CORRELATION BETWEEN STANDARD PENETRATION RESISTANCE (SPT N) AND CONE RESISTANCE (Q_C) IN CONE PENETRATION TEST (CPT) FOR RESIDUAL SOILS

Jayalath Ralalage Manel Sashikala

198355M

Master of Engineering in Geotechnical Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

March 2024

CORRELATION BETWEEN STANDARD PENETRATION RESISTANCE (SPT N) AND CONE RESISTANCE (Q_C) IN CONE PENETRATION TEST (CPT) FOR RESIDUAL SOILS

Jayalath Ralalage Manel Sashikala

198355M

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering in Geotechnical Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

March 2024

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 13/03/2024

The above candidate has carried out research for the Master thesis under my supervision. I confirm that the declaration made above by the student is true and correct.

Name of Supervisor: Prof. L. I. N. De Silva

Signature of the Supervisor:

Date: 05/03/2024

ACKNOWEDGEMENTS

I am grateful and sincerely thank everyone who made it possible for me to finish my thesis. I would especially want to express my thanks to Prof L.I.N. De Silva, my project supervisor, for guiding me in the correct direction to achieve the objectives of this study and in preparation of my thesis.

Additionally, my gratitude goes to Prof. U.P. Nawagamuwa, Head of the Geotechnical Engineering division of the Civil Engineering Department and Senior Professor of the Department of Civil Engineering, Prof. S.A.S. Kulathilaka, as their support and guidance were invaluable throughout the course.

I would like to especially acknowledge all the non-academic staff members of Department of Civil Engineering, University of Moratuwa. Their help and encouragement have been crucial to me during my studies.

Further my thanks go to my colleagues in Engineering and Laboratory Services (PVT) Ltd for the support given.

Just as importantly, I would like to thank my late husband B. Yohan Dhanushka Fernando, my son B. Thehan Devmike, my parents and brother for their unwavering support, tolerance, and love during my academic career so far.

My gratitude goes to whole the universe for the guidance and support received.

J.R. Manel Sashikala

ABSTRACT

Correlation between Standard Penetration Resistance (SPT N) and Cone resistance (q_c) in Cone Penetration Test (CPT) for Residual Soils

"Corelation between Standard Penetration Resistance (SPT N) and Cone resistan ce (q_c) in Cone Penetration Test (CPT) for Residual Soils" examines the complex rel ationship between these two key geotechnical engineering parameters.

The basis of the research is a set of in-depth field tests carried out on residual soils, which are remarkable for their specific qualities and common occurrence. This study's main goal is to establish the numerical relationship between SPT N and CPT qc values, which is useful for foundation design and soil characterization.

The study begins by providing a thorough analysis of the existing literature of research on the topic, which is followed by a thorough justification of the approach used for the field experiments. Cone Penetration Test (CPT), an appreciated in-situ testing method, is used to quantify qc, and Standard Penetration Test (SPT) is used to compute SPT N values.

Statistical techniques are then employed to examine the test findings and determine if SPT N and qc are correlated. The results show that these parameters for residual soils have a high association, which gives geotechnical engineers important information.

A correlation between SPT N and qc is then determined by statistically analysing the test data. Geotechnical engineers may learn a great deal from the results, which show a high link between these parameters for residual soils. For the planning and building of foundations on residual soils, the findings have important contributions.

Finally, this study has identified a solid framework on further research which can be performed to and emphasizes the importance of comprehending the link between SPT N and qc in residual soils.

Key words: standard penetration resistance (SPT N), cone resistance (q_c) , cone penetration test (CPT), residual soils, correlation

TABLE OF CONTENT

DECLARATION OF THE CANDIDATE AND SUPERVISORi			i		
ACK	KNOWI	EDGEMENTS	ii		
ABS	TRAC	Γ	iii		
TABLE OF CONTENTiv					
CHA	PTER	1 INTRODUCTION	1		
1.1	Introdu	uction to Research	1		
1.2	Aims a	and Objectives of the study	2		
CHA	PTER	2 LITERATURE REVIEW	3		
2.1	Standa	rd Penetration Test (SPT)	3		
	2.1.1	Background of Standard Penetration test	3		
	2.1.2	Advantages of SPT	4		
	2.1.3	Challenges of Standard Penetration Test	5		
	2.1.4	SPT Procedure	6		
	2.1.5	Factors affecting the SPT-N value.	10		
	2.1.6	Soil Classification of soil and rock based on N value	13		
	2.1.7	SPT Correlations	14		
	2	2.1.7.1 Relative Density and Particle Size	14		
		2.1.7.1.1 Friction Angle	14		
		2.1.7.1.2 Undrain shear strength	15		
		2.1.7.1.3 Friction angle, Relative Density and Uni Weight	16		
2.1.8 Applications of Standard Penetration Test17					
	2	2.1.8.1 Indirect Applications	17		
		2.1.8.1.1 Shear Modulus	17		
		2.1.8.1.2 Young's Modulus	18		
	2.1.9	Direct Applications	19		
	2	2.1.9.1 Shaft resistance	19		
2.2	Cone I	Penetration Test (CPT)	20		
	2.2.1	Background of CPT	20		
	2.2.2	Advantages of CPT	21		
	2.2.3	Drawbacks of CPT	22		
	2.2.4	CPT Procedure	22		
	2.2.5	Components of CPT test	23		

