:B/DON/83/07

THE ANALYSIS OF SUITABLE FRAME (STRUCTURE) FOR A PEDAL CAR

ą,

By

MOLLIGODA M.L.C.Y.

LEADER COMPLETE SELADINA MORATUWA

Supervised by

Dr. M.A.R.V.FERNANDO

This thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering in Manufacturing Systems Engineering

> Department of Mechanical Engineering University of Moratuwa Sri Lanka July 2006

621°06 621°7 (043)

87886

87886

i

DECLARATION

This Dissertation paper contains no material which has been accepted for the award of any other degree or diploma in any University or equivalent institution in Sri Lanka or abroad, and that to the best of my knowledge and belief, contains no material previously published or written by any other person, except where due reference is made in the text of this Dissertation.

I carried out the work described in this Dissertation under the supervision of Dr.M.A.R.V.Fernando.

UOM Verified Signature Date: 18 July 2006 Signature: Name of Student: M.L.C.Y.Molligoda University of Moratuwa, Sri Lanka. Registration No: 02/9631 Electronic Theses & Dissertations www.lib.mrt.ac.lk (Supervisor's comments to be written here) \cap 29" soft 2006 Signature UOM Verified Signature Date: Name of Supervisor: Dr. M.A.R.V.Fernando

PREFACE

The study on "Analysis of Various Body Shapes and Suitable Structure for a Pedal Car" carried out in partial fulfillment of the examination requirements of "Master of Engineering in Manufacturing Systems Engineering" postgraduate degree program.

The design of the pedal car could be divided in to three categories as follows.

- I. Analysis Of Various Body Shapes And Suitable Structure For A Peddle Car
- II. The Analysis of Power Transmission System
- III. The Ergonomic Analysis

The study was carried out to the best of my abilities and I hope the findings and recommendations, which are discussed in detail towards the latter part of the report, would be of some use to the future researches of this subject.

M.L.C.Y.Molligoda

ABSTRACT

This study is mainly focused on to determine a suitable structure for the pedal car by considering following areas.

- 1. To determine the number of wheels for the pedal car
- 2. Driven drive (whether front or rear)
- 3. Number of wheels for steering

"Tadpole car" is the final designed of the research because it is comparatively easy to fabricate and, there are so many advantages when fixing power transmission and steering mechanisms.

Here the steering mechanism couples with front wheels of the "tadpole" structure. It governs by standard bicycle handle. End of the handle, by using two steel rods, couples with pin joint to the front wheels.

Suspensions are necessary to maintain comfort-ability of the car. Therefore front wheels are assembled with two springs. And Rear wheel later part was assembled with pin joint and upper joint introduced with coil spring. This combination helps to maintain Constance distance between flywheel and the rear wheel. Lanka

Brake must be with the vehicle to safe operation of it. Here all three wheels are controlled at the same time by jamming one liver. It is important for the stability of the vehicle while stopping.

Steel Conduits are used for the fabrication of first embodiment. But after Cosmos analysis, it reveals that maximum stress occurred on the structure is 27 N/mm².

For Cosmos analysis, numbers of possible load combinations were applied on seat and paddles. Seat load considered as distributed load and pedal load took as point load

Further this research can turn to another area of "law weight structures". Herein maximum efficiency can be achieved by reducing the body weight of the car. And it will help to popularize the car. Because generally riders like easy-handling vehicles.

This goal would be achieved by replacing steel parts with Aluminum alloy or Timber structures wherever possible.

Acknowledgments

The research report bears the imprint of many people. Initially my heartfelt gratitude is to my loving mother and my wife Chamari Molligoda for theirs loving support and guidance without which I would not be where I am today.

My most sincere gratitude is offered to **Dr. M.A.R.V. Fernando**, senior lecture, **Department of Mechanical Engineering**, University of Moratuwa, for his mature guidance and concern without which this study would not have been possible.

Particular thanks must go to **Dr. G.K. Watugala**, senior lecture, Department of Mechanical Engineering, University of Moratuwa, for many valuable insights and continues guidance and support given during my academic period for this study.

My gratitude also goes to Mr. A. Edirisingha and Mr. Z. Shereefdeen for the support given to me as co- researchers.

At last, to countless other people who have been generous with their time, support, and encouragement please know I am grateful to you all.

TABLE OF CONTENTS

	Page No
Title	i
Declaration	ii
Preface	iii
Abstract	vi
Acknowledgments	v
Table of Contents	vi-x
CHAPTER 1	
1.0 Overview	1-4
1.1 Background of the Study	1-5
CHAPTER 2	
2.0 Literature Review	6
2.1 Energy Requirement for Pedaling	6
2.1.1 Energy - Power, Calories & Watts	7
2.1.2 Human Power for Pedaling	7-10
2.1.3 How Much Calories "Burn" While Cycling	10-11
2.1.4 Horizontal Distance Case Study 4	11-11
2.1.5 Vertical Distance (Hills) Case Study	11-12
2.1.6 Inertial Weight 4	12-13
2.1.7 Air Resistance, Wind, and Drafting	13-15
2.1.8 Shocks/Suspension	15-15
2.2 Chassis Frame "Tricycle" "Delta" Vs "Tad Pole"	16
2.2.1 Specific Properties of "Delta" Vs "Tad Pole"	16-18
2.3 Alternative Chassis Frames	18-30
2.4 The Weight vs. Wind Resistance	30-31
2.4.1 Derivation of Equations between the Weights	32-33
Vs. Wind Resistance	

