LB/DON/85/08

17

TECHNICAL AND FINANCIAL VIABILITY OF BIOMASS POWER PLANTS FOR GRID ELECTRICITY GENERATION IN SRI LANKA

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

A Research Project submitted to the Department of Mechanical Engineering, University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Engineering in Energy Technology

By

University of Moratuwa, Sri Lanka. JAVASURIYA ARACHCHIGE ROSHAN LASANTHA WWW.lib.mbe SARAM

2003 / 2004

91259

Supervised by:

Dr. A.G.T. Sugathapala

Department of Mechanical Engineering University of Moratuwa Sri Lanka

> University of Moratuwa 91259

November 2007

621 "07" 620.9(043)

91259

DEDICATION

This Research Report is dedicated to my beloved wife Carina and to my children Jonathan, Mystica and Elisha

*

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

i

DECLARATION

I hereby declare this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material, which to substantial extent, has been accepted for the award of any other academic qualification of a University or any other Institute of higher learning expect where acknowledgement is made in the text.

Dr. A.G.T. Sugathapala

UOM Verified Signature

Name of the supervisor

Signature

Date: 29-11-2007

ACKNOWLEDGEMENT

This research project was successfully completed due to the guidance of my project supervisor. I would like to sincerely thank Dr. Thusitha Sugathapala, supervisor of this research project, course coordinator of MEng. Programme (2003/2004) and Head of the Department of Mechanical Engineering, University of Moratuwa for his valuable time and patience. It is for his guidance, supervision and encouragement this project became a reality. I would also like to thank Prof R.A Attalage, Senior Lecture Mechanical Engineering, University of Moratuwa for his support at the initial stage of this research project.

I would like to thank Dr. Jayantha Gunathilake and Mr. P. G. Joseph for their valuable time and for providing information required for this study. Grid connected Gliricidia based power plant experience is a scarcity in the country. I wish to thank Eng Indika Gallage, and Eng. Ruwan Nagahawatte of EnerFab (Pvt) Ltd., and Eng. Sameera Ganegoda of M/s Lanka Transformers Limited for sharing their knowledge and experience on Dendro Power Plants. Theses & Dissertations www.lib.mrt.ac.lk

*

I express my deepest gratitude to Managing Director Eng. Devan de Mel of Ace Power Embilipitiya (Pvt) Ltd, for his support, encouragement and giving permission to publish the Farmers Plot concept designed for Ace Dendro (Pvt) Ltd in this report. I also express my gratitude to General Manager Eng. U.D. Jayawardana, and then Plant Manager, Eng. Priyantha Abeysingha of M/s Lanka Transformers Limited for financing and giving me the opportunity to follow this MEng Energy Technology Course.

I sincerely thank my colleagues at Ace Power Mr. Bandula Amartunga and Eng. Samitha Wijesingha for their support to compile this research thesis. Finally I greatly appreciate and thank all my family members, all members in the operation staff of Ace Power Embilipitiya (Pvt) Ltd, all staff members who engaged in MEng. Energy programme 2003/2004, University of Moratuwa and all members of MEng. Energy Technology batch 2003/2004 for helping me in numerous ways in different stages of this study.

Contents

7

*

\$

x,

.

		Pages	
CHAPTER 1	: INTRODUCTION	01	
CHAPTER 2	BIOMASS AS A SOURCE OF ENERGY FOR GRID	06	
	ELECTRICITY GENERATION		
2.1	Introduction	06	
2.2	Present Energy Scenario in Sri Lanka		
2.3	Renewable Energy Sources in Sri Lanka for Grid Electricity		
	Generation		
2.4	Policy Initiatives for Biomass Grid Electricity Generation		
2.5	Supply of Biomass for Grid Electricity Generation	12	
	2.5.1 Fuel Characteristics of Gliricidia	14	
	2.5.2 Favorable Factors of Gliricidia for Energy Plantation	15	
2.6	Fuel Wood Production	17	
	2.6.1 Farmer Bloy of Moratuwa, Sri Lanka.	17	
	26.2 Harvesting and Collecting Proceedine of the Farmers Plot	19	
	2.6.3 Harvesting Methodology	21	
2.7	Summary	22	
CHAPTER 3	BIOMASS CONVERSION TECHNOLOGIES FOR GRID	23	
	ELECTRICITY GENERATION		
3.1	Introduction	23	
3.2	Bio Chemical Conversion	23	
3.3	Thermo Chemical Conversion	24	
3.4	Direct Combustion Conversion	25	
3.5	Summary	31	
CHAPTER 4	: BIOMASS ENERGY SYSTEM FOR GRID	32	
	ELECTRICITY GENERATION		
4.1	Methodology	32	
4.2	Site Selection	34	

