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ABSTRACT

Touch is an essential environmental input for all living things, including humans. Most

of the objects with which individuals interact are soft and malleable. Humans have

inherited the ability to perceive and recognize differences in the deformable features of

objects. Robotic systems have been developed to support numerous industries, and in

robotics, “haptics” refers to forces and force feedback from the object. In many sectors,

robotic devices handle deformable objects. We believe that to improve operational

quality, robotic systems must be able to recognize deformable objects. While it is

possible to observe the characteristics of items during their manipulation, haptic-based

object identification remains a challenging subject due to the complexity of deformable

object characteristics.

The discussion of object classification methodology begins with collecting object

deformation data and sensors for data collection. Sensor array-based measurement

techniques are capable of observing the pressure variation of the deformation area,

while single point measurement techniques are capable of observing the force varia-

tion and compression depth of the object. The use of force response and compression

distance measurements enables the extraction of additional attributes of deforming ob-

jects, such as stiffness, hysteresis, velocity, acceleration fluctuation, and energy ab-

sorbed during compression.

The use of machine learning to classify objects with features avoids many disad-

vantages associated with traditional mathematical model-based classification method-

ologies. The ability to handle time series data and large amounts of data are also key

features of machine learning. In this study, we introduce the construction of additional

features that may improve classification and use the Time Series Forest Classifier

(TSFC) and permutation importance to identify the best performing features for ob-

ject classification.
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