LB/DON /83 /07

DESIGN OF A POWER TRANSMISSION SYSTEM OF A PEDAL CAR

by

A.Edirisinghe

Supervised by

Dr. M.A.R.V.Fernando

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

This thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Engineering in Manufacturing Systems Engineering

<u>621°06</u> 621.7(043)

 (0^{2})

Department of Mechanical Engineering University of Moratuwa Sri Lanka July 2006

University of Moratuwa

87885

DECLARATION
This Dissertation paper contains no material which has been accepted for the award of any other degree or diploma in any University or equivalent institution in Sri Lanka or abroad, and that to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text of this Dissertation.
I carried out the work described in this Dissertation under the supervision of Dr. M.A.R.V. FERNANADO
Signature : Date : 22 nd July.2006
Name of Student : A.Edirisinghe
Registration No : 02/9630
University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk
Signature UOM Verified Signature Date : 22 july 2000
Name of Supervisor : Dr. M.A.R.V. FERNANDO

۱ <u>د</u>

I

7

ii

ACKNOWLEDGEMENT

It is with deep gratitude I acknowledge the generous assistance, kind and valuable guidance of my Supervisor Dr. M.A.R.V.Fernando and Dr. G.K. Watugala of the Department of Mechanical Engineering University of Moratuwa in completing this study successfully.

I wish to thank Dr.A.G.T. Sugathapala, Head of the Mechanical Engineering Department, Former Heads, Dr. R.A.Athalage and Dr. S.R.Thithagala, Course Coordinators, Dr. U.Kahangamage and Dr.P.A.B.A.R.Perera, Lecturer H.KG.Punchihewa and the academic staff of the University of Moratuwa for their valuable advice and excellent guidance offered throughout this Research Study and making arrangements to demonstrate First Embodiment of our pedal car in the Exhibition held at Bandaranayake Memorial International Conference Hall, and also wish to extend my thanks to visiting Lecturers and all the university Lecturers who enlightened throughout the Master of Engineering Course.

I also wish to extend my sincere thanks to all other staff of the University of Moratuwa for their contribution and friendly support in the course of the study.

Further, I wish to extend my warm gratitude and thanks to the Factory Engineer Mr. W. Galappaththi of the Government Factory for allowing me to use the resources for fabrication of First Embodiment of the Pedal car and, Former Factory Engineer and the Former Secretary to the Ministry of Cooperative Development, Eng. .K Mahanandan who generously gave me the opportunity to practice and develop my skills in par with my studies, and I shall not forget to appreciate the staff of the Government Factory, devoting their valuable time to help, fabricating the first embodiment, specially, the Supervisors of the Machine shop Mr. U.S.K.Pothupitiyage Mr. K.A.S. Prematilake and Motor Mechanic, Mr. H.A.S.K.Perera.

I wish to appreciate my colleagues Mr. M.S.M. Zuhair and Mr. C.Molligoda who immensely coordinated and joined in fabrication of first embodiment, sharing information, sharing expenses of fabrication and completion within seven days. I further extend my sincere thanks

to Mr .M.S.M.Zuhair and his staff of Test Com (Pvt.) Ltd of Dehiwala, who dedicated in doing finishing touches of the first embodiment beautifully.

I specially thank my wife for encouraging me towards successful completion of this research study while my little son and daughter who tolerated and sacrificed their hour of need.

Last but not the least I am grateful to my friends and colleagues who lavishly shared their knowledge and expertise and for all others who helped me in their own special way without which this would not have been a success.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

<u>Abstract</u>

Transportation has become a major socio-economic and environmental problem in urban environments today. Escalation of oil prices, environmental pollution, unsafe conditions, unbalanced designs of bicycles, motorcycles, and three wheelers and complex lifestyle are some of those significant contributing factors to it. **Ergonomically designed Human Powered transport** is one of the feasible solutions for urban requirements. Ergonomics deals with human comfort in any work situation in order to operate it efficiently and effectively. Concept of pedal car came into being in order to eliminate discomfort and unsafe conditions due to heat, dust, rain, unbalanced designs, uncovered body, and fatigue due to uneasy postures. In addition to the above it provides cheap transport and recreational facility, physical exercise, while providing additional value for the rider to iron out complex health hazards.

Design of Power transmission system integrates with Engineering aspects, strength, rigidity, stability and ergonomics aspects. One of the major innovative steps taken in fabrication of first embodiment of the pedal car is to eliminate long chains by introducing pedal linkage with a shorter chain. First embodiment incorporates positive achievements such as; ergonomically designed compact long wheel base and seat, shorter chain, standard parts, small wheel sizes, affordable price, environmentally friendly, fashionable appearance, Easy manufacturability and maintainability of Driving Mechanism, and physical exercise to the rider. Over weight of frame and wheel assembly deprived acceleration in gradient at 30° to 8Km/h and 15-18Km/h in level roads. Reduction of weight of the first embodiment by re-design and re-selection of parts with lighter hood cover with additional power supply to the system also required to overcome the above problem. One of the major limitations of this study is maximum human power in put. Further study on maximum power application in relation to pedal height, seat angle, foot position and crank length is also important for further improvements.

Table of Contents

•

٠

+

Title		i
Declaration		ii
Acknowledgeme	nt	iii-iv
Abstract		v
List of contents		vi-xii
List of illustration	ns	xiii -xiv
List of tables		xv
Chapter I - Intr	oduction	1
1.1	Overview	1-4
1.2	Outline	5-10
1.3	Limitations	10
	1.3.1. Length of the First Embodiment and	11
	Recumbent type	
	1.3.2. Seat Adjustability	11
	1.3.3. Speeds in Level Roads and Gradient	11-12
1.4.	Literature Survey	12
1.5.	Conceptual Frame work	13-14
1.6.	Methodology	14-15
1.7.	Background	15-18
	1.7.1. Factors that interrelated to	
	Transmission Efficiency	18
1.8.	Possible Solutions	18-19
Chapter 2 - Liter	rature Review	20
2.1.	Introduction	20-22
2.2.	Literature Survey	22
	2.2.1. Propulsion and Transmission Efficiency	22
	2.2.2. Power Required for Propulsion	22

2.2.2.1. Resistances	22-23
2.2.2.1.1 Rolling Resistance	23-24
2.2.2.1.2. Frictional Resistance	25
2.2.2.1.3 Rolling Resistance	25
2.2.2.1.4. Gradient Resistance	27
2.2.2.1.5. Air Resistance	27
2.2.2.1.6. Tractive Resistance (Axle)	28
2.2.2.2. Power required or demand power	28
2.2.3 Power Available	29-30
2.2.4. Gradient Performance	30
2.2.5. Tilt resistance of tricycles	31-33
2.2.6. Types of Belt Drives	34-40
2.2.7. Chain Drives	40-42
2.2.7.1. Chain classified	43
(a) 2.2.7.2. Chain Selection Factors	44
2.2.7.3. Basic Structure of Power	
Transmission Chain	44-45
2.2.7.4. Roller chains	45
2.2.7.5. Bushing chains	46
2.2.7.6. Silent Chains	46
2.2.7.7 Type of Sprocket	47
2.2.7.8. Kinematics of Chain Drive	48
2.2.7.9. Angular velocity ratio	49
2.2.7.10. Mean velocity ratio and	
Length of the chain	49
2.2.7.11 Relationship between Pitch	
and Pitch circle diameter	50-51
2.2.7.12. Power transmitted by the chain	51
2.2.7.13. Impact loading	51-52

J

•

< _

.

· c

.

	2.2	7.14. Principal Parameters of	
		Chain Drives	52-54
	2.2	7.15. Distance between the sprocket	
		axel and the and the chain length	54
	2.2	7.16. Advantages and Disadvantages	
		of Chain for Power Transmission	55-56
	o .		57
Chapter 3 -	- Governii	ng Equations	57
	3.1 Intro	duction	57
	3.2 Gov	erning Equations	57
	3.2.1	. Motive Force	57
	3.2.2	2 Frictional Resistance	58
	3.2.3	Rolling Resistance	58
	3.2.4	l. Gradient Resistance	58
	3.2.5	i Air Resistance	59
	3.2.6	5 Tractive Resistance (Axle)	59-60
	<u>م</u> 3.2.1	. Power required or demand	
	Se www	power is given by	60
	3.2.8	8. Power transmitted by the chain	60
Chapter 4 -	Methodo	logy	61
F	4.1 Intr	oduction	61
	4.2 Cor	centual Frame Work	61-62
	4.2.	1 Use Need	62
	4.2.	2 Engineers Perspectives	62
	4.2.	3 Identifying Alternatives	63
		A > 2 + 1 D =	CA (5
		4.2.3.1 Recumbent Positions	04-03
		4.2.3.2 Wheel Sizes	65-66
		4.2.3.3 Ergonomics- Which configuration	

.

L

A

will work best?

66

viii

		4.2.3.4	Types of recumbent steering	67
		4.2.3.5	Driving Mechanism	67
	4.2.4	. Problem	s	68
		4.2.4.1	Recumbent Positions	68
		4.2.4.2	Wheel Sizes	69
		4.2.4.3	Ergonomics- Which configuration	
			will work best?	70
		4.2.4.4 T	Types of recumbent	
			steering	70
		4.2.4.5 E	Driving Mechanism	70
	4.2.5	. Sub Pro	blems	71
		4.2.5.1	Recumbent Position	71
	Unive Elect	4.2.5.2 risity of Moratu romic Theses & lib met ac lk	Driving Mechanism wa, Sri Lanka Dissertations	72-74
Chapter 5 - C	Constru	uction of	the First Embodiment	75
5	.1. In	troduction		75
5	.2. F	rame Cons	truction	76
5	.3 R	ear Wheel	and Shock Absorbers	76-77
5	5.4 S	teering ,Fro	ont Wheels Suspension and Brake	77
5	.5 F	ixing Powe	er Transmission System	78-79
5	.6 L	ist of Mate	erials, Parts used and	
-	C	onstruction	n and Manufacturing Cost	84-85
5	./. Pr an	oblems En	s	86

i

۱.

Chapter 6 -	Perfor Relate	rmance ed Issu	es of the First Embodiment and les	87
	6.1	Introc	luction	87
	6.2	Probl	ems Encountered in Fabrication	87-88
	6.3.	Perfo	rmance of the First Embodiment	88
		6.3.1	Speeds in level Roads and Gradients	88
		6.3.2	Recumbent Position and	
			Tilting Resistance	88-89
		6.3.3	Strength, Rigidity and Ergonomic	
			Considerations	89
		6.3.4	Power Transmission System	89
			6.3.4.1 Crank Length and Power	
			Input by the Rider	90
			6.3.4.2 Pedal Mounting	90
			6.3.4.3 Chain Drive	91
Chapter 7 -	Calc	ulation	f Moratuwa, Sri Lanka. ISses & Dissertations Lac.Ik	92 02
7.1 Introduction 7.2 Coloulations of Power Poquirements			92	
	1.2.		Colouistion of Dower Requirements	92-93
		1.2.1	Calculation of Power Required for	02
			7.2.1.1. Polling Posistoneo	93
			7.2.1.1. Koning Resistance	93
			7.2.1.2. All Resistance	93
			7.2.1.4. Power required or	74
			nower demand	04
			7.2.1.5 Power Available at	74
			Pood Wheels	04
			7216 Calculation of Dower Dequired	74
			for Propulsion in level made	
			when m=113K a	95
			whom m i i Jing	,,,

			7.2,1.7. Power Required at road	
			Wheels at different speeds	
			in Level Roads for	
			Acceleration	96-97
		7.2.2.	Calculation of Power Required for	
			Propulsion in gradients	97-98
	7.3.	Discus	sion	100
Chapter 8 -	Cor	clusio	n	101
	8.1	Gener	al Overview	101
	8.2	Achie	vements and Positive Aspects	101
		8.2.1	Configuration of the first Embodiment	
			(CLWB) and Ergonomically	
			Designed Seat	102
		8.2.2.	Stability while Riding	102
		8.2.3.	Pedalling Efficiency	102
	ö	8.2.4.	Easy Manufacturability and	103
	10	www.li	Maintainability of Driving Mechanism	
		8.2.5.	Brake and Steering System	103
		8.2.6.	Environmentally friendly, Fashionable	
			Appearance and Inherent	
			Values in Pedalling	103
		8.2.7	Affordable price	103
	8.3.	Proble	ems encountered and	
		Limita	ations of the Study	104-105
	8.4.	Recon	nmendations	106-108
	8.5	Furthe	r Studies	108
		8.5.1	Research on application of Optimum	108-109
			Human Power against pedal height	
			for Compact Long Wheel Base	
			Recumbent in Sri Lanka	

.

