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ABSTRACT

Language models that produce contextual representations (or embeddings) for text
have been commonly used in Natural Language Processing (NLP) applications. Partic-
ularly, Transformer based, large pre-trained models are popular among NLP practition-
ers. Nevertheless, the existing research and the inclusion of low-resource languages
(languages that primarily lack publicly available datasets and curated corpora) in these
modern NLP paradigms are meager. Their performance for downstream NLP tasks
lags compared to that of high-resource languages such as English. Training a mono-
lingual Language model for a particular language is a straightforward approach in
modern NLP but it is resource-consuming and could be unworkable for a low-resource
language where even monolingual training data is insufficient. Multilingual models
that can support an array of languages are an alternative to circumvent this issue. Yet,
the representation of low-resource languages considerably lags in multilingual models
as well.

In this work, our first aim is on evaluating the performance of existing Multilingual
Language Models (MMLM) that support low-resource Sinhala and some available
monolingual Sinhala models for an array of different text classification tasks. We also
train our own monolingual model for Sinhala. From those experiments, we identify
that the multilingual XLLM-R model yields better results in many instances. Based on
those results we propose a novel technique based on an explicit cross-lingual alignment
of sentiment words using an augmentation method to improve the sentiment classifica-
tion task. There, we improve the results of a multilingual XLM-R model for sentiment
classification in Sinhala language. Along the way, we also test the aforementioned
method on a few other Indic languages (Tamil, Bengali) to measure its robustness
across languages.

Keywords: Multilingual language models, Multilingual embeddings, Text classification, Sen-

timent analysis, Low-resource languages, Sinhala language
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