FORECASTING OF WIND POWER GENERATION USING WIND SPEED AND TEMPERATURE FOR THAMBAPAWANI WIND FARM IN SRI LANKA

Mestiyage Dona Chathumini Pramashi Gunathilaka

189056V

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Business Statistics

Department of Mathematics

Faculty of Engineering

University of Moratuwa

Sri Lanka

September 2023

FORECASTING OF WIND POWER GENERATION USING WIND SPEED AND TEMPERATURE FOR THAMBAPAWANI WIND FARM IN SRI LANKA

Mestiyage Dona Chathumini Pramashi Gunathilaka

189056V

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Business Statistics

Department of Mathematics

University of Moratuwa

Sri Lanka

September 2023

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a degree or diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the PhD/MPhil/Masters thesis/dissertation under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor:

Signature of the Supervisor:

Date:

DEDICATION

This study is wholeheartedly dedicated to my family, who have been the source of inspiration and gave me the strength when I thought of giving up, who continually provide their moral, spiritual, emotional, and financial support.

ABSTRACT

Wind power generation is a rapidly growing renewable energy resource in the world, both on a small and large scale. By integrating wind power generation systems, it helps to maintain grid stability, meet renewable energy targets, reduce greenhouse gas emissions, and promote economic growth while enhancing energy security by diversifying energy sources. Due to the intermittent nature of the wind and the influence of several weather parameters such as wind direction, ambient temperature, humidity, atmospheric pressure, the utilization of energy produced by the wind is challenging while maintaining the grid stability. Addressing this challenge involves the development of accurate forecasting models. Hence, in this study, accurate wind forecast models are built using two main weather parameters: wind speed and temperature for the newly implemented largest on-shore wind farm, "Thambapawani", A univariate model is built for the active power variable using the Seasonal Autoregressive Integrated Moving Average (SARIMA) method. Two different Vector Autoregressive (VAR) models were built with average wind speed and average temperature. However, all these models fail to grasp the intermittent nature of wind power alone. Therefore, hybrid models were generated using the above-mentioned mean models models and Generalized Autoregressive Conditional as Heteroskedasticity models as conditional variance models. All hybrid models were validated using the same test data set and evaluated with one of the goodness of fit tests called the root mean squared test. In this research, the forecasting horizon is 48 hours and the data resolution is 1 hour. The hybrid model of SARIMA (1,1,1) $(1,1,1)_{24}$ with GARCH (1,1) is selected as the best-fit model that has the lowest RMSE value compared to the other two hybrid models in order to forecast wind power generation at "Thambapawani" Wind Farm in Sri Lanka.

Keywords: wind power, grid stability, SARIMA, VAR, GARCH

ACKNOWLEDGEMENT

I would like to express my heartfelt gratitude towards my supervisor Mrs. M.A.D.M.G.Wickrama and Mrs.D.R.T.Jayasundara, coordinator for providing invaluable guidance, support, advises, comments, suggestions, and provisions that help in the completion and success of this research during the entire study period. It was a great privilege and honor to work and study under their guidance.

I would like to express my indebted thanks to Mr. Gamini Fernando, Former Investigation Officer at CEB, for his invaluable assistance in facilitating access to the dataset through CEB. Additionally, I would like to extend my heartfelt thanks to Mr. S. Gobinath, Electrical Engineer at Thambapawani wind station, and the CEB for their cooperation and for providing me with the essential dataset for my research.

I would also like to give special thanks to my husband Sajith and my family as a whole for their endless love, courage, sacrifices, continuous support and understanding when undertaking my research. This would not have been possible without their unselfish love and support given to us at all times

Lastly, my thanks go to all my friends who have supported me to complete the research work directly or indirectly.