-

1

References (ography)	111-144	
Appendices	Α	Eras of Invention of Automobile -	Al
		First patented Benz automobile of 1885 -	A2
	В	Velomobile- Recent development -	B1
	С	Calculation of power required for Acceleration in Gradients when total Mass of the First embodiment is 100Kg	C1
	D	Power required for acceleration in gradients at different speeds when M=100Kg.	Di
	E	Calculation of power required for Acceleration in level roads when total Mass of the First embodiment is 100Kg	E1
	F	Power required for acceleration in gradients at different speeds when M=100Kg.	F1
	G	Body shape recommended for the pedal car University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	Gl

.

List of Illustrations

.

I I

	(Page 1 of 2)
	Page#
Figure 1: Rowing Bikes	4
Figure 2.1: Belt Drive with two pulleys	37
Figure 2.2: Cross section of the belt drives	37
Figure 2.3: Basic structure of a power transmission chain	44
Figure 2.4: Types of sprockets	47
Figure 4.1: Types of recumbent	65
Figure 4.2: Configuration of Compact wheel base recumbent	68
Figure 4.3: Comparison of Delta and Tadpole layouts	69
Figure 5.1: Model of the first Embodiment	75
Figure 5.2: Configuration of the Frame of First Embodiment	76
Figure 5.3: Front suspension and steering assembly to the frame	76
Figure 5.4: Part of rear wheel assembly cut from a bicycle	76
Figure 5.5: Assembly of front suspension to the frame	76
Figure 5.6: Rear wheel assembly to the frame	77
Figure 5.7: Front wheel assembly to the frame	77
Figure 5.8: Front wheel assembly to the frame with pedal mounting	77
Figure 5.9: Power Transmission Mechanism	77
Figure 5.10: Front wheel racers and trust bearings	78
Figure 5.11: Parts of hub brake	78
Figure 5.12: Pedal Mechanism	78
Figure 5.13: Parts of front wheel assembly	78
Figure 5.14: Turned out parts of brake and steering assembly	78

List of Illustrations

÷

•

ą

		(Page 2 of 2)
		Page#
Figure 5.15:	Seat and steering assembly	79
Figure 5.16:	Side Elevation of the first embodiment	80
Figure 5.17:	Plan View of the First Embodiment	80
Figure 5.18	Final Design of the first embodiment	81
Figure 5.19:	Three dimensional view of the First embodiment	82
Figure5.20:	Finished product	82
Figure5.21:	Configuration Diagram of Power Transmission System	83
Figure 7.1:	Power required at road wheels at different speeds in level roads	97
Figure 7.2 :	Power Required at different speeds in Gradients	100
Exhibit 2.1 :	Power available at the road wheels verses vehicle speed in top gear	· 29
Exhibit 2.2 :	Effects on traction against speed ratio	30
Exhibit 2.3 :	Traveling around a curve with single wheel in front	31
Exhibit 2.4 :	Traveling around a curve with single wheel in front	32
Exhibit 2.5:	Tadpole Configuration	32
Exhibit 2.6 :	Kinematics of chain drives (Chain drive with sprockets wheels)	48
Exhibit 2.7 :	Elastration of chain and sprocket motion	49
Exhibit 2.8 :	Chain running round a sprocket	50
Exhibit 4.1:	Delta Layout of a tricycle	63
Exhibit 4.2:	A Trice X2R back-to-back recumbent tricycle	63
Exhibit 4.3:	Proposed layout of Driving Mechanism	73

List of Tables

Page#

Table 1.1:	Factors that interrelated to Transmission Efficiency	18
Table 2.1:	Rolling Resistance for various surfaces	24
Table 2.2:	Types of belt drives and applications	35
Table 2.3:	Types of belt drives and applications	36
Table 2.4	Types of chains and applications	43
Table 2.5	Speed of rotation of different types of chains in relation to pitch	53
Table 2.6	Comparison of Chain, belts, and Gears	56
Table 4.1:	Recumbent types	64
Table 4.2:	Comparison of Tadpole and Delta models	72
Table 4.3:	Comparison of relationship between input power exerted by the rider	
	and Crank Length of bicycles	74
Table 5.1:	List of parts used for Fabrication	79
Table 5.2:	List of Materials, Parts used for Construction and Cost of Manufacturing	84-85
Table 7.1	Power Required for Propulsion in Level Roads When M=113Kg	95
Table 7.2	Power Required at road Wheels at Different Speeds in Level	
	Roads	96
Table 7.3	Power Required at different speeds in Gradients	98
Table7.4	Power Required at road Wheels at Different Speeds in	
	Gradients when mass reduced to 100Kg	99