ENERGY STORAGE SYSTEMS FOR OPTIMUM ENERGY UTILIZATION OF VILLAGE HYDRO SCHEMES IN SRI LANKA

By

J.M. Athula

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

University of Moratuwa, Sri Lanka.

This thesis was submitted to the Department of Mechanical Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Engineering in Energy Technology

89425

LB/DON/98/07

Department of Mechanical Engineering Faculty of Engineering University of Moratuwa Sri Lanka June 2007

621 07 620.9(043)

89425

DECLARATION

I hereby declare that this submission is my own work and that, to the best of my knowledge and behalf, it contains no material previously published or written by another person nor material which to substantial extent, has been accepted for the award of any other academic qualification of a university or other institute of higher learning except where acknowledgment is made in the text.

UOM Verified Signature

J.M. Athula

ABSTRACT

Compared to the other countries in the region, Sri Lanka has a deep penetration of approximately 75% of grid electricity. However, providing electricity every rural household is a difficult goal, without employing off-grid technologies. Accordingly, the present 2% of household are receiving off-grid electricity will become 6% by year 2010, according to the prevalent government policy. This requires new technological interventions in the micro hydro sector, as the quality of hydro resources available for exploitation is coming down rapidly.

This study aims at developing a concept of optimum energy storage to explore such meagre hydro resources. The proposed concept takes the advantage of highly developed technologies such as power electronics to offer an energy to energy matching supply. Demand solution as opposed to the orthodox micro hydro technology which is designed to match the evening peak lighting load of a rural village.

The most critical aspect of an energy storage system is the sizing of energy storage. Aspects such as storage capacity, charging time, level of discharge and life cycle of storage play critical roles in designing a system. The proposed system uses the daily energy requirement of a rural village as the basis of a system sizing and measured data from six village hydro schemes to determine the generation capacity. Through the field measurements carried out, availability of excess energy in orthodox village hydro system has been determined. A new rural energy solution based on improved energy utilization factor is proposed for both existing and new village hydro schemes. In the case of existing village hydro schemes, the recovered energy can be used to extend the energy services to several more rural households and in the case of new schemes, the solution can be used to bring down the cost of project by substantially reducing the power generation component sizes including auxiliary civil structures.

A financial analysis was carried out and the solution was found to be feasible. A pilot scale project was implemented in Dodampitiya, a rural village in the general area Opanayaka and was commissioned on 15th March 2007. The system is operating satisfactorily provides good opportunities to further develop the technology and requires to be closely mentioned well into the future.

ł

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CONTENTS

ł

		PAGE
DICLA	RATION	I
ASBTI	RACT	11
CONT	ENTS	١V
LIST (OF TABLES	VI
LIST (DF FIGURES	VII
ACKN	OWLEDGMENT	VIII
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	VILLAGE HYDRO SYSTEMS	8
2.1	Introduction	8
2.2	Basic Components of Village Hydro Systems	8
2.3	Planning of Village Hydro Systems	10
2.4	Village Hydro Survey	15
2.5	Results of the Survey is mer as it	16
2.6	Sample Selection on Random Sampling Method	16
	2.6.1 Outcome of the sample selection	17
CHAPTER 3	VILLAGE HYDRO POWER PLANT FOR	
	ENERGY STORAGE SYSTEMS	18
3.1	Introduction	18
3.2	Use of Energy Storage Systems in Other Countries	19
3.3	History of Energy Storage	22
3.4	Methods of Energy Storage	23
3.5	Components of Energy Storage Systems	25
3.6	Battery performance	30

CHAPTER 4 METHODOLOGY

4.1	Introducti	on	34
4.2	Methodol	ogy	34
	4.2.1	Electrifying New N Number of households	37
	4.2.2	Capacity Improvements	38
	4.2.3	Design New Plant Capacity	39
4.3	Model Vil	lage for Analysis	40

1

34

42

CHAPTER 5 CASE STUDY

5.1	Introd	uction	42
5.2	Analy	sis of a Model Village	43
	5.2.1	Basic Introduction of the Model Village	43
	5.2.2	Electrifying New Households	45
	5.2.3	Existing Demand Increase	51
	5.2.4	New Capacity Design Lanka	52

5.3	Analysis of E	Energy Storage Methodology in Sample Sites	54
	5.3.1	Introduction of the Selected Sites	54
5.4	Unused Ene	rgy Utilization	55
	5.4.1	Electrifying New Households	55
	5.4.2	Existing Demand Increase	56
5.5	Financial An	alysis	57
CHAPTER 6	5 DISC	USSION AND CONCLUSION	61
REFERENC	ES		65
APPENDIX		66	

v

LIST OF TABLES

١

CHAPTER 2

2.1	Load factor variation	13
2.2	Summery of the village hydro survey	15
2.3	Random sample selection Table	17
2.4	Selected Sample Sites	17

CHAPTER 5

5.1	Model Village Transmission Line Loss Determination	44
5.2	Model Village Transmission Line Voltage Drop Determination for	
	Additional Households Electrification	46
5.3	Application of Energy Storage Methodology in Model Village	
	Transmission Line Voltage Drop Determination for new	
	Household Electrification	47
5.4	Application of Energy Storage Methodology in Model	
	Village to Determine the New households on Energy	
	Consumption Variation	49
5.5	Application of Energy Storage Methodology in Model	
	Village for New household determination due to low	
	Battery bank efficiency	50
5.6	Application of Energy Storage Methodology in Model	
	Village Increasing the Present Energy Demand	52
5.7	New Plant Capacity Design on Energy Storage Method	53
5.8	Selected Samples of the Village Hydro System	54
5.9	Use of stored energy for additional household	55
5.10	Use of stored energy for increasing energy demand for existing	
	households	56
5.11	Battery Bank (2.2kW) and 3 kW Inverter Cost	57
5.12	Present Value factor Variation on energy sale	58

LIST OF FIGURES

CHAPTER 2

2.1	Parts of a village hydro system	9
2.2	Catchments Area of a typical village hydro system	11
2.3	Estimation of average rain fall	12

CHAPTER 3

3.1	Two Generator (1kW each) Running in Parallel in Vietnam	21
3.2	Components of Energy Storage Systems	26
3.3	Total Battery Bank Capacity 400 Amp-Hours @ 12 VDC	28
3.4	Total Battery Bank Capacity 200 Amp-Hours @ 24 VDC	29
3.5	Total Battery Bank Capacity 400 Amp-Hours@ 12 VDC	29
3.6	Battery Equivalent Impedance Circuits A. Sri Lanka	31

CHAPTER 4

4.1	Demand and Generation Curve	35
4.2	Schematic diagram of an energy storage system	36
4.3	Proposed Power Plant for a Model Village	40

CHAPTER 5

5.1	Model Village	43
5.2	Daily Load Curve of Pitabaddha 0.8 kW Plant	54

ACKNOWLEDGMENT

This research project was carried out under the supervision of Dr. Thusitha Sugathapala, Head, Department of Mechanical Engineering, University of Moratuwa. His leadership and guidance and valuable inputs in project milestones were of immense help in completing this at the level of a Master Degree project. I am very appreciative of his dedication and fullest co-corporation.

This was carried out as a pilot project by the Energy Conservation Fund, and I was appointed the Project Manager, responsible for the entire project development activities. I am very grateful to Mr. Harsha Wickramasinghe, General Manager, Energy Conservation Fund for having appointed me as the Project Manager and providing me with various information and details of his personal experience in this respect as well.

I would be very much grateful to Mr. M.M.R Pathmasiri, Director (Energy Management), Energy Conservation Fund and Mr. S. Fernando,(director Renewable Energy) Sri Lanka Energy Managers Association for guiding me in the right way for me to achieve my objectives from this project and for extending his fullest support in various ways get this finished in success. I wish to express my deepest gratitude to Mr Chamila Jayasekara for extending his fullest support in compilation of this report and giving his knowledge gathered from his past experience for me to finish this in professional manner.

Further, I wish to extend my gratefulness to Mr. Vimal Nadeera, Programme Manager, Mrs Shalika Lankeshani, Project Engineer, Mr B. W.A Bulathgama Programm Officer and other members of the staff of the Energy Conservation Fund for having provided with daily consumption reports of Village Hydro schemes and helping me with information of previous surveys conduction this respect.