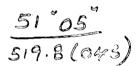
LB/DON/ 113/25



University of Moratuwa Sri Lanka

THE EFFICIENCY STUDY OF AN AUTOMATED SYSTEM – THE CASE OF A SRI LANKAN TYRE MANUFACTURING COMPANY

Master of Science in Operational Research

Department of Mathematics

University of Moratuwa

A.J.Y.A. SAMANTHIKA

August 2005

84249

i

Thesis

8424.9

THE EFFICIENCY STUDY OF AN AUTOMATED SYSTEM – THE CASE OF A SRI LANKAN TYRE MANUFACTURING COMAPANY

This thesis was submitted to the department of Mathematics of the University of Moratuwa is a partial fulfillment of the requirements for the degree of Master of Science

Department of Mathematics

University of Moratuwa

Sri Lanka

August 2005

Declaration

The work presented in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

UOM Verified Signature

UOM Verified Signature

A J Y A Samanthika (Candidate) Prof. M. Indralingum (Supervisor)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

This research is done to investigate the practical applications of Computer Simulation to analyze and solve frequently met problem areas in a tyre manufacturing factory. Automated solid tyre production line of Loadstar (Pvt.) Ltd. at Midigama factory was one such selected production line for this Research.

The identified problem areas were, **queue formation for unloading cured tyres in oven lines** and resulted **production output delays** due to same reason and also due to other various reasons such as **poor production planning** and **delay in producing raw tyres** etc.

After an initial system study with the help of the production staff, I analyzed the above mentioned problem and discussed how to avoid those. Introduction of the 'Promdel' (Production Simulation Package) to build a computer simulation model for this problem area was experienced in this research as a smart proactive problem solving tool. And also, I introduced a better production – scheduling method for this process, using Heuristic method to replace the then used poor production planning method.

With these changes, the result was; a provision of an easy proactive problem solving tool to try and find out the best allocation of ovens to get the least queue formation **at the computer screen** to select the best possible array with an easy monitoring facility, before it is performed in real world at the production floor. So, **Simulation was experienced as a smart replacement** for a tedious; or rather irreversible, rigid, outdated, hit-or -miss procedure which left out at the end with no choice other than bearing up the very expensive loss of rejects and low outputs. A comparatively convenient way to allocate the available resources for an optimum increase of the productivity was the result of this exercise.

'Promodel' is one of the available simulation packages in the market today and for the study we used a student version of it. Expensive commercial versions may consist with more facilities for modeling to customize more closure to the practical needs of the organization. A wide survey of latest verities is advisable before an investment to buy a commercial version.

Report consists with other suggestions to avoid the observed bottle necks at the press and the ways and means to improve and strengthen the supply chain of raw tyres also. Changes at the stage of factory wise or line wise allocation of the orders, line lay-out changes, and visual sign system to improve communication through out the supply chain of raw tyre production etc. are discussed in detail at the report.

Acknowledgment

I would like to express my sincere thanks to my Supervisor Prof. M. Indralingum, The Coordinator of the M.Sc in Operational Research of Department of Mathematics, University of Moratuwa. For sure, I may not have been able to complete the project successfully without the knowledge, advice, and guidance and kind support of him.

And also, I would like to take this opportunity to thank, The Head of the Department and all the staff members of the Department of Mathematics, University of Moratuwa.

I would also like to express my thanks to Mr.Tissa Jinasena , the Jt. Managing Director of the Loadstar(Pvt.)Ltd., Mr.Santha Herath, Senior Engineer, Mrs. Wimala Aravinthakumar, Industrial Engineer, Mr.Dishantha , Asst. Production Manager – Midigama factory, Mr.Sarath Kumara, Human Resource Manager and all other members who support me to success this project at Loadstar.

Specially, I would like to take this opportunity to express my thanks to Dr. Chamli Pushpakumara, Senior Lecture in Department of Industrial Management, University of Kelaniya. And also, I take this chance to express my warm thanks to Mr.Chathura De Silva , Engineering Trainee at the Laodstar (Pvt.)Ltd. Without their support, I may not able to compete this project successfully.

It is my obligation to thank all my friends for their support and I gratefully acknowledge the support and encouragement given by my family.

vi

Contents

•

4

Title	Page No i - ii
Declaration	iii
Abstract	iv - v
Acknowledgement	vi
Contents	vii - viii
List of Tables	ix
List of Figures	x
1. Introduction	1
1.1. Problem Identification	1
1.2. Objective	1
1.3. Methodology	1 - 2
1.4. Summary	2
2. Company Profile	3
2.1. Introduction of the Company	3
2.2. Production facilities	4 - 8
3. Description of the System	9
3.1. How to study the real system?	9
3.2. Description of existing process	9 - 11
3.3. Existing Automation System	11 - 12
3.4. Main items available in the automation system and their activities	12 - 13
3.5. Problems of the existing process	15 - 18
4. Operation Research (OR) Techniques which are using for this study	19

vii

4.1. Heuristic search technique	19
4.2. Simulation	19 - 24
4.1.1. Definition of Simulation	19 - 20
4.1.2. Advantages of Simulation	21 - 22
4.1.3. Limitations of Simulation	22 - 23
4.1.4. Methodology of Simulation	23
4.1.5. Types of Simulation	24
5. Problem & Method of approaches	25
5.1. XL Sheet approach	25
5.1.1. Modified XL Sheet approach	25 - 26
5.1.2. Analysis of the above three XL sheets	26 - 27
5.2. Simulation approach	27 - 29
6. Simulation	30
6.1. Introduction of Promodel lib mit ac lk	30 - 34
6.2. Explain the Building a model using Promodel simulation software	34 - 39
6.3. Analysis of problem using built simulation model	39 - 44
6.4. Analysis the Mould change & Breakdowns using Promodel simulation	44
7. Conclusion	45
7.1. Drawbacks of the existing system for allocating ovens	45 - 46
7.2. Drawbacks of the Oven line Layout	46 - 47
7.3. Drawbacks of the Supply chain	47
7.4. Drawbacks of the Existing Factory wide production allocation	48
References	49
Appendix I Appendix II	50 - 53 54 - 77

.

List of Tables

Tables	Page No.
Appendix I	
1. Line production capacity (a & b)	50 - 51
2. Line capacity for short cycle program (a & b)	52 - 53

Appendix II

1. (a) Detail Table of available moulds	54
1. (b) Modified detail table using Pivot table	55
2. Modified mould allocation for their input times (a & b)	56 - 57
3. According to the input raw tyres in 1st method (a & b)	58 - 59
4. According to the input raw tyres in 2 nd method (a & b)	60 -61
5. Mould allocation for curing time – 2.15	
((a) part I & II , (b) part I & II)	62 - 65
6. Mould allocation for curing time – 3. 00	
((a) part I & II , (b) part I & II)	66 - 68
7. Mould allocation for curing time – 3.15	
((a) part I & II , (b) part I & II)	69 - 71
8. Mould allocation for curing time – 3.45	The Contraction
((a) part I & II , (b) part I & II)	72 - 74 75 - 77
9. Mould allocation for curing time - 4.15 (a &b)	75 - 77
	at is be

List of Figures

Figures	Page No.
3.1. Production Process of the Resilient Tyre	9
3.2. Process of Producing Band Tyre	10
3.3. Existing Automation System	11
3.4. Main activities of the available items	14
3.5. Moulding & Curing the process	15
3.6. Flow chart of the Production Planning	18
4.1. Methodology for Simulation	23
6.1. Main Building steps in Promodel simulation software	31
6.2. Concept which have been used to develop the Simulation model	34
6.3. The runtime view of the simulated model	40

•