2.4.1.1 Simplified Formula 33-35

2.4.1.2 Hill-climbing Performance Comparison	35
2.5 Aerodynamics on Road Vehicles	36-38
2.6 Recumbent Seating Posture	38
2.6.1 History of the Recumbent	38-40
2.6.1.1 Stability Vs recumbent	40
2.6.2 Recumbent Performance	41
2.6.3 Manufacturability of Recumbent	41-42
2.6.4 Different Styles of Recumbent LWB, SWB, CLWB	42-43
2.6.5 Specific Application of LWB, SWB, CLWB	43
2.6.6 Ergonomics – Recumbent	44
2.6.7 Ergonomics - recumbent steering	45
2.6.8 General features of Recumbent	45-46
2.7 Finite Element and COSMOS	46-47
2.7.1 Finite Element Mesh	47
2.7.2 Finite Element Mesh Type	48
2.7.3 Finite Element -Loads and Boundary Condition	48
and the Analysis's	
2.7.4 Example for Finite Element Calculation	49
CHAPTER 3	
3.0 Governing Principles of Construction of Frame and Body	51
3.1 Introduction	51
3.2 Chassis Frame "Tricycle" "Delta" Vs "Tad Pole"	51-54
3.2.1 Influence of the wheelbase on tilting	54-55
3.3 Different Styles of Recumbent LWB, SWB, CLWB	55-57
3.3.1 Specific Application of LWB, SWB, CLWB	57
3.3.2 Ergonomics – Recumbent	58-59
3.3.3 Ergonomics - recumbent steering and wheels	59
3.4 Air drag when speed up	59-60
3.5 Finite element formula and matrixes	60-62

CHAPTER 4

4.0 Methodology	63
4.1 Introduction	63
4.2 Frame configuration	63
4.3 Body Shapes	63
4.4 Critical Dimensions/ Recumbent	64
4.5 Fabrication of Model of the first Embodiment	64-65
4.6 Fabrication of first Embodiment	65
4.7 Selection of Various Load Combinations in Finite Element	65
4.2 Fabrication of the Pedal Car	68

CHAPTER 5

CHAPTER 6

BIBLIOGRAPHY

5.0 Test performance of the first prototype	71
5.1 Introduction	71-73
5.2 Speed Performance of the First Embodiment	74
5.3 Cosmos analysis	74-75

6.0 Conclusion	76
6.1 General Overview	76
6.2 Achievements and Positive Aspects	76-77
6.3 Problems En-Countered and Limitations of the Study.	77
6.4 Recommendation	78
6.4.1 Roof and Cover Vs Ventilation	78
6.4.2 Further Development	79
6.5 Research for Further Studies	79

80-82

APPENDIX A (Cosmos Results)85-85APPENDIX B (Material List and Manufacturing Cost)86-87APPENDIX C (Anthropometric Data)88-89APPENDIX D (3-D AutoCAD Drawing)99-99

List of Illustrations

	Page N	lo.
1 Power required at various speeds for given rider pa	arameters 10	
2 Delta Structure	16	
3 Tadpole Structure	16	
4 Two front wheels, front steering, and rear wheel dr	ive 20	
5 Two front wheels, front steering, and rear wheel dr	ive 20	
6 Two front wheels, front steering, and front wheel d	lrive 21	
7 Two front wheels, rear wheel steering, and rear wh	eel drive 21	
8 Two front wheels, rear wheel steering, and front w	heel drive 22	
9 Two rear wheels, front wheel steering, and rear wh	eel drive 23	
10 Two rear wheels, front wheel steering, and rear w	wheel drive 24	
11 Two rear wheels, front wheel steering, and front w	wheel drive 24	
12 Two rear wheels, front wheel steering, and front	wheel drive 25	
13 Two rear wheels, rear wheel steering, and front w	theel drive 25	
14 Two rear wheels, rear wheel steering, and rear wheel steering and rear wheels	neel drive 26	
15 Two rear wheels, rear wheel steering, and front w	wheel drive 27	
16 Two rear wheels, rear wheel steering, and front w	wheel drive 27	
17 Two front wheels, front wheel steering, and rear	wheel drive 28	
18 Two rear wheels, rear wheel steering, and front w	wheel drive 29	
19 Two front wheels, front wheel drive, and front an	d rear wheel 29	
20 Distance Vs Vehicle Length	37	
21 CLWB, LWB and SWB Structure	43	
22 Finite Element Node	49	
23 Delta Structure	52	
24 Tadpole Structure	53	
25 Tricycles with Two Wheels in the Front	55	
26 CLWB, LWB and SWB Structure	57	
27 Single Finite Element Nodes	61	

28 Model of the Pedal Car	65
29 Analysis of how first embodiment is matched with anthropometrics	68
30 Fabrication of basic structure	38
31 Fabrication of basic structure	69
32 Fabrication of basic structure	69
33 At painting stage	69
34 Performance Testing	70
35 First embodiment of the pedal car	70
37 Critical Structure of the Pedal Car	72
38 Calculation 3-9 distances of the drawing	73
39 Basic Structure	74

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Table

	Page No.
1 Combination of Tricycle	19
2 Definitions of Terms and Units	31
3 Performance Comparison	35
4 Types of Recumbent	42
5 Finite Element Mesh Type	48
6 Recumbent Type	56
7 Various Load in Finite Element	66
8 Critical Dimension of the Pedal Car	72
9 Finite Element Results	75

F

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk