Cbapter 7

CONCLUSION AND FURTURE WORK

As the aim of this study is to find out optimum strategy for distributing the district-wise paddy production proportional to the district-wise population, it very important to analyse seasonal district-wise production before the model introduced. It was observed that paddy production is harvested in two seasons called 'Maha' and 'Yala' which are the periods from September/October to March/April and from April/May to August/September respectively. Relatively a higher paddy production is obtained in the Maha season than the "Yala' season. According to the concerned period of this study (1989-2000) the average production per year was metric tons 1513987 of the 'Maha' season of the concerned districts whilst that was metric tons 879780.9 of the 'Yala’ season.

From both 'Maha' and 'Yala'seasons, Colombo district is the main consumer district. As the main consumer district the average demands of the Colombo district are 144727 Mt. and 154696 Mt. in 'Maha' and 'Yala' seasons respectively. Polonnaruwa district is recorded as the highest supplier in 'Maha' season whilst Ampara district is the highest supplier in 'Yala' season. Badulla, Kurunagala, Matale, Monaragala, Mannar, Anuradhapura, Polonnaruwa, Trincomalee, Batticaloa, Ampara and Hambantota districts are the average suppliers whilest Colombo, Kalutara, Galle, Matara, Kegalle, Ratnapura, Kandy, NuwaraEliya, Puttalum, and Jaffna are the consumer districts in 'Maha' seasons. However, in 'Yala' season, there are only few districts play as suppliers named Polonnaruwa, Trincomalee, Batticaloa, Ampara, and Hambantota and others are consumers. (Jaffna district 'Yala' data are not available)

Colombo is the highest rice consumer district of both seasons in all the years. Kurunagala district is the main supplier for Colombo of all the years in 'Maha' season except for the years 1996 and 1999. However in 199981.68 thousand of metric tons of paddy are supplied by Kurunagala while 90.84 thousand of metric tons are supplied by Polonnaruwa district to meet the requirement of 172.52 thousand of metric tons of paddy. In 1996 major supplier to Colombo is Polonnaruwa. 120.08 thousand of metrictons of paddy are supplied to Colombo by Polonnaruwa whilst no paddy is supplied to Colombo or any other district by Kurunagala in this season of the year 1996. As shown in the table 5.1 (a) - (1) Kurunagala and Polonnaruwa are the only suppliers of paddy to the Colombo district in Maha season.

The Highest supplier in the 'Maha' season is the Polonnaruwa district. Averagely it can supply 257.8 thousands of metric tons of paddy. Frequently they are to be supplied from Polonnaruwa to Colombo, Kalutara, Kegalle, Kandy \& Jaffna districts and sometimes they are supplied from Polonnaruwa to Puttalum, Vauniya \& Mannar Moreover every year Polonnaruwa supplies a large amount of paddy to the ${ }^{1}$ fictitious consumer. It is mean that Polonnaruwa can stored a large amount of paddy of its harvest for the 'Yala' season, which is comparatively low harvest. Second highest supplier in this season is Ampara district. Ampara district frequently supplies its excess productions to kandy and Nuwaraeliya and sometime supply to Ratnapura districts.

In 'Yala' season there is a fewer number of suppliers not like in 'Maha'. Generally these supplies are Polonnaruwa, Trincomalee, Batticaloa Ampara, and Hambantota. Almost all suppliers are the from dry zone of Northeast, East and Southeast areas. However the major consumers are Colombo, Kalutara, Galle, Matara, Kegalle, Ratnapura, Kandy and Nuwaraeliya, same as in the 'Maha' season. Again Colombo is the highest consumer and there is not a fixed supplier but most of the time it meets the requirement from the fictitious supplier. However when Polonnaruwa or Kurunagala play as the
supplier in this season, Colombo district receives its needy by them. Sometime it receives paddy from Anuradhapura and Hambantota.

In this season(Yala), There is not much production like 'Maha' season and most of the consumers especially major consumers get their need from fictitious supplier Moreover they received amount from fictitous supplier are match with the amount store at fictitious consumer in 'Maha' season of the relevant year.. Therefore fictitious supplier may be the same district or fixed supplier of the 'Maha' season.

There is an interesting relationship among the supplier districts and the consumers districts in 'Maha' season. That is shown in table 5.1 all major consumer have regular suppliers. As shown in table 5.1 suppliers of Colombo which is the highest consumer district are Polonnaruwa and Kurunagala. Suppliers of Kalutara district are Hambantota and Polonaruwa. Moreover Hambantota district regularly supplies paddy to Galle, Matara and Ratnapura districts too. Monaragala districtsvalso regularly supply to the Ratnapura district. Suppliers of Kandy districtiare Matale and Polonnaruva. Kegalle, Nuwaraeliya, and Jaffna get their need from Polonnaruwa, Ampara and Troncomalee respectively.

