LB/DON/ 46/04

NO 12

UNIVERSITY OF MORATUWA SRI LANKA

DESIGN MODELING AND SIMULATION OF A REPEATERLESS OPTICAL FIBER NETWORK FOR SRI LANKA

Submitted in partial fulfillment for the degree of Masters of Engineering in Electronics and Telecommunication

K. P. Kandanearachchi

February 2004

UM Thesis coll

80502

80502

The work presented in this dissertation has not been submitted for the fulfillment of any other degree

UOM Verified Signature

1

K. P. Kandanearachchi (Candidate)

UOM Verified Signature

Prof.(Mrs.) I. J. Dayawansa (Supervisor)

DEDICATION

I dedicate this Dissertation with a lot of respect to my lovely late Mother who directed me to achieve the best possible education through a lot of dedication and hard work.

It is also with reverence and respect that I remember my Father, my school - Thurstan College and University of Moratuwa for the guidance given me at all times to achieve my goals and aims and providing me with the postgraduate course that I receive.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

T

X

CONTENTS

4

+

ACKN ABSTF LIST C LIST C ABBRI	OWLEDGEMENTS RACT DF FIGURES DF TABLES EVIATIONS		i ii iv vi vii
1. INT 1.1 1.2 1.3 1.4 1.5	RODUCTION High Speed Network Common Network Optimum Network Objectives Methodology 1.5.1 Telephone and IP Traffic Forecast by Year 2015 1.5.2 Network Design 1.5.3 Network Simulation		1 1 2 2 2 3 4 4
2. LIT	ERATURE REVIEW		5
2.1	 Traffic Theory for Planning 2.1.1 Traffic Volume 2.1.2 Traffic Density 2.1.3 Calling Rate 2.1.4 Probability of Loss Electronic Theses & Dissertations 2.1.5 Earlang's B Formulawww.lib.mrt.ac.lk Demand Forecasting 2.2.1 Telephone Demand Forecasting 2.2.1.1 Macro-level telephone Demand Forecasting 2.2.1.2 Extrapolation Method 2.2.1.3 Method of Comparison with other Countries 		5 5 6 6 7 8 9 9 10 11
2.3	Traffic Forecasting 2.3.1 Introduction 2.3.2 The Gravity Model		11 11 11
2.4	Economic Indicators 2.4.1 Gross National Product 2.4.2 Gross Domestic Product 2.4.3 Factors of Production		12 12 13 13
2.5 2.6	 WDM Technology 2.5.1 Optical Transmitters 2.5.2 Optical Receivers 2.5.3 Optical Multiplexers and Demultiplexers 2.5.4 Optical Add Drop Multiplexers 2.5.5 Amplifiers Optical Amplifiers 	HEREIN AND AND AND AND AND AND AND AND AND AN	13 14 15 15 16 16 17
	2.6.1 Amplifier Wavelength Bands		17

	 2.6.2 Erbium Doped Fiber Amplifier 2.6.3 Raman Amplifier 2.6.4 Comparison of Paman and Erbium Doped Amplifiers 	18 19 26
	2.0.4 Comparison of Raman and Erofulli Doped Amplifiers	20
3.	TELEPHONE DEMAND FORECAST	29
	3.1 Introduction	29
	3.2 Income Elastic Model	29
4.	TELEPHONE TRAFFIC FORECAST	33
	4.1 Nodes of the Network	33
	4.2 Traffic Originated from each Node	35
	4.3 Gravity Model	37
5.	INTERNET TRAFFIUC FORECAST	38
	5.1 Traffic Forecast of Internet Dial-up Users	38
	5.2 Broadband Users	40
6.	VOICE OVER TRAFFIC FORECAST	43
	6.1 Introduction	43
	6.2 VoIP in Sri Lanka	43
	6.3 Telephone Traffic migration from PSTN to VoIP	43
	6.3.1 Traffic Migration of Business Customers from PSTN to VoIP	44
	6.3.2 International Traffic Migration from PSTN to VoIP	44
	6.3.3 Domestic Traffic Migration from PSTN to VoIP	45
	6.3.4 Traffic Migration Patterns from PSTN to VoIP	45
7.	NETWORK DESIGN	48
	7.1 Network Topology	48
	7.2 Traffic Routing	50
	7.3 Capacity of the Network	50
	7.4 Wavelength allocation and connectivity	50
	7.5 Selection of Wavelengths	53
	7.6 Design Configuration	53
	7.7 Selection of the Fiber	54
	7.8 Selection of Sources and Detectors	55
	7.9 Network Design using Optical Amplifiers	55
	7.10 BER Objective and Design Steps	55
	7.11 Network Design	55
	7.11.1 Selecting a suitable Booster and Pre-Amplifier	55
	7.11.2 Power Budget Calculations	56
	7.11.3 USNK Calculations of Segments	01 64
	7.11.4 USNK Calculations of Uptical Line Sections	04 <i>∠ 1</i>
	7.12. Dispersion Management	04 67
	1.12 Dispersion Management	07

4

4

8.	NETWORK SIMULATION	71
	8.1 Introduction	71
	8.2 Simulation Strategy	71
	8.3 Optimum Results of the Network	71
	8.4 Simulated Outputs of the Network	72
9.	SUMMARY AND CONCLUSIONS	90
	9.1 Telephone Demand and its distribution by year 2015	90
	9.2 IP Traffic Demand and its distribution by year 2015	90
	9.3 Network Topology and capacity requirements	91
	9.4 Designing of a Repeaterless Optical Network	91
	9.5 Modeling of the Network to ensure desired results	92
	9.6 Suggestions for future work	92

REFERENCES

+

*

+

APPENDICES

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Project Supervisor Prof. (Mrs.) I. J. Dayawansa (BSc Dip E.E. MSc PhD FIEE) for her guidance, valuable advices and encouragements for successfully completing this Postgraduate Research study.

Also I thank to University of Moratuwa for giving me an opportunity for a postgraduate study where I had the opportunity to explore in new technology areas like Repeaterless Optical Networks.

I should express my gratitude to ARTIS Software Corporation for providing me an evaluation copy of OptSim Software Tool for simulating and evaluating the designed Network.

Finally I thank to my lovely wife Mrs. J. N. Wickramasinghe and Sri Lanka Telecom for providing me necessary information and support for completing this project successfully.

ABSTRACT

A reliable and wideband telecommunication network is a vital infrastructure development, where wide band services such as ATM, ADSL and IP based services could be supported. In Sri Lanka, the requirement of this kind of an optical network is very significant as other operators also can share the capacity of the network for transporting their traffic. On the other hand the network problems such as excessive BER (Bit Error Rate) etc are experienced after its construction. In order to avoid such limitations in the network, the network needs to be modeled on appropriate software tools and run with designed network parameters, so that the desired BER could be ensured.

During the initial phase of the study, the total telephone demand by year 2015 was estimated as nearly 2 million subscribers. This was estimated through the world trend for telephone subscribers together with economic indicators such as GNP and GDP.

The Nodes of the Network was determined based on the present distribution of customers in the County. In this case all the Tertiary Switching Center areas and the Secondary Center Areas where the customer base is more than 2.5% of total customers were taken as the main nodes of the network. In addition Jaffna and Baticaloa were also taken as nodes considering the potential growth of traffic in northern and eastern parts of the Island.

The Gravity model and Earlang's B formula, traffic tables, were used to find the traffic between nodes and the number of circuits between nodes. Based on the traffic distribution between nodes, a part of the network was proposed as a fully reliable Ring Network, while other nodes are connected through extended links. The IP traffic, which is thought to be the major traffic flow in the future, were estimated considering the broadband Internet growth in the country. Also the traffic, which are expected to be migrated from traditional PSTN to IP Network were identified and estimated to find the total bandwidth requirement of the network by year 2015.

The number of wavelengths in the proposed Network were decided based on the final bandwidth requirement. This resulted an island wide network consisting of WDM Ring Network having 08 wavelengths that basically covers the southern part of the country and two other extensions having a wavelength each to northern and eastern parts of the country. The Colombo and the Kandy nodes were selected as Full Fiber Terminal Stations as most of the traffic flow between these two nodes. Wavelengths are added and dropped at each branch station based on the traffic volumes between these nodes.

The wavelengths were selected such that the space between adjacent wavelengths is 0.8nm to avoid nonlinear effects and cross talks. The G.655 non-zero dispersion fiber was selected to mange the dispersion and non-linear effects. DFB and APD are the Source and the Detector respectively to suit long h aul transmissions h aving n arrow s pectral widths and also to meet better sensitivity at the receiver.

The proposed Network is a Repeaterless Optical Network, where the Power Budget of the longest Segment, Kandy – Matara, of 280km was designed without employing a physical repeater, which needs power feeding. This was achieved using Raman Amplifiers as line repeaters and Erbium Doped Fiber Amplifiers (EDFA) as Boosters and Pre-Amplifiers. The Power Budget has been prepared for all other Segments as well based on appropriate configurations. Also the BER objective of 10^{-9} was ensured for the longest Optical Line Section of Colombo – Kandy via Matara, in which a couple of express wavelengths are assigned for carrying traffic between Colombo and Kandy. The Performance Budget was prepared for long Optical Line Sections and the calculated BER was found as better than 10^{-9} . This has been further confirmed by the Eye Diagrams after simulating the Network on the OptSim Network Simulator developed by ARTIS Software.

¢,

LIST OF FIGURES

+

Figure 2.1 Offered Traffic and Carried Traffic	6
Figure 2.2 Factors affecting Demand	8
Figure 2.3 Economic Index Relating to Telephone Density	10
Figure 2.4 Traffic flow between Two Office	12
Figure 2.5 Typical WDM Multiplexer	15
Figure 2.6 WDM Demultiplexer using Wave Guide Grating Diffraction techni	que 16
Figure 2.7 Illustration of the advantage of using Optical Amplifiers	17
Figure 2.8 Typical Erbium Doped Fiber Amplifier	18
Figure 2.9 Energy Level Diagram of an Erbium Doper Fiber Amplifier	19
Figure 2.10 Energy Level Diagram of a Raman Amplifier	19
Figure 2.11 Gain Vs Frequency difference between the Signal and Pump	20
Figure 2.12 Configuration of the Forward Pumping Raman Amplifier	20
Figure 2.13 Configuration of the Backward Pumping Raman Amplifier	21
Figure 2.14 Hybrid Raman Doped Amplifier	28
Figure 3.1 World Telephone Demand Trend	30
Figure 5.1 Growth of Internet Users	39
Figure 5.2 Growth of Broadband users	41
Figure 5.3 Growth of Broadband users (log scale)	41
Figure 7.1 Topology of the Proposed Optical Fiber Network	49
Figure 7.2 Wavelength allocation and connectivity	52
Figure 7.3 Schematic Diagram of a WDM Segmenta Sri Lanka	54
Figure 7.4 Simplest Configuration (Configuration-A) Fiber Link	57
Figure 7.5 Configuration-B of a Fiber Link	58
Figure 7.6 Configuration -C of a Fiber Link	58
Figure 7.7 Configuration-D of a Fiber Link	59
Figure 7.8 Measured EDF Gain and Noise Figure Vs. Pumping Power	59
Figure 7.9 Configuration of the proposed Network	70
Figure 8.1 Output of the Colombo main Fiber via Kurunegala	72
Figure 8.2 Input of the Kandy main Fiber via Kurunegala	73
Figure 8.3 Eye diagram of λ_1 at Kandy FFTS via Kurunegala	74
Figure 8.4 Eye diagram of λ_2 at Kandy FFTS via Kurunegala	74
Figure 8.5 Eye diagram of λ_3 at Kandy FFTS via Kurunegala	75
Figure 8.6 Eye diagram of λ_4 at Kandy FFTS via Kurunegala	75
Figure 8.7 Eye diagram of λ_5 at Kandy FFTS via Kurunegala	76
Figure 8.8 Eye diagram of λ_6 at Kandy FFTS via Kurunegala	76
Figure 8.9 Eye diagram of λ_7 at Kandy FFTS via Kurunegala	77
Figure 8.10 Eve diagram of λ_8 at Kandy FFTS via Kurunegala	77
Figure 8.11 Output of the Colombo main Fiber via Matara	78
Figure 8.12 Input of the Kandy main Fiber via Matara	79
Figure 8.13 Eye diagram of λ_1 at Kandy FFTS via Matara	80
Figure 8.14 Eye diagram of λ_2 at Kandy FFTS via Matara	80
Figure 8.15 Eye diagram of λ_2 at Kandy FFTS via Matara	81
i Bure on i Dye diagram of Ny at Kanay i i i o via Matala	01