TABLE OF CONTENTS

DECLA	RATIO	N	II
DEDICA	TION		III
ABSTRA	ACT		IV
ACKNO	WLED	GEMENT	V
LIST OF	FIGUI	RES	IX
LIST OF	TABL	ES	XI
LIST OF	ABBR	EVIATIONS	XII
CHAPTI	ER 1:	INTRODUCTION	1
1.1	Overv	view of Sri Lanka's energy sources	1
1.2	Backg	ground of the study	6
1.3	Signif	icance of the Study	7
1.1	Resea	rch Problem	8
1.4	Resea	rch Design	9
1.5	Objec	tive of the study	10
1.6	Delim	itations	10
CHAPTI	ER 2:	LITERATURE REVIEW	11
2.1	Globa	l Perspective of the Renewable Energy Generation	11
2.2	Globa	l Perspective of the Wind Energy Generation	13
2.3	Wind	Energy Generation in Sri Lanka	15
2.4	Impac	t of Dynamic Weather Conditions on Wind Power Generation	17
2.5	Metho	odologies used for prediction of wind power	20
CHAPTI	ER 3:	MATERIALS AND METHODS	22
3.1	Data s	set and location	22
3.2	Softw	are Utilization in Analysis	22

3.2.1	Python Programming:	22
3.2.2	EViews Software:	22
3.3 Te	erminology involved in time series analysis	22
3.3.1	Deterministic model	22
3.3.2	Stochastic process	23
3.3.3	Mean, Variance and Covariance of a stochastic process	23
3.3.4	Time Series Analysis	24
3.3.5	Stationary Series	24
3.3.6	Accuracy Measures	26
3.3.7	Transform of Non-stationary series to stationary series	26
3.3.8	Smoothing Techniques	27
3.3.9	Decomposition Techniques	27
3.3.10	Autocorrelation Coefficients	
3.3.11	Model formation	32
3.3.12	Residual Diagnostic Tests	35
3.3.13	VAR/VECM Model	40
3.3.14	ARCH/GARCH models	41
3.4 D	ata Aggregation and Pre-Processing	43
3.4.1	Data Aggregation	43
3.4.2	Data Preprocessing	45
3.5 M	lodel Building	46
3.5.1	ARIMA/SARIMA Model	46
3.5.2	VAR / VECM Model	46
3.5.3	ARCH/GARCH model	47
CHAPTER	4: RESULTS AND DISCUSSION	48
4.1 S	ummary Statistics of the Data set	48
4.2 T	ime Series Plots of each variable	49
4.2.1	Wind Speed	49
4.2.2	Average Wind Direction	51
4.2.3	Temperature	53
4.2.4	Active Wind Power	55
4.3 D	escriptive Statistics of all average parameters in a turbine	58

4.4 Univariate Time Series Analysis	59
4.4.1 ARIMA and SARIMA Models.	60
4.4.2 SARIMA – ARCH / SARIMA-GARCH	72
4.5 Multivariate time series models	76
4.5.1 VAR model (Vector Autoregressive) with Average Wind Speed and	
Average Temperature variables	77
4.5.2 VAR model with Cubic value of Average Wind Speed and Average	
Temperature variables	81
4.5.3 VAR models along with GARCH (1,1)	83
4.6 Discussion	84
CHAPTER 5: CONCLUSION AND RECOMMENDATION	88
5.1 Conclusion	88
5.2 Recommendation	88
APPENDIX I	89
APPENDIX II	92
APPENDIX III	95
REFERENCES	99

LIST OF FIGURES

Figure 1.1: Total power generation I n 2022	1
Figure 1.2: Picture of a Wind Power Plant "Thambapawani"in Mannar	2
Figure 2.1: Sources of Global Electricity Generation (2022)	11
Figure 2.2: Electricity Generation by energy resources in 2050	12
Figure 2.3: Power Generation in Sri Lanka (2019)	15
Figure 4.1: Average Wind Speed of Turbine 1	49
Figure 4.2:Weekly smoothed Average wind speed	50
Figure 4.3: Monthly smoothed wind speed	51
Figure 4.4: Average Wind Direction of Turbine 1	52
Figure 4.5: Hourly smoothed wind direction plot	52
Figure 4.6: Weekly smoothed average wind direction plot	53
Figure 4.7:Monthly smoothed average wind direction plot	53
Figure 4.8:Temperature of Turbine 1	54
Figure 4.9: Hourly smoothed average temperature plot	54
Figure 4.10: Weekly Smoothed average temperature plot	55
Figure 4.11: Monthly smoothed average temperature plot	55
Figure 4.12: Active Power of Turbine 1	56
Figure 4.13: Hourly Smoothed Active Wind Power Plot	57
Figure 4.14:Weekly smoothed active wind power plot	57
Figure 4.15: Monthly smoothed active wind power plot	58
Figure 4.16: Time vs Average Active Wind Power for preprocessed data	60
Figure 4.17:Autocorrelation Function of Active Power	61
Figure 4.18: Partial Autocorrelation Function of Active Power	61
Figure 4.19: Seasonally Differenced Average Active Power Time Series Plot	63
Figure 4.20: ACF plot of Seasonally Differenced Average Active Power	64
Figure 4.21: PACF plot of the seasonally differenced active power data set	64
Figure 4.22:ACF and PACF of the first differenced series of Active Power	65
Figure 4.23: Time series plot of first differenced series of average active power	66
Figure 4.24: Time series plots of training and test data spit of the first differenced s	series
	67
Figure 4.25: ACF Plot of Residuals	69

Figure 4.26: Residual Plot of SARIMA (1,1,1) (1,1,1)24

70

Figure 4.27: Fitted model vs Actual time series plot	71	
Figure 4.28: Plot of SARIMA((1,1,1) (1,1,1)24 model	71	
Figure 4.29: Time series plot of actual vs fitted values of active wind power	72	
Figure 4.30: Conditional volatility plot of GARCH (1,1)	74	
Figure 4.31: Forecast Value Plot of GARCH (1,1) model	75	
Figure 4.32: Original vs Fitted values of SARIMA (1,1,1) (1,1,1)24 model with		
GARCH (1,1)	76	
Figure 4.33: Actual Values and Forecasted values of Average Active Power from	1 19-	
03-2023 to 21-04-2023	81	
Figure 4.34:Actual Vs. Fitted graph of VAR (23) model	82	
Figure 4.35: Actual vs Fitted value plot of VAR (26) model with GARCH (1,1)	83	
Figure 4.36: Actual vs Fitted Value Plot of VAR (23) model with GARCH (1,1) for	r two	
days	84	

LIST OF TABLES

Table 1.1:Total Capacity of each resource in the end of 2022	5
Table 2.1: Table of previous research on wind power forecasting models	18
Table 3.1: Description and the notation of the variables in the output windows	43
Table 4.1: Summary Statistics of each weather variable at each Turbine	48
Table 4.2: Descriptive Statistics of the preprocessed data set	59
Table 4.3:Results of the ADF test of Active Power:	62
Table 4.4:Results of the KPSS statistic for Average Active Power	62
Table 4.5 Results of the Augmented Dicky Fuller Test for the first difference	d time
series of active power	65
Table 4.6: Different ARMA models built using the first differenced series	66
Table 4.7: Results of the model SARIMA $((1,1,1) (1,1,1)_{24})$	68
Table 4.8: Results of the SARIMA $(1,1,1) (1,1,1)_{24}$ -GARCH $(1,1)$ model	73
Table 4.9: Results obtained from different GARCH models with the low AIC va	ılues75
Table 4.10:Correlation Matrix of Variables	77
Table 4.11:Results of the ADF test for AP, AWS and TEMP variables	78
Table 4.12:Results obtained from the KPSS Test for the original time series	78
Table 4.13:Results obtained from Granger Causality Test for AP TUR3 and AWS	TUR3
	79
Table 4.14:Results obtained from Granger Causality Test for AP and AWS	79
Table 4.15:Results of the correlation matrix of residuals	80
Table 4.16: Summary of the Results of VAR models	82
Table 4.17: Summary of the Results of both VAR models with GARCH (1,1) me	odel83
Table 4.18:Results obtained from VAR (26) with GARCH (1,1)	98
Table 4.19: Results obtained from VAR (23) with GARCH (1,1)	98

LIST OF ABBREVIATIONS

ACF	-	Autocorrelation Function
AR	-	Auto Regressive
AP	-	Average Active Power
ARMA	-	Auto Regressive Moving Average
ARIMA	-	Auto Regressive Integrated Moving Average
AWD	-	Average Wind Direction
AWS	-	Average Wind Speed
MA	-	Moving Average
MAE	-	Mean Absolute Error
NRES	-	Non-Renewable Energy Sources
PACF	-	Partial Autocorrelation Function
PV	-	Photo Voltic
RES	-	Renewable Energy Sources
RMSE	-	Root Mean Squared Error
SARIMA	-	Seasonal Auto Regressive Integrated Moving Average
SL	-	Sri Lanka
TEMP	-	Temperature
VAR	-	Vector Autoregressive