In 'Yala' season, There is no clearly shown regular suppliers to the particular consumer as shown in 'Maha' season. However Ampara, Polonnaruwa and Hambantota which are the highest producers in this season have regular consumer districts. Ampara district supplies paddy to Kandy, Nuwaraeliya, Badulla and Monaragala districts while Hambantota supplies to Kalutara and Galle. Sometime Polonnaruwa and Kurunagala play as the suppliers of Colombo district in this season. However most of its needs come from fictitious supplier.

Always 'Maha' season has a fictitious consumer to stock its excess product and Yala season needed fictitious supplier to fulfill the demand its consumers. In 'Maha' season Ampara and Polonnaruwa regularly supply to fictitious
consumer. Further sometimes Batticaloa, Matale, Kurunagala and Anuradapura also supply to the fictitious consumer in this season. Therefore these districts can stock paddy harvest to use next 'Yala' season. However in 'Yala' season almost all consumers such as Colombo, Kalutara, Galle, Matara, Kegalle, Ratnapura receive their needed amounts from fictitious suppliers.

Consumers those who received their needs from fictitious suppliers in 'Yala' season could get their regular supplies in 'Maha' season as shown in transportation strategy. For instance Polonnaruwa supplies large amount of its surplus paddy in 'Maha' season to fictitious consumer in every year. Then the Colombo district gets its additional requirement from fictitious supplier in Yala' season in every year. So this requirement could be met from Polonnaruwa district which is the one of the supplier of Colombo. Moreorer additional requirement of Colombo and Kalutara districts that taken from fictitious supplier in 'Yala' is nearly equal or less than the amount which is fictitious consumer getting from Polonnaruwa district in 'Maha' season.

When compared 'Maha' there are fewer suppliers in 'Yala' season. However Polonnaruwa, Ampara, Hambantota, Trincomalee and Batticaloa are the suppliers in most of the time in both seasons. Badulla, Matale and Monaragala sometimes play as supplier in 'Maha' and sometimes play as consumer in 'Yala'. Most of the time Anuradapura and Mulative are neither supplier nor consumer.

Annual transportation strategy are find out for the years from 1997 to 2000 considering as balanced deterministic transportation problem. The transportation strategies are shown in the table 5.3 from (a) to (d). Suppliers are same in both annual transportation strategy and 'Maha' season transportation strategy of the above concerned period. But few of them are not play as suppliers in 'Yala' season.

Kurunagala districts supply only to Colombo district in both annual and 'Maha' season transportation strategies in concerned periods from 1997 to

2000 except 1999. The transported amounts are exactly same in these both transportation solutions. Moreover Kurunagala district does not play as supplier in 'Yala' season in these periods except 1999.

Both seasonal and annual transportation strategies, there are same regular suppliers for each and every consumer district. For instance, suppliers of Colombo districts are Kurunagala and Polonnaruwa and suppliers of Kalutara are Polonnaruwa and Hambantota. Hambantota and Ampara are supplied to Galle districts etc. In 'Yala' season Colombo, Kalutara, Galle, Matara, Kegalle, Ratnapura and Kandy districts are obtained certain amount of their needs from fictitious supplier. Moreover they have other one or two suppliers 'Yala' or 'Maha' season. In annual transportation strategy shown that same supplier or suppliers of seasonal strategy supply all requirements of the above districts. Therefore annual transportation strategy conclude that fictitious supplier of 'Yala' season is the other non fictitious supplier or suppliers of 'Yala' or 'Maha' seasons.
Simulation transportation model is ideveloped for the year 2000 using the previous cultivation seasons data. Simulated supply or demand paddy amount of each and every district are calculated from the simplified deterministic constraint equations(equation 3.6 \& 3.7). Three estimated values are calculated for various α_{i} 's and β_{i} 's. These three cases are considered as α_{i} and $1-\beta j$ equal to $0.85,0.95$ and 0.99 . The estimated value are shown on the tables B. 5 B. 6 of both season. Adjusted supply and demand values are shown in the table B.7.

According to the simulated results, "Maha' season excess product of Matale, Monaragala, Vauniya, Mannar and Anuradhapura districts are stored for use of 'Yala' season. This is same for all three cases considered in this operation study. However excess products of all those districts except Anuradhapura are

[^0]not enough to completely fulfil the requirement of 'Yala" season. The excess product of Anuradhapura district is sufficient to cover the demand of 'Yala' season and rest are transported.

According to the paddy supply and demand statistics, it has shown that averagely they are highly variation with year to year as well as season to season. Generally most of the supplier districts, their supply amounts vary highly than the consumer districts. Kurunagala, Anurahapura Polonnaruwa, Trincomalee, Baticaloa and Ampara are the main supplier districts and comparatively variation is higher than the other districts. It is show in figure 5.1 and figure 5.2.

