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ABSTRACT

Manual handling is an indispensable activity in any occupational setting. It is any activ-
ity that requires the use of human force for lifting, carrying or moving an object. Such
repetitive and tiring tasks may cause work-related musculoskeletal disorders and ad-
versely affect productivity of manual workers. In that context, the goal of this research
was to develop a wearable device or exoskeleton for providing lift assistance during
squat lifting. The outcome of the research was to reduce human effort and improve
human comfort. The objectives or contributions of the work include conceptualiza-
tion of a biomechanical energy management approach for squat lifting, development
of an anthropomorphic passively powered multi-joint lower extremity exoskeleton for
lift assistance, and investigation of the effectiveness of the proposed lift-assist system.
Initially, a literature review was conducted on lower extremity exoskeletons to identify
the research gap. The analysis on the state-of-the-art of exoskeletons revealed the need
for introducing sustainable powering systems and minimizing interference issues at the
human robot interface. Next, the biomechanical energy management approaches were
conceptualized. The work includes the biomechanical modelling of squat lifting activ-
ity and the investigation of feasibility of proposed energy recycling strategies. Subse-
quently, design of anthropomorphic mechanical structure for the exoskeleton, design
of bio-inspired passive-dynamic powering system for ankle and knee joints, and design
of passive and active controlling systems were carried out. Thereafter, prototype of the
ankle knee exoskeleton was fabricated as per the design specifications. Finally, per-
formance with the proposed lift-assist system was experimentally evaluated. Results
from the biomechanical analysis show that, when wearing the exoskeleton, energetic
consumption at ankle and knee got reduced by 23-24% and 38-40%, respectively. The
effectiveness of proposed system was also verified by evaluating muscle activities of
lower and upper leg. All in all, the ankle knee exoskeleton with proposed passive ac-
tuators made a positive influence on the lower limb’s muscular system. Therefore, the
proposed exoskeleton has proven to be an effective solution for industrial use.

Keywords: Bio-inspired Design, Biomechanical Energy Harvesting, Lower Extremity Ex-

oskeleton, Leg/Squat Lifting, Motion Analysis, Passive Actuator, Power Assistance, Surface

Electromyography
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CoR center of rotation
CS current sensor
DC direct current
DF/PF dorsiflexion/plantarflexion
DoF degrees of freedom
DWW descend with weight
EMG electromyography
FL/EX flexion/extension
FSRs force sensitive resistors
GL gastrocnemius lateral
GM gastrocnemius medial
GRF Ground Reaction Force
GRS global referencing system
GUI graphical user interface
HE hip exoskeleton
HRI human-robot interface
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IN/EV inversion/ eversion
IR/ER internal/ external rotation
JRF joint reaction force
KD knee device
KE knee exoskeleton
LCs load cells
LEE lower extremity exoskeletons
LSM link-segment model
NIOSH National Institute for Occupational Safety &

Health
OPRA Occupational Physicians Reporting Activity
PB peroneus brevis
PCA principal component analysis
PD proportional-derivative
PL peroneus longus
POTs potentiometers
RF rectus femoris
RMS root mean square
RoG radius of gyration
RoM ranges of motion
SE semitendinosus
sEMG surface EMG
SO soleus
TA tibialis anterior
THOR-GP Health and Occupation Research network of

General Practitioners
UART Universal Asynchronous Reception and Trans-

mission
VL vastus lateralis
VM vastus medialis
WE without exoskeleton
WRMSD work-related musculoskeletal disorders
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