81
82
82
83
83
84
85
85
86
86
87
88
88
89

4

≯

-

+

\$

.

LIST OF TABLES

+

Table 2.1 Comparison of Raman and Erbium Doped Fiber Amplifiers	27
Table 3.1 Calculation of Total Telephone Demand at the end of each Year	31
Table 4.1 Distribution of Telephone Customers in year 2001	34
Table 4.2 Nodes of the network and its traffic distribution	36
Table 5.1 Growth of Internet users and its forecast	38
Table 5.2 Distribution of Internet users by year 2015 and Bandwidth requirement	39
Table 5.3 Growth of Broadband users	40
Table 5.4 Forecast of Broadband users	42
Table 5.5 Distribution of Broadband users by year 2015 and Bandwidth requirement	42
Table 6.1 Traffic migration patterns from traditional PSTN to VoIP	45
Table 6.2 International and a portion of Domestic traffic as VoIP	46
Table 7.1 Capacity Requirement of each Segment	50
Table 7.2 Wavelength Requirement of the Network	51
Table 7.3 Wavelengths in the Network	53
Table 7.4 Parameters of G655 Non-Zero Dispersion Shifted Fiber	54
Table 7.5 Typical Parameters of a Booster, Pre-Amplifier and Raman Amplifier	56
Table 7.6 Distances between Nodes of the Network	57
Table 7.7 Network Segments and its particular Configuration	60
Table 7.8 Power Budgets of Segments	61
Table 7.9 Parameters required for SNR Calculations	62
Table 7.10 SNR Calculations of Segments	63
Table 7.11 Performance Budget	67
Table 7.12 Dispersion Coefficients of each wavelength	68
Table 7.13 Lengths of DCF to compensate dispersion of each Segment and OLS	69

ABBREVIATIONS

...

4

4

-	Avalanche Photo Diode
-	Asymmetric Digital Subscriber Line
-	Amplified Spontaneous Emission
-	Bit Error Rate
-	Branch Station
-	Calling Rate
-	Dispersion Cut-off Fiber
-	Distribution Feed Back
-	Dispersion Shifted Fiber
-	Digital Subscriber Line
-	Erbium Doped Fiber Amplifier
-	End of Life
-	Extension Station
-	Full Fiber Terminal Station
-	Four Wave Mixing
-	Gross Domestic Product
-	Gross National Product
-	Internet Protocol University of Moratuwa, Sri Lanka.
-	International Telecommunication Union
-	Noise Figure
-	Net Income
-	Non Zero Dispersion Shifted Fiber
-	Optical Add Drop Multiplexer
-	Optical Line Section
-	Optical Signal to Noise Ratio
- [.]	Personal Computer
-	Pulse Code Modulation
-	Polarization Mode Dispersion
-	Public Switched Telephone Network
-	Raman Amplifier
-	Sri Lanka Telecom
-	Signal to Noise Ratio
-	Self Phase Modulation
-	Stimulated Raman Scattering
-	Secondary Switching Center

TDM	-	Time Division Multiplexing
TRC	-	Telecommunication Regulatory Commission
USB	-	Universal Serial Bus
VOIP	-	Voice Over Internet Protocol
WDM	-	Wavelength Division Multiplexing

+

,

4

•

٠

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.

-viii-