As the result of paddy supply or consume amounts rariations, the simulated paddy supply or consume amounts of those districts are deviated from the actual values. In Maha season Kurunagala, Anuradhapura, Polonaruwa, Batticaloa and Ampara districts is the most deviate districts. All three simulation cases of als season, heither the Anuradhapura district is supplier nor consumer. But in actually it supply 143.38 thousands MT of paddy. However there is a significant deviation of 'Maha' season. In Yala' season actual case neither Kurunagalla district play as supplier nor consumer however simulation show that it is the supplier. It supply paddy to Colombo district same as the deterministic transportation problem of each and every year. Kurunagala district simulation results are norticibly deviated from the actual values of both seasons. Moreover supplier and consumers of simulation are the same as deterministic cases.

In 'Maha season Colombo, Kalutara, Galle, Matara, Kegalle, Ratnapura, Kandy, Nuwaraelliya Puttalam and Jaffna districts are always consumer districts in both simulated and actual deterministic transportation problems' solution of all considered years. However in simulation cases Badulla district is consumer district But it is consumer district only the years 1998 and 1999.

Further Badulla is play as supplier in year 1989 and it supplied 8.06 thousand MT of paddy to Nuwaraelliya districts.

In year 2000 'Maha' season actual transportation strategy show that Monaragala district play as supplier and supply 3.02 tousands MT to Ratnapura but borh 'Maha' and 'Yala' seasons simulation transportation strategies it is neither play as supplier nor consumer. Moreover the 'Maha' season actual transportation strategy in year 2000, Badulla district neither plays as supplier nor as consumer, However simulation show that It is a consumer district in both 'Maha' and 'Yala' seasons. It should received paddy from Baticaloa in 'Maha' and from Baticaloa and Ampara districts in 'Yala'.

A major consumer, Colombo district all of its requirements are obtained from Kurunagala and Polonnaruva in 'Maha' season. It is same simulated cases However major supplier of Colombo actual case 'Maha' season is the Polonnaruwa district whilst Kurunagala district play as major supplier in sumulated case. In the 'Yala' season paddy reqirement fullfil by this district in simulation cases somewhat different with actual one. Sumulated strategies shows that most of its needy are obtained from Kurunagala and Polonnaruwa. In actual case supplier of Colombo district in 'Yala' are Polonnaruwa and Anuradhapura. Simulated transportation strategy in 'Maha' season show that supplier in Kandy is Pollonnaruwa but actual situation shows they are Ampara and Batticaloa. In Yala' season, supplier of Kandy is Ampara in actual case and simulated cases show that Polonnaruwa also other than the Ampara.

In 'Maha' season, actual transportation strategy shows that Anuradhapura Polonaruwa and Ampara store their excees product by the amounts 59.641. 39 and 16.64 thousands MT in fictitious consumer and simulated result show that Ampara, Polonnaruwa Baticaloa, Trincomalee and Anuradhapura store their excees product in fictitious consumer. In 'Yala' season actual case fictitious supplier supply paddy to Kalutara, Galle and Matara by the amounts
21.46, 67.75 and 28.38 thousand MT respectively. Simulated cases of this season show that fictitious supplier supply only Colombo and Galle districts. Further larger amount is supplied to Colombo districts than the Galle. They are $135.52,107.15$ and 76.02 thousand MT in three simulated case of probabilities 0.850 .95 and 0.99 respectively. Simulated transportation strategies are shown in tables 5.4 and 5.5 .

Furture Improvement

Past data shows that some years production do not meet the annual rice requirement of Sri Lanka. Therefore we need to import rice. Some years have excess production than the annual reqirement of rice. So we can export rice in those years. This senario can be included to the model by adding as production of the shipped district if it is import rice. Similarly, if rice can be exported it should be included as consume amount of the shipped district.

This operation study assumed that paddy production is normally distributed. It should be better trfed for various probability distributions and varification made for many years. In this way one can deduce very good probability distribution for paddy production as well as cost effective transportation model.

