FEASIBLE STUDY ON THE POWER QUALITY ISSUES OF VOLTAGE VARIATION AND HARMONICS DUE TO PV PENETRATION IN LVDN: A CASE STUDY IN NEGOMBO LVDN, SRI LANKA

Sareka Saravanapavan

178634B

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2024

FEASIBLE STUDY ON THE POWER QUALITY ISSUES OF VOLTAGE VARIATION AND HARMONICS DUE TO PV PENETRATION IN LVDN: A CASE STUDY IN NEGOMBO LVDN, SRI LANKA

Sareka Saravanapavan

178634B

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2024

DECLARATION

I, Sareka Saravanapavan declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 03.02.2024

The above candidate has carried out research for the Master of Science in Electrical Installation thesis/Dissertation under my supervision.

Name of the supervisor: Prof. W.D. Asanka S Rodrigo

Signature of the supervisor:

Date: 04/02/2024

Abstract

Renewable energy resources are encouraged all over the world to have a green power generation to avoid global warming due to conventional energy sources. As one of a sustainable power source, solar photovoltaic system is considered in micro grid and domestic solar system. Domestic solar systems have a rapid growth in Sri Lanka since last decade and they are connected with the existing low voltage distribution network. Therefore, it causes power quality issues with increasing PV penetration in LVDN.

The common PQ issue arising from PV penetration is the voltage rise. Therefore, a LVDN with voltage rise issue in Negombo, Sri Lanka was selected for the case study of this research. This research focused on a LVDN with low active power existence and high feeder resistance where the voltage rise is due to feeder resistance with increasing PV penetration. This study considered power quality issues of voltage violation, harmonic analysis and power factor violation in the selected LVDN. Analysis of another LVDN with different transformer capacity was also summarized in this study.

The mitigation techniques of active network management and network reinforcement were applied to the LVDN and the response was analyzed. The harmonic results were insignificant with voltage violation. And when the voltage rise was mitigated with tap settings, the harmonic results were more insignificant compared to the previous. Therefore, harmonic analysis was not carried out for further analysis.

The enhancement of hosting capacity with different mitigation techniques was analyzed while considering voltage violation and power factor violation. The mitigation technique of active network management with balancing loads, tap settings and increasing the loading of the network, increased the hosting capacity from 50kW (31% w.r.t t/f capacity) to 108kW (68%) at no cost. Reactive power compensation schemes did not provide solution as it violates the power factor of the network while mitigating the voltage variation and vice versa. Because, the required reactive power to mitigate the voltage rise becomes significant compared to the active power existence in the network. Mitigation technique of energy storage system also did not provide solution for the low load demand LVDN.

The mitigation techniques of network reinforcement methods were applied. It increased the hosting capacity up to 144kW (90%) with upgrading conductor, 153kW (96%) with the installation of OLTC with AVR and the installation of separate PV feeder did not increase the hosting capacity. The cost estimation was done for the mitigation techniques. And it is concluded that the techno economic feasible solution as upgrading conductor with 95sqmm conductor size is selected as the mitigation technique for this existing system.

The conclusions of this study are as follow. The network reinforcement mitigation techniques are more suitable than the reactive power compensation schemes, for a PV penetrated LVDN with low active power existence and high feeder resistance, in order to increase the PV penetration, when the voltage rise is due to the feeder resistance. Reactive power compensation methods are suitable for the network with high active power existence and/or high reactive power existence, otherwise it would violate the power factor and/or voltage. Installation of solar PV system in the LVDN will make the system better, to overcome from the effect of the high feeder resistance and it will increase the loading capability of the network while maintaining PQ standards. The increase in the day time loading of the network, increases the PV penetration. Mitigation techniques of active network management of balancing loads and tap settings also increases PV penetration at no cost in such LVDN. Feeder resistance and loading of the network give more impact in deciding the hosting capacity of such LVDN. Therefore, the network reinforcement techniques are more suitable for LVDN with low active power existence and high feeder resistance. Future analysis can be extended for a small scale LVDN with PV systems including significant nonlinear loads and reactive loads.