iv

4.3	Fuel Wood Production	
	4.3.1 Setting up of the Plantation	36
	4.3.2 Plantation Methodology	38
4.4	Power Plant	41
	4.4.1 Fuel Handling and Treatment System	42
	4.4.2 Power Generation System	44
4.5	Estimations and Assumptions made in the Development of the	48
	Power Plant	
4.6	Power Transmission	56
CHAPTER 5:	DEVELOPMENT OF LARGE SCALE GRID CONNECTED	57
	BIOMASS POWER PLANT	
5.1	Introduction	57
5.2	Development of the Power Plant	57
5.3	Development of the Energy Plantation	62
5.4	Power Plant Water Consumption Catculation Electronic Theses & Dissertations	65
5.5	Summary www.lib.mrt.ac.lk	66
CHAPTER 6:	TECHNICAL ANALYSIS	69
6.1	Introduction	
6.2	Fuel Wood Production	
6.3	Power Plant	72
6.4	Transmission Line	
6.5	Summary	75
CHAPTER 7:	FINANCIAL ANALYSIS	76
7.1	Introduction	76
7.2	Revenue	77
7.3	Capital Cost of the Energy Plantation	78
7.4	Capital Cost of the Power Plant	79
7.5	Operational Cost of the Energy Plantation	80
7.6	Operational Cost of the Power Plant	82
7.7	Project Appraisal	85

¥

1

\$

x

v

7.8	Sensitivity Analysis	85
7.9	Summary	88
CHAPTER 8	: DISCUSSION AND CONCLUSION	89
CHAPTER 9	: RECOMMENDATIONS	91
REFERENCI	ES:	93
ANNEXURE		95
Anne	x 1: Ultimate Analysis and Chemical Analysis of Ash of Gliricidia	95
Anne	x 2: Gross Calorific Value and Moisture Content of Gliricidia	96
Anne	x 3: Capital Cost of the Power Plant	97
Anne	x 4: Cash Flow Statement of the 5MW Power Plant	99

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

~

*

\$

*

¥.

	Pages
Figure 2.1 - Primary Energy Supply by Source [1]	07
Figure 2.2 - Energy Consumption by Sectors [1]	07
Figure 2.3 – Sectoral Electricity Consumption in year 2004 [2]	08
Figure 2.4 - Gliricidia & Ipil	14
Figure 2.5 – Gliricidia Energy Plantation	17
Figure 2.6 - Details of the Plot Allocated to Each Farmer [5]	18
Figure 2.7 - Layout of the Trees in Farmer Sub Plot [5]	19
Figure 2.8 - A Section of Farmer Plot [5]	20
Figure 2.9 – Battery Operated Chain Saw	21
Figure 3.1 – Process Flowchart of Gasification Technology	24
Figure 3.2 – Direct Combustion Electricity Generation Process Flowchart	25
Figure 3.3 – Typical Fuel Wood Handling and Treatment System [8]	26
Figure 3.4 – Fuel Wood Chipping Plant	26
Figure 3.5 - Storage Facility and Drying Concept [8] Sri Lanka.	27
Figure 3.6 - Process Oycle of the Power Generation System ons	27
Figure 3.7 – High Pressure Boiler used for Electricity Generation	28
Figure 3.8 – Condensing Turbine used for Electricity Generation	30
Figure 3.9 – Flowchart of the Water System	31
Figure 4.1 – System Flowchart of the Biomass Electricity Generation System	32
Figure 4.2 – Process Flowchart of Fuel Wood Production	35
Figure 4.3 – Process and Component Flowchart of Fuel Handling and	42
Treatment System	
Figure 4.4 – Process and Component Flowchart of Power Generation System	45
Figure 4.5 – Conceptual Electrical System Line Diagram	47
Figure 4.6 – Losses & Electricity usages between Turbine and Energy Meter	50
Figure 4.7 – Ranking Cycle with Super Heater	51
Figure 4.8 – Boiler Processes on a Temperature- Entropy Diagram	53
Figure 5.1 – Plantation Layout	63
Figure 7.1 – Financial Structure	76

List of Tables

¥

*

¥.

	Pages
Table 2.1: Electricity Demand and Generation in Year 2000 to 2004 [2]	09
Table 2.2: Results of Several Fuel Wood Trial Plots Conducted by CRI [4]	13
Table 2.3: Productivity of Gliricidia (Tree/Year) [4]	16
Table 5.1: Power Plant Operations Team	61
Table 5.2: Summary of Technical Details of 5MW Dendro Power Plant	66
Table 5.3: Summary of Energy Plantation Details for a 5MW Dendro Power Plantation	lant 68
Table 6.1: Productivity of Gliricidia @ 50% Moisture Content (Tree/Year)	70
Table 7.1: 3-Tier Tariff Structure	77
Table 7.2: Capital Cost of the Energy Plantation	79
Table 7.3: Total Capital Cost of the 5MW Dendro Power Project	80
Table 7.4: Operational Cost of the Energy Plantation	81
Table 7.5: Power Plant Maintenance Cost Schedule	83
Table 7.6: Overhead Cost of the Power Plant	83
Table 7.7: Total Operational Cost of the Power Plant Sri Lanka.	84
Table 7.8: Results of the Sensitivity Analysis & Dissertations www.lib.mrt.ac.lk	86

viii

Abbreviations and Notations

BOP		Balance of Plant
BFP		Boiler Feed Pump
С		Centigrade
CCGT		Combine Cycle Gas Turbine
CEB		Ceylon Electricity Board
CEP		Condensate Extraction Pump
CI		Compression Ignition
CRI		Coconut Research Institute
CV		Calorific Value
DM		Demineralization
DC		Direct Current
DCF		Discounted Cash Flow
EJC		Ejector Condenser
EPC	bal	Unive Equipment/Procurementand Construction
FD		Electroniced branes & Dissertations
GHVD		www.lib mrt ac.lk Gross Heating Value Dry Basis
GSC		Gland Steam Condenser
GSS		Grid Sub Station
ha		Hectare
Ι		Currant
ID		Induced Draft
IPP		Independent Power Producer
IRR		Internal Rate of Return
ITI		Industrial Technology Institute
LKR		Sri Lankan Rupee
LOI		Letter of Intent
NHV		Net Heating Value
NO		Number of
NPV		Net Present Value
O&M		Operations and Maintenance
PF		Plant Factor

¥.

S

¥.

i.

*

PPM	Parts Per Million
PV	Photo Voltaic
R	Resistance
ROI	Return on Investment
SI	Spark Ignition
SPPA	Standard Power Purchase Agreement
SRC	Short Rotation Coppice
TDS	Total Dissolve Solid
ТРН	Tons per Hour
USD	United State Dollar
UPS	Uninterrupted Power supply
UHC	Utilizable Heat Content
VSD	Variable Speed Drives

¥.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

,

ABSTRACT

The technical and financial viability of biomass power plants for grid electricity generation in Sri Lanka is analyzed. To fulfill this requirement, present energy scenario, renewable energy sources in Sri Lanka for grid electricity generation, policy imitative for biomass grid electricity generation, present status of biomass electricity generation and biomass conversation technologies are discussed. A methodology is developed for setting up of commercially accepted biomass power plant and energy plantation for grid electricity generation. This methodology is applied for 5MW power plant. The technical and financial viability of this 5MW power plant and the methodology are analyzed to conclude the objective of this study. Higher end 5MW power plant is selected because the issues associated with large scale plant could be identified and analyzed. A biomass power plant with company own energy plantation and direct combustion turbine based technology is technically viable for grid electricity generation. The costing and cash flow statement derived from the sizing of energy plantation and power plant revealed that 5MW power plant is financially Electronic Theses & Dissertations viable.

www.lib.mrt.ac.lk