APPENDIX A

Spread sheet routine to find out suppliers and consumers and their amount

```
Private Sub workout()
    Dim alpha As Double, alphai As Double
    Dim amountM As Double, amountY As Double
    Dim Cellone As Range, CellTwo As Range, CellThree As Range
    Dim populationi As Double, shname As String
    Dim w As Integer, SumOne As Double, SumTwo As Double
    Sumone = 0
    SumTwo = 0
    shname = "2000E"
    Eor i = 5 To 26
        Set Cellone = Worksheets(shname).Range("B" & i)
        w = 0
        If (Cellone <> "") Then
                w = w + 1
                Sumone = SumOne + Val(Cellone)
        End If
        Set CellTwo = Worksheets(shmame), Range("C" & i)
        If (CellTwo <>"")NThen Monhuwa, Sri Lamka
            w = w + 1 EmciromicTheses& Discentaon
                SumOne = Sumone + Val(CellTwo)
        End If
        Set CellThree = Worksheets(shname).Range("E" & i)
        SumTwo = SumTwo + w * Val(CellThree)
    Next i
    alpha = (SumOne) / SumTwo
    Worksheets(shname).Range("F" & 3) = Str(alpha)
    Worksheets(shname).Range("G" & 3) = Str(alpha)
    For i = 5 To 26
        Set Cellone = Worksheets(shname).Range("B" & i)
        Set CellTwo = Worksheets(shname).Range("E" & i)
        If (CellTwo <> "") Then
                If Cellone <> "" Then
                    alphai = Round((Val(Cellone) / Val(CellTwo)), 2)
                            Worksheets(shname).Range("F" & i) = Str(alphai)
                End If
                Set Cellone = Worksheets(shname).Range("C" & i)
                If (Cellone <> "") Then
                    alphai = Round(Val(Cellone) / Val(CellTwo), 2)
                Worksheets(shname).Range("G" & i) = Str(alphai)
```

```
            End If
    End If
    Set CellTwo = Worksheets(shname).Range("F" & i)
    If (CellTwo <> "") Then
        If (Val(CellTwo) >= alpha) Then
            Worksheets(shname).Range("H" & i) = "S"
        Else
            Worksheets(shname).Range("H" & i) = "D"
        End If
    End If
    Set CellTwo = Worksheets(shname).Range("G" & i)
    If (CellTwo <> "") Then
        If (Val(CellTwo) >= alpha) Then
            Worksheets(shname).Range("I" & i) = "S"
        Else
            Worksheets(shname).Range("I" & i) = "D"
        End If
    End If
    'Calculate the supply/Consume amounts
    Set Cellone = Worksheets(shname).Range("F" & i)
    alphai = Val(Cellone)
    Set CellThree = Worksheets(shname).Range("E" & i)
    If (Cellone <> "") Then
        populationi = Val(CellThree)
        amountM = (alphai - alpha) * populationi
        Worksheets(shname).Range("J" & i) = Str(Round((amountM /
1000), 2))
    End If
    Set CellTwo =Worksheets(shname).Range("G" & i)
    If (CellTwo <> "") Then
        alphai = Val(CellTwo)
        amountY = (alphai - alpha) * populationi
        Worksheets(shname).Range("K" & i) = Str(Round(amountY /
1000, 2))
    End If
    Next i
End Sub
```

Spreadsheet routine to adjust the supplier 'sand consumer's amount according to the seasonal changes

```
Private Sub AdjustAmount()
    Dim Cellone As Range, CellTow As Range
    Dim amountM As Double, amountY As Double
    Dim shname As String
    shname = "2000E"
    For i = 5 To 26
        Set Cellone = Worksheets(shname).Range("J" & i)
        Set CellTwo = Worksheets(shname).Range("K" & i)
        If (Cellone <> "" And CellTwo <> "") Then
            amountM = Val(Cellone)
            amountY = Val(CellTwo)
                If (amountM > And amountY < 0) Then
                    If (Abs(amountY) >= amountM) Then
                amountY = amountY + amountM
                amountM = 0
            Elself (Abs(amountY) < amountM) Then
                amountM = amountM + amountY
                amountY = 0
            End If
                End If
        Worksheets(shname). Range("J" & i) =
Str(Round((amountM), 2))
                Worksheets(shname). Range("K" & i) =
Str(Round(amountY,)2))
            End If
    Next i
End Sub
```

Routine to prepare TP problem for the 'Maha' season

```
Private Sub TPMaha()
    Dim shname As String
    Dim Cellone As Range, CellTwo As Range, CellThree As Range
    Dim countD As Integer, countS As Integer
    Dim amount As Double, amountD(20) As Double, amountS(20) As
Double
    Dim kD As Integer, kS As Integer
    Dim col As String, row As Integer
    shname = "2000E"
    countD = 0
    counts = 0
    'Arrange the Consumer and the Supplier districts in Table
```

```
    For i = 5 To 26
    Set Cellone = Worksheets(shname).Range("H" & i)
    Set CellThree = Worksheets(shname).Range("J" & i)
    amount = Val(CellThree)
    If ((Cellone = "D") And (Abs(amount) > 0)) Then
        Set CellTwo = Worksheets(shname).Range("A" & i)
        Worksheets(shname).Range(Chr (66 + countD) & 31) =
CellTwo
            countD = countD + 1
            amountD(countD) = amount
        ElseIf ((Cellone = "S") And (Abs(amount) > 0)) Then
            Set CellTwo = Worksheets(shname).Range("A" & i)
            Worksheets(shname).Range("A" & 32 + countS) = CellTwo
            countS = countS + 1
            amountS(countS) = amount
            End If
    Next i
    nD = countD
    nS = countS
    'Put the Consumer and the Supplier amounts
    kS = 0
    kD = 0
    For i = 1 To nD
        Worksheets(shname).Range(Chr(66 + kD)& 31 + countS + 1) =
amountD(i)
        kD = kD + 1
    Next i
    For i = 1 To nS
        Worksheets(shnamel).Range(Chr (65 + countD + 1) & 32 + kS) =
amountS(i)
    kS = kS + 1
    Next i
    'Put transport cost
    For i = 1 To countD
        Set cityD = Worksheets(shname).Range(Chr(65 + i) & 31)
        For k = 1 To 21
            If cityD = Worksheets("cost").Range(Chr(65 + k) & 4) Then
                                    col = Chr (65 + k)
                            Exit For
            End If
        Next k
        For j = 32 To (32 + counts - 1)
                Set cityS = Worksheets(shname).Range("A" & j)
                For k = 5 To 26
                    If cityS = Worksheets("cost").Range("A" & k) Then
                    row = k
                                    Exit For
                    End If
                Next k
                Set cost = Worksheets("cost").Range(col & row)
                Worksheets(shname).Range(Chr(65 + i) & j) = cost
```

 Next j
 Next i.
 End Sub

Cost matrix reduction routine for 'Maha' TP problem

```
Private Sub ReduceCostMatrix_Maha()
    Dim Cellone As Range
    Dim min As Integer
    Dim shname As String
    shname = "2000E"
    'row reduction
    For i = l To nS
        min = 600
        For j = 1 To nD
                Set Cellone = Worksheets(shname).Range(Chr(65 + j) & 3i
    i)
        If Val(Cellone) <= min Then
            min = Val(Cellone)
        End If
    Next j
    For j = 1 To nD
        Set Cellone = Worksheets(shname).Range(Chr(65 + j) & 31
    i)
        Worksheets(shname). Range(Chr(65i+ j) & 31 + i) =
Str(Val(Cellone)( -)min)ronic Thess& Dissertatons
    Next j wwwlommacli
    Next i
    'colum reduction
    For j = l To nD
        min = 600
            For i = 1 To ns
                Set Cellone = Worksheets(shname).Range(Chr(65 + j) &
31 + i)
            If Val(Cellone) < min Then
                min = Val(Cellone)
            End If
    Next i
    For i = 1 To ns
        Set Cellone = Worksheets(shname).Range{Chr(65 + j) & 31
+ i)
        Worksheets(shname).Range(Chr(65 + j) & 31 + i) =
Str(Val(Cellone) - min)
    Next i
    Next j
End Sub
```

Routine to prepare TP problem for the 'Yala' season

```
Private Sub TPYala()
    Dim shname As String
    Dim Cellone As Range, CellTwo As Range, CellThree As Range
    Dim countD As Integer, countS As Integer
    Dim amount As Double, amountD(20) As Double, amountS(20) As
Double
    Dim kD As Integer, kS As Integer
    Dim col A.s String, row As Integer
    shname = "2000E"
    countD = 0
    counts = 0
    'Arrange the Consumer and the Supplier districts in Table
    For i = 5 To 26
            Set Cellone = Worksheets(shname).Range("I" & i)
            Set CellThree = Worksheets(shname).Range("K" & i)
            amount = Val(CellThree)
            If ((Cellone = "D") And (Abs(amount) > 0)) Then
                    Set CellTwo = Worksheets(shname).Range("A" & i)
                    Worksheets(shname).Range(Chr(66 + countD) & 51) =
CellTwo
                    countD = countD + 1
                    amountD(countD) = amount
            ElseIf ((Cellone = "S") And (Abs(amount) > 0)) Then
                Set CellTwo = Worksheets(shname).Range("A" & i)
                Worksheets(shname).Range("A""& 52 + countS) = CellTwo
                    countS = countS tin Inces& Dissetutions
                amountS (countS)w #f amount
            End If
    Next i
    nD = countD
    nS = countS
    'Put the Consumer and the Supplier amounts
    kS = 0
    kD = 0
    For i = 1 To nD
        Worksheets(shname).Range(Chr(66 + kD) & 52 + countS) =
amountD(i)
            kD = kD + 1
    Next i
    For i = 1 To nS
        Worksheets(shname).Range(Chr(66 + countD) & 52 + kS) =
amountS(i)
        kS = kS + 1
    Next i
    'Put transport cost
    For i = 1 To countD
        Set cityD = Worksheets(shname).Range(Chr(65 + i) & 51)
```

```
For k = 1 To 21
    If cityD = Worksheets("cost").Range(Chr(65 + k) & 4)
                    col = Chr (65 + k)
                    Exit For
        End If
    Next k
    For j = 52 To (52 + countS - 1)
        Set cityS = Worksheets(shname).Range("A" & j)
        For k = 5 TO 26
                If cityS = Worksheets("cost").Range("A" & k) Then
                    row = k
                    Exit For
                End If
            Next k
            Set cost = Worksheets("cost").Range(col & row)
            Worksheets(shname).Range(Chr(65 + i) & j) = cost
        Next j
    Next i
```

Then
End Sub

Cost matrix reduction routine for 'Yala' TP problem

```
Private Sub ReduceCostMatrix Yala()
    Dim Cellone As Range verity of Monluma, Sri Lamka
    Dim min As Integer floctronic Thices & Dissertutons
    Dim shname As String libmrtacll
    shname = "2000E"
    'row reduction
    Eor i = l To ns
        min = 600
        For j = 1 To nD
            Set Cellone = Worksheets(shname).Range(Chr(65 + j) & 51
+ i)
        If Val(Cellone) <= min Then
                min = Val(Cellone)
        End If
    Next j
    For j = 1 TonD
        Set Cellone = Worksheets(shname).Range(Chr(65 + j) & 51
+ i)
        Worksheets(shname).Range(Chr(65 + j) & 51 + i) =
Str(Val(Cellone) - min)
        Next j
    Next i
    'colum reduction
    For j = 1 To nD
        min}=60
```

```
    For i = 1 To nS
    Set Cellone = Worksheets(shname).Range(Chr(65 + j) &
51 + i)
            If Val(Cellone) < min Then
                min = Val(Cellone)
            End If
        Next i
        For i = 1 To nS
            Set Cellone = Worksheets(shname).Range(Chr(65 + j) & 5l
+ i)
    Worksheets(shname).Range(Chr (65 + j) & 51 + i) =
Str(Val(Cellone) - min)
        Next i
    Next j
End Sub
```

Routine to calculate simulated supply or demand anoumts

```
Sub EsupplyConsum()
    Dim Cellone As Range, CellTwo As Range
    Dim shname As String
    Dim mean As Double, stddev As Double
    Dim i As Integer
    shname = "Yala"
    For i = 5 To 26 UnineritvofMortuma SriLanka
        Set Cellone (= Worksheets(shmame).Range("N" & i)
        Set CellTwo = Worksheets(shname).Range("O" & i)
        If Cellone <> "" Then
            mean = Val(Cellone)
            stddev = Val(CellTwo)
        End If
        If mean < 0 Then
            Worksheets(shname).Range("Q" & i) = (-1.44) * stddev +
mean
    Else
                Worksheets(shname).Range("Q" & i) = (0.42) * stddev +
mean
            End If
    Next i
End Sub
```

Mathlab program to solve unbalanced transportation problem (TP)

```
clear;
prompt1 = {'First Row' };
def1={'31', 'hsv'};
dglTitle = ' Read the data sheet ';
lineNO = 1;
ANS =inputdlg(prompt1, dglTitle, lineNo, defl);
NR1 = str2double(ANS);
prompt2 = {'Eirst Column '};
def2 = { '1',''hsv'};
ANS = inputdlg(prompt2, dglTitle, lineNo, def2);
NC1=str2double(ANS);
prompt3 = {'Data Range '};
def3 = {'B31..038', 'hsv'};
ANS = inputdlg(prompt3, dglTitle, lineNo, def3);
RNG = char (ANS);
PATHNAME = 'c:\mydocu~1\rama\msc-or\maha\inputs'
[FILENAME, PATHNAME] = uigetfile('*.wkl', 'Open');
A=wk1read(strcat(PATHNAME, FILENAME),NR1, NC1, RNG);
[NR, NC] = size(A);
CC = A(1:NR-1, 1:NC-1);
AA = A(1:NR-1, NC);
AA = AA';
BB = A(NR,1:NC-1);
BB}=-BB
%
%
%
SumAA = 0;
SumBB = 0;
[M,N] = size(CC);
for II = 1 :M
    SumAA = SumAA+AA(II);
end
for JJ = 1 :N
    SumBB = SumBB+BB (JJ);
end
if (SumAA > SumBB)
    amount = SumAA-SumBB;
    BB = [BB, amount];
    for II = 1: M
        CN(II) = 0;
    end
    CC = [CC,CN']; %add column
end
if (SumAA < SumBB)
    amount = SumBB-SumAA;
    AA = [AA, amount];
    for JJ=1:N
```

```
            RN(JJ) = 0;
    end
    CC = [CC
                RN]; %add row
end
CC
DA=AA;
DB=BB;
C0 = 0;
[M, N] = size(CC);
%IR & IC indicate that (when =1) rows & cols have been deleted
%TR() & TC() count no of basic varables in rows and cols
for II = 1:M
    IR(II) = 0;
    TR(II) = 0;
end
for JJ=1:N
    IC(JJ) = 0;
    TC(JJ) = 0;
end
C=0; CT=0; CR=0;
while(C0<M+N-1)
    RI=0; CJ=0; Y=1E10;
    for II=1:M
        if(IR(II) = =1) woctromic theses&
            for JJ = 1: N
                        if (IC(JJ) ~= 1)
                                if (CC(II, JJ)<Y)
                                    Y=CC(II, JJ);
                                    RI=II;
                    CJ=JJ;
                    end
                end
            end
        end
    end
    if (DA(RI)>DB(CJ))
        X(RI, CJ) = DB(CJ);
        IX(RI, CJ) = 1;
        DA(RI) = DA(RI)-DB(CJ);
        DB(CJ)=0;
        IC(CJ)=1;
        C0=C0+1;
        CT=CT+1;
    else
        X(RI, CJ) = DA(RI);
```

```
        IX(RI, CJ) = 1;
        DB(CJ) = DB(CJ)-DA(RI);
        DA(RI) = 0;
        IR(RI) = 1;
        C0=CO+1;
        CR=CR+1;
    end
    TR(RI) = TR(RI)+1;
    TC(CJ) = TC(CJ) +1;
end %end of while loop
CR=CR+1;
X
while(1) %line 1000
    for II = 1:M
        IU(II)=0;
        U(II)=0;
    end
    for JJ=1:N
        IV (JJ)=0;
        V(JJ)=0;
    end
    T=0; L=0;
    for II=1:M
        if(TR(II)>=T)
            T=TR(II);
            L=II;
        end
    end
    U(L)=0;
    IU(L)=1;
    CO=1;
    CR=1;
    CT=0;
    for JJ=1:N
        if (IX(L, JJ) ~= 0)
            V(JJ) = CC(L, JJ);
            IV (JJ) = 1;
            CT=CT+1;
            CO=CO+1;
        end
    end
    CO
    while (C0 < M+N) %line 1200
        for II =1:M
        for JJ =1:N
            if(IX(II, JJ) ~= 0) %?
                    %if((IU(II) ~= 0) & (IV(JJ) ~= 0)) %?
                            %if ((IU(II) ~= 1) & (IV(JJ) ~= 1))
                                if ((IU(II) == 0) & (IV(JJ) == 1)) %?
                                U(II) = CC(II, JJ)-V(JJ);
                IU(II) = 1;
```

```
            CR=CR+1
                    C0=C0+1
                        elseif((IU(II) == I) & (IV(JJ) == 0))
                            V(JJ)=CC(II, JJ)-U(II);
                                    IV (JJ) = 1;
                                    CT = CT+1;
                                    C0 = C0+1;
                                    end
                    %end
                        %end
                end
            end
        end
    end % line 1330
    disp('Shadow Cost');
    U, V
for II = 1:M
        for JJ =1: N
            if (IX(II, JJ) == 0)
                D(II, JJ)=CC(II,JJ)-U(II)-V(JJ);
            else
                D(II, JJ) = CC(II, JJ)-U(II)-V(JJ);
                if (D(II, JJ) ~= 0)
                    disp('Fault');
                end
            end
        end %line 1470
end
%Find the smalllestmD(II, NJJ)minicell (K, L) say
T=0; K=0; L=0;
for II = I:M
    for JJ = 1:N
        if(IX(II, JJ) ~=1)
            if(D(II, JJ) <T)
                T = D(II, JJ); K=II; L=JJ;
            end
        end
    end
end %line 1570
if (T == 0)
    disp('Final solution');
    X % Print the basic feasible solution
    break ;% exit the whole progtam
end
% Find the next BFS
for II = 1: M % line 2000
    IU(II) = 0;
end
for JJ = 1: N
    IV(JJ) = 0;
```

```
end
for II = 1: M+N
        RTT(II) = 0;
        CTT(II) = 0;
end
for II=1:M
    for JJ=1:N
            if (II==K & JJ ==L)
                D(II, JJ) = 1;
                MM(II, JJ) = 1;
            else
                D(II, JJ) = 0;
                MM(II, JJ) = 0;
            end
        end
end
T = 1;
IP = 0;
RTT(T) = K;
CTT(T) = L;
% D(K, L) =1;
%MM(K, L) = 1;
IU(K) = 1;
T, K, L
while(1) %line 2100
    while(1) %inner loop
        FR = 0; FC = 0; RI = RTT(T); CJ = 0; %line 2100
        for JJ=1:N
            if (FC(
                if(IX(RI, JJ) == & 
                        if (MM(RI, JJ) == 0)
                                if ((TC(JJ) ~= 1 ) | (TC(JJ) == 1 & JJ == L))
                                FC = 1; CJ = JJ; IV(JJ) = 1; JJ = N;
                                elseif(TC(JJ) == 1)
                                    IP = 1;
                                    end
                                end
                        end
                end
            end
        end %line 2180
        CJ %debug
        if (CJ ~= 0)
            T=T+1;
            RTT(T) = RI;
            CTT(T) = CJ;
            D(RI, CJ) = -1;
            MM(RI, CJ) = 1;
            if((CTT(T) == L) & (T > 2)) break; end %line 2400
        else
```

```
            if (IP>0)
            IP = 0;
            end
            D(RTT(T), CTT(T))=0;
            T=T-1;
    end
    FR = 0; FC = 0; RI = 0;
    CJ = CTT(T); %line 2500
    for II=1:M
        if (FR ~= 1)
                if (IX(II, CJ) == 1)
                    if (IU(II) == 0)
                    if (MM(II, CJ) == 0)
                                    if(TR(II) ~= l )
                                    ER = 1; RI = II; IU(II)=1;
                                    II = M;
                                    else
                                    IP = 1;
                                    end
                    end
                end
                end
            end
        end % line 2580
        if (RI ~= 0 ) break; end
        if (IP>0) IP = 0; end
        D(RTT(T), CTT (T))=0;
        T=T-1;
        end % end of while(1) inner loopmline 2620
        if((CTT(T) == L)&(T > 2)) break; end %line 2400
        T=T+1;
        IP=0;
        RTT(T)=RI;
        CTT(T)=CJ;
        D(RI, CJ) = 1;
        MM(RI, CJ) = 1;
        T, RI, CJ
    end %line 2730 end of the outter loop
    W = 1El0; LL = 0; KK = 0; 号line 3000
    for II = 2:2:T
        if(X(RTT(II), CTT(II))<W)
            W=X(RTT(II),CTT(II));
            KK=RTT(II);
            LL=CTT(II);
        end
    end %line 3040
    for II=1:T
    X(RTT(II), CTT(II))=X(RTT(II), CTT(II))+W*D(RTT(II),
CTT(II));
    end
    IX(K, L) = I;
```

```
    IX(KK, LL) = 0;
    TR(K)=TR(K)+1;
    TR(KK)=TR(KK)-1;
    TC(L)=TC(L)+1;
    TC (LL)=TC(LL)-1;
    W, KK, LL %line 3220
end send of while loop line 3250, goto line 1000
disp('Final Solution')
X
******************************************8
%
[NEWWKFILE, PATHNAME]=uiputfile('*.wkl', 'Save As');
wklwrite(strcat(PATHNAME,NEWWKFILE), X);
figure
bar3(X);
colormap(gray);
```


APPENDIX B

Selected initial data sheets with original data and calculated amount of supply or consume by the each district. Year 1989 and year 2000 are presented below (empty cells are data not available)

Year	1989				Alpha		Supplier/Comsumer		Amount ('000 MT)	
	Maha	Yala	Total	Population	Maha	Yala	Maha	Yala	Maha	Yala
Sri Lanka	1261319	604000	1865319	I 715127	63.97061	63.97061				
			4 wwy	libmitaclk						
Colombo	15627	7000	22627	1915	8.16	3.66	D	D	-106.88	-115.49
Kalutara	38348	36000	74348	925	41.46	38.92	D	D	-20.82	-23.17
Galle	45024	28000	73024	922	48.83	30.37	D	D	-13.96	-30.98
Matara	46297	34000	80297	757	61.16	44.91	D	D	-2.13	-14.43
Kegalle	36073	25000	61073	739	48.81	33.83	D	D	-11.2	-22.27
Ratnapura	41122	25000	66122	913	45.04	27.38	D	D	-17.28	-33.41
Kandy	50657	38000	88657	1227	41.29	30.97	D	D	-27.83	-40.49
Nuwaraeliya	12727	7000	19727	531	23.97	13.18	D	D	-21.24	-26.97
Badulla	61360	36000	97360	698	87.91	51.58	S	D	8.06	0
Puttalam	28959	6000	34959	580	49.93	10.34	D	D	-8.14	-31.11
Kurunagala	193178	67000	260178	1391	138.88	48.17	S	D	82.22	0
Matale	38202	11000	49202	410	93.18	26.83	S	D	0	-3.25
Monaragala	28646	6000	34646	340	84.25	17.65	S	D	0	-8.86
Jaffna	10453		10453	856	12.21		D		-44.31	

Vauniya	6635		6635	112	59.24		D		-0.53
Mannar	6468		6468	127	50.93		D		-1.66
Anuradhapura	14646	3000	17646	694	21.1	4.32	D	D	-29.75
Polonnaruwa	209493	12000	221493	310	675.78	38.71	S	D	-41.4
Tincomalee	20259	10000	30259	307	65.99	32.57	S	D	181.83
Batticaloa	61652	41000	102652	401	153.75	102.24	S	S	0
Ampara	165512	108000	273512	470	352.15	229.79	S	S	-9.02
Hambantota	129981	104000	233981	502	258.93	207.17	S	S	135.35

Table B. 1 Data sheet of the year 1989

Year	2000)	ronic Theses ${ }^{\text {P }}$	Alpha		Supplier