ACKNOWLEDGEMENTS

My sincere gratitude goes to Prof. W.D. Asanka S Rodrigo, Professor in Electrical Engineering, Department of Electrical Engineering, University of Moratuwa, Sri Lanka, for his great insights, perspectives and valuable guidance.

I would like to express my sincere thanks to Prof. W.D.A.S. Wijayapala, Prof. (Ms) Lidula N. Widanagama Arachchige, Dr. (Ms)R.M.T.Damayanthi, Dr.(Mrs) Rasara Samarasinghe and Snr. Prof. Sisil Kumarawadu for their constructive criticism during project progress presentations which helped me to make necessary improvements.

I am thankful to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways in my academic works and other relevant things. I also thank the people who serve in the Department of Electrical Engineering Office.

I would like to thank Eng.W.M.A.S Wijeyathunga, Chief Engineer – Negombo Distribution Division, Western Province- North, Ceylon Electricity Board for the extended support given to carry out the thesis work successfully. And my thanks are also extended to the staffs of Negombo Distribution Division for their support.

I would like to thank Deputy General Manager –Research and Development Unit, Ceylon Electricity Board and Deputy General Manager –Western Province - North, Ceylon Electricity Board for the permission given to carry out my research. Also my thanks go to Eng. Asiri Mihindukulasuriya – Engineer in Research and Development Unit to make a success in this project with his continuous support. Lastly, I would like to thank my family for the constant inspiration and guidance which kept me focused and motivated.

TABLE OF CONTENTS

De	eclaration	i
Ał	ostract	ii
Ac	cknowledgements	iii
Та	ble of Contents	iv
Li	st of Figures	vii
Li	st of Tables	xi
Li	st of abbreviations	xii
1.	Introduction	1
	1.1 Introduction	1
	1.2 Problem Statement	1
	1.3 Research Objectives	3
	1.4 Research Methodology	3
2.	Literature Review	5
3.	Analysis of LVDN with PV Penetration – A Case Study in Negombo	11
	Distribution Division, CEB, Sri Lanka	
	3.1 Introduction	11
	3.2 Data Collection	
	3.3 Assumptions Made for the Analysis	
	3.4 Analysis of Voltage Variation	
	3.5 Mathematical Analysis of Feeder 3	16
4.	Mitigation Techniques for LVDN: Active Network Management	17
	4.1 Introduction	17
	4.2 Balancing Load and PV Generation	21
	4.2.1 Methodology	21
	4.2.2 Result and Discussion	21
	4.2.2.1 Analysis of Voltage Variation	21
	4.2.2.2 Harmonic Analysis	22
	4.2.2.3 Hosting Capacity with Balanced Load Condition	23
	4.3 Tap Settings of Transformer	24

	4.3.1	Methodology 24	
	4.3.2 Result and Discussion		24
		4.3.2.1 Analysis of Voltage Variation	24
		4.3.2.2 Hosting Capacity with Tap Settings and Balanced	25
		Load	
		4.3.2.3 Harmonic Analysis	26
	4.4 Dema	and Side Management	27
	4.4.1	Methodology	27
	4.4.2	Result and Discussion	28
	4.5 React	ive Power Compensation: Reactor Insertion	29
	4.5.1	Methodology	29
	4.5.2	Result and Discussion	29
		4.5.2.1 Reactor Insertion with 15kVAr Reactor	29
		4.5.2.2 Reactor Insertion with 40kVAr Reactor	30
	4.6 React	ive Power Compensation: Inverter Controller	32
	4.6.1	Methodology	32
	4.6.2	Volt VAR Controller	32
		4.6.2.1 Methodology	32
		4.6.2.2 Result and Discussion	34
	4.6.3	Watt VAR Controller	39
		4.6.3.1 Methodology	39
		4.6.3.2 Result and Discussion	39
4.7 Installation of Energy Storage System		40	
	4.7.1	Methodology	40
	4.7.2	Result and Discussion	40
5.	Mitigatio	n Techniques for LVDN: Network Reinforcement	43
	5.1 Introduction		43
	5.2 Upgrading Conductors		43
	5.2.1	Methodology	43
	5.2.2	Result and Discussion	44
		5.2.2.1 Choice 1: ABC 3 x 95sqmm + N 70sqmm	45

		5.2.2.2 Choice 2: ABC 3 x 120sqmm + N 70sqmm	48
	5.3 Separate Feeder for Solar PV Customers		50
	5.3.1	Methodology	50
	5.3.2	Result and Discussion	50
	5.4 Instal	lation of On Load Tap Changer (OLTC) with AVR	51
	5.4.1	Methodology	51
	5.4.2	Result and Discussion	51
		5.4.2.1 Mathematical Analysis	51
		5.4.2.2 Hosting Capacity	51
6.	Budget Es	stimation of Mitigation Methods	53
	6.1 Estim	ated Budget for Upgrading Conductors	53
	6.2 Estimated Budget for On Load Tap Changer with AVR		54
	6.3 Estimated Budget for Energy Storage System		55
	6.4 Comparison of Estimated Budget		55
	6.5 Comparison of Unit Cost for Mitigation Techniques		56
7.	Analysis of 250kVA Transformer		57
	7.1 Mathematical Analysis for Selection of Conductor Size		57
	7.2 Hostin	ng Capacity	58
	7.2.1	Methodology	58
	7.2.2	ABC Conductor of 120sqmm	58
		7.2.2.1 Result and Discussion	58
	7.2.3	ABC Conductor of 150sqmm	59
		7.2.3.1 Result and Discussion	59
	7.3 Mitigation Techniques of Inverter Controller – VVC		60
	7.3.1	Methodology	60
	7.3.2	Result and Discussion	61
	7.4 Installation of On Load Tap Changer (OLTC) with AVR		63
	7.4.1	Methodology	63
	7.4.2	Result and Discussion	63

LIST OF FIGURES

Figure 2.1	Saudi Distribution Network and Voltage variation at	5
	selected node for different loading condition	
Figure 2.2	Voltage variation After using active power controller and	5
	After using reactive power controller	
Figure 2.3	Voltage variation with coordination of reactive power	6
	injection & active power curtailment and Power flow	
	chart	
Figure 2.4	Specifications of distribution feeders	6
Figure 2.5	Variation of Vr VS Pr and Voltage rise & voltage	7
	reduction range on the P-V curve	
Figure 3.1	IEEE standard Residential load profile and Commercial	13
	load profile	
Figure 3.2	Design of feeder 1 & 2 and feeder 3	14
Figure 3.3	Voltage profile along the feeder with PV capacity of	15
	44kW and 64kW(before & after adding the 20kW	
	customer	
Figure 3.4	Daily voltage profile at the feeder end with PV capacity of	15
	64kW	
Figure 4.1	Volt-Watt curve	20
Figure 4.2	Watt- VAR Curve	20
Figure 4.3	Voltage profile along the feeder at a loading of	21
	20kW(minimum) and 86kW(maximum)	
Figure 4.4	Daily voltage profile at the feeder end and Power flow	22
	result	
Figure 4.5	Variation of Harmonic Voltage with Harmonic order	22
Figure 4.6	Voltage profile along the feeder at hosting capacity of	23
	50kW and Daily voltage profile at the feeder end	
Figure 4.7	Voltage profile with regulator Vreg=230 At the max	24
	loading of 85.9kW and min loading of 20kW	

Figure 4.8	Night time voltage profile and Change in regulator tap	24
	position at Vreg=230	
Figure 4.9	Voltage profile along the feeder at HC of 80kW & 20kW	26
	loading and Daily voltage profile at the feeder end at HC	
	of 80kW	
Figure 4.10	Variation of Harmonic Voltage with Harmonic order	26
Figure 4.11	Voltage profile at a loading of 95.7kW at the absence of	28
	PV generation and at Hosting capacity of 108kW	
Figure 4.12	Daily voltage profile at 114kW PV capacity & 85.9kW	29
	max loading with daily load profile	
Figure 4.13	Daily voltage profile at the feeder end with 15kVAr	29
	reactor at PV capacity of 114kW	
Figure 4.14	Daily voltage profile with 15kVAr reactor at PV capacity	30
	of 96kW(60%) and power flow result	
Figure 4.15	Daily voltage profile with 40kVAr reactor at PV capacity	31
	of 114kW and Power flow result	
Figure 4.16	Volt VAR Curve	32
Figure 4.17	Daily voltage profile at feeder end and Daily Volt – VAR	34
	curve	
Figure 4.18	Daily reactive power variation and Power flow result with	34
	Volt – VAR Controller	
Figure 4.19	Daily power factor variation and Active & Reactive	35
	power variation with Volt VAR controller	
Figure 4.20	Daily Power factor variation and Daily reactive power	36
	variation at the transformer end	
Figure 4.21	Daily Power factor variation at the transformer end at	37
	different loading conditions	
Figure 4.22	Daily active and reactive power variation at the	37
	transformer end at different loading conditions	
Figure 4.23	Daily voltage profile at the feeder end with Watt – VAR	39
	controller	

Figure 4.24	Daily active and reactive power variation at the controlled	39	
	inverter		
Figure 4.25	Daily active power variation of the storage element and	40	
	The transformer with ESS of 50kWh capacity		
Figure 4.26	Daily voltage Profile	40	
Figure 4.27	Daily active power variation of the storage element and	41	
	The transformer with ESS of 1MWh capacity		
Figure 4.28	Daily active power variation of the storage element and	41	
	The transformer with ESS of 2MWh capacity and the		
	daily energy variation of ESS		
Figure 5.1	Voltage profile along the feeder with ABC 3 x 95sqmm +	45	
	N 70sqmm, ABC 3 x 120sqmm + N 70sqmm & ABC 3 x		
	150sqmm + N 70sqmm respectively		
Figure 5.2	Voltage profile during night time and day time at Hosting	46	
	Capacity of 126kW and max loading of 85.9kW		
Figure 5.3	Day time voltage profile at HC of 100kW and min loading	46	
	of 20kW		
Figure 5.4	Voltage profile during night and day time at HC of	47	
	144kW(90%) and possible max loading of 110kW		
Figure 5.5	Daily variation of reactive power	47	
Figure 5.6	Voltage profile during night time and day time at HC of	48	
	160kW and possible max loading of 130kW		
Figure 5.7	Day time voltage profile at HC of 160kW and loading of	49	
	86kW		
Figure 5.8	Voltage profile during night time and day time at HC of	49	
	160kW and loading of 75kW		
Figure 5.9	Voltage profile along the feeder at HC of 76kW and	50	
	loading of 85.9kW		
Figure 5.10	Voltage profile along the feeder at max loading 138kW	52	
	(86.25%) without PV_and with PV Capacity of		
	153kW(96%)		

Figure 7.1	Voltage profile along the feeder at a loading of 140kW	
	and HC of 176kW during night time and day time	
	respectively	
Figure 7.2	Voltage profile along the feeder at a loading of 165kW	59
	and HC of 197kW during night time and day time	
	respectively	
Figure 7.3	Daily voltage profile and daily Volt – VAR curve	61
Figure 7.4	Daily variation of active and reactive power with different	61
	loading conditions	
Figure 7.5	Daily variation of power factor with different loading	62
	conditions	
Figure 7.6	Voltage profile along the feeder at max loading of 220kW	63
	(88%) and HC of 220kW during night and day time	
	respectively	

LIST OF TABLES

Table 5.1	Voltage rise at the feeder end with conductor size	44
Table 6.1	Budget estimation for upgrading conductor of 95sqmm	53
Table 6.2	Budget estimation for upgrading conductor of 120sqmm	53
Table 6.3	Budget estimation for upgrading conductor of 150sqmm	54
Table 6.4	Budget estimation for On Load Tap Changer with AVR	54
Table 6.5	Budget estimation for Energy Storage System	55
Table 6.6	Comparison of Estimated Budget	55
Table 6.7	Comparison of unit cost for mitigation techniques	56
Table 7.1	Comparison of results with different conductor sizes	60

LIST OF ABBREVIATIONS

Abbreviation	Description
DN	Distribution network
DG	Distribution generators
ESS	Energy storage system
НС	Hosting capacity
LV	Low Voltage
LVDN	Low voltage distribution network
Max	Maximum
Min	Minimum
MV	Medium voltage
MVDN	Medium voltage distribution network
PQ	Power quality
t/f	Transformer
VVC	Volt VAR Control
w.r.t	with respect to