 6.3	Test Conditions	172
Table 6.4	Test Rubrics	172
Table 6.5	Functions of muscles in lower extremity	180
Table 6.6	Device Comparison	221

LIST OF ABBREVIATIONS

Abbreviation Description

3D	three-dimensional
AB/AD	abduction/adduction
AD	ankle device
AE	ankle exoskeletons
AFO	ankle foot orthosis
AKE	ankle knee exoskeleton
AMMR	Anybody Managed Model Repository
AMS	Anybody Modelling System
AoR	axis of rotation
AWW	ascend with weight
BF	biceps femoris
BW	bodyweight
CAD	computer-aided design
CAS	computer algebra systems
CI	confidence interval
CNC	computer numerically controlled
CoM	center of mass
CoR	center of rotation
CS	current sensor
DC	direct current
DF/PF	dorsiflexion/plantarflexion
DoF	degrees of freedom
DWW	descend with weight
EMG	electromyography
FL/EX	flexion/extension
FSRs	force sensitive resistors
GL	gastrocnemius lateral
GM	gastrocnemius medial
GRF	Ground Reaction Force
GRS	global referencing system
GUI	graphical user interface
HE	hip exoskeleton
HRI	human-robot interface

Abbreviation Description

IN/EV	inversion/ eversion		
IR/ER	internal/ external rotation		
JRF	joint reaction force		
KD	knee device		
KE	knee exoskeleton		
LCs	load cells		
LEE	lower extremity exoskeletons		
LSM	link-segment model		
NIOSH	National Institute for Occupational Safety &		
	Health		
OPRA	Occupational Physicians Reporting Activity		
PB	peroneus brevis		
PCA	principal component analysis		
PD	proportional-derivative		
PL	peroneus longus		
POTs	potentiometers		
RF	rectus femoris		
RMS	root mean square		
RoG	radius of gyration		
RoM	ranges of motion		
SE	semitendinosus		
sEMG	surface EMG		
SO	soleus		
TA	tibialis anterior		
THOR-GP	Health and Occupation Research network of		
	General Practitioners		
UART	Universal Asynchronous Reception and Trans-		
	mission		
VL	vastus lateralis		
VM	vastus medialis		
WE	without exoskeleton		
WRMSD	work-related musculoskeletal disorders		

LIST OF APPENDICES

Description	Page
Fabrication and Assembly	239
Spring Testing	241
Circuit Diagram	244
Programming Codes	245
	Description Fabrication and Assembly Spring Testing Circuit Diagram Programming Codes