	2.2.5.1 Load Cell	23
	2.2.5.2 Major sizes of penetrometers	25
	2.2.6 Unequal End Area Effect on qc	26
	2.2.6.1 Other Equipment used in CPT	27
	2.2.7 Safety aspects of conducting CPT test	29
	2.2.8 CPT u Interpretation	29
	2.2.9 Soil profiling	30
	2.2.9.1 Non -Normalized SBT Chart	33
	2.2.9.2 Normalized SBT Chart	34
	2.2.9.3 Soil Behavior Type index	35
	2.2.9.4 Theoretical solutions for CPT	36
2.3	Equivalent SPT N 60 Values	
	2.3.1 Study on (q _c /Pa)/N ₆₀	39
	2.3.2 Other studies on the qc/N ratio	41
CHA	APTER 3 METHODOLOGY	44
3.1	Categorization of Soil Types	45
	3.1.1 Data Collection	46
	3.1.2 Correction of SPT – N values	47
	3.1.3 Calculation of the q _c /N and Soil Behavioral Charts	48
	3.1.4 Correlation between N ₆₀ and q _c	48
CHA	APTER 4 RESULTS AND DISCUSSION	49
4.1	Initial charts produced	49
	4.1.1 Chart for cohesive and cohesionless soils in the investigated ar	eas49
	4.1.2 Chart for cohesive soils in the investigated areas	50
	4.1.3 Chart for cohesionless soils in the investigated areas	51
4.2	Charts produced in replica of Robertson et al 1988, 1990	52
	4.2.1 Comparison of $(q_c/P_a)/N_{60}$ ratios of this study with the s Robertson	
	4.2.2 Regression Model to determine the correlationship between q for the Residual Soils in the Study area.	
CHA	APTER 5 CONCLUSION AND RECOMMENDATION	68
REF	FERENCES	70

LIST OF FIGURES

Figure 2.1:Standard dimensions for the SPT sampler, as given in ASTM D1586 Source: (Advanced Engineering Geology and Geotechnics, 2004, pp.1)	4
Figure 2.2 :Standard Split Tube Sample	6
Figure 2.3:Images of the three commonly used hammers. Hammer (b) is used about 60 percent; (a) and (c) about 20 percent each in the United States. Hammer (c) is commonly used outside the United States	7
Figure 2.4: Correlation between ϕ ' and N ₆₀	15
Figure 2.5:Correlation between Undrained Shear Strength (C _u) and N value	16
Figure 2.6:Correlation between Shear Modulus and N-values	18
Figure 2.7:Basic Parameters of a load cell	23
Figure 2.8 :Different designs of cone penetrometers (a) tip and sleeve friction load cells in compression, (b) tip load cell in compression and sleeve friction load cell in tension, (c) subtraction type load cell design	25
Figure 2.9: Major sizes of Cone Penetrometer	25
Figure 2.9:Major sizes of Cone Penetrometer Figure 2.10:Unequal end are effects on cone tip and friction sleeve	
	26
Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT	26
 Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT unit (b) Track mounted 20 Ton CPT unit Figure 2.12:Over water pushing equipment: (a) Mid size jack up boat (b) 	26 28 28
 Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT unit (b) Track mounted 20 Ton CPT unit Figure 2.12:Over water pushing equipment: (a) Mid size jack up boat (b) Quinn Delta (Gregg) Ship with spuds 	26 28 28 31
 Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT unit (b) Track mounted 20 Ton CPT unit Figure 2.12:Over water pushing equipment: (a) Mid size jack up boat (b) Quinn Delta (Gregg) Ship with spuds Figure 2.13: SBT chart with 12 zones 	26 28 31 32
 Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT unit (b) Track mounted 20 Ton CPT unit Figure 2.12:Over water pushing equipment: (a) Mid size jack up boat (b) Quinn Delta (Gregg) Ship with spuds Figure 2.13: SBT chart with 12 zones Figure 2.14:A typical CPTu results obtained 	26 28 31 32 33
 Figure 2.10:Unequal end are effects on cone tip and friction sleeve Figure 2.11 :Different Types of CPT Trucks: (a)ruck Mounted 25 Ton CPT unit (b) Track mounted 20 Ton CPT unit Figure 2.12:Over water pushing equipment: (a) Mid size jack up boat (b) Quinn Delta (Gregg) Ship with spuds Figure 2.13: SBT chart with 12 zones Figure 2.14:A typical CPTu results obtained Figure 2.15:Non-normalized CPT Soil Behavior Type (SBT) chart 	26 28 31 32 33 34

Figure 4.1: Cone resistance Vs Friction Ratio for Cohesive and Cohesionless Soils in the Investigated areas in Sri Lanka	49
Figure 4.2: Cone resistance Vs Friction Ratio of Cohesive Soils in the Investigated areas in Sri Lanka	50
Figure 4.3:: Cone resistance Vs Friction ratio of Cohesionless Soils in the Investigated areas in Sri Lanka	51
Figure 4.4: Soil Behavioral Chart Produced for the Residual Soils in the Study Area in Sri Lanka	53
Figure 4.5 : Linear regression curve for Clay	56
Figure 4.6 : Power regression curve for Clay	57
Figure 4.7 : Linear regression curve for Clay and Silty Clay	57
Figure 4.8 : Power regression curve for Clay and Silty Clay	58
Figure 4.9 : Linear regression curve for very loose sand	58
Figure 4.10 : Power regression curve for very loose sand	59
Figure 4.11: Linear regression curve for Loose to Medium Dense Sand	59
Figure 4.12: Power regression curve for Loose to Medium Dense Sand	60
Figure 4.13 : Linear regression curve for Dense and Very Dense Sand	60
Figure 4.14 : : Power regression curve for Dense and Very Dense Sand	61
Figure 4.15 : Linear regression curve for Sand and Sandy Silt	61
Figure 4.16 : Power regression curve for Sand and Sandy Silt	62
Figure 4.17 : Linear regression curve for Silty Sand	62
Figure 4.18 : Power Regression curve for Silty Sand	63
Figure 4.19 : Linear regression curve for Organic Clay	63
Figure 4.20 : Polynomial regression curve for Organic Clay	64
Figure 4.21 :Linear regression curve for Very Stiff Fine Grained	64
Figure 4.22 : Polynomial regression curve for Very Stiff Fine Grained	65
Figure 4.23:Linear regression curve for Silty Sand and Sandy Silt	65
Figure 4.24 : Power regression curve for Silty Sand and Sandy Silt	66

LIST OF TABLES

	Page
Table 2.1:Factors in arriving at N corrected from N raw from the field	9
Table 2.2:Factors Influencing Blow count - N Values of SPT	10
Table 2.3:Classification of Cohesionless oils according as per (N1)60	13
Table 2.4: Classification of Cohesive soils as per N ₆₀	13
Table 2.5: Correlation between Relative density (Dr) and (N1)60	14
Table 2.6:Empirical values for Ø,D _r , and unit weight of granular soils based on the SPT at about 6 m depth and normally consolidated soil	17
Table 2.7:Relationships between Young's Modulus and SPT-N value for different foundation types	18
Table 2.8:Relationships between Young's Modulus and SPT-N value according to soil type	19
Table 2.9:Blow counts and fs counts near the pile's end	19
Table 2.10 : Proposed unification between 12 SBT zones	35
Table 2.11:Suggested (q _c /Pa)/N ₆₀ ratios	39
Table 2.12: Suggested Ratio between qc/Pa and N60	40
Table 2.13:Correlation between CPT and SPT as per different researchers	41
Table 3.1:Possible Initial Soil types	45
Table 3.2 : Investigated locations	46
Table 4.1:Soil Behavioral Type identified for Investigated areas in Sri Lanka	54
Table 4.2:Comparison of $(q_c/P_a)/N_{60}$ ratios with the studies of Robertson	55
Table 4.3: Linear , Power and Polynomial Correlation Equations Between q_c and N_{60} of The Residual Soils of the Study Area	66
Table 4.4: Results of Coefficient of Variation (R ²) of Linear and Power regression models of Study Area.	67
Table 5.1: Comparison between $(q_c/P_a)/N_{60}$ of cohesionless soils of the study	
	68

LIST OF ABBREVIATIONS

Abbreviation	Description
Af	Rod Length
SPT	Standard Penetration Test
BH	Borehole
СРТ	Cone Penetration Test
CPTu	Cone Penetration Test with Pore Pressure
Cu	Undrain Cohesion
D ₅₀	50% of fines passing percentage.
Dr	relative Density
Fs	Sleeve Friction
i	Inclination
Ic	Normalized SBT Index
N ₆₀	SPT N corrected to 60% of hammer efficiency.
N'70	SPT N corrected to 70% of hammer efficiency.
OCR	Over Consolidation Ratio
Pa	Atmospheric pressure
q _c	Tip resistance
qt	Corrected Cone Resistance
Rf	Friction ratio
SBT	Soil Behaviour Type
U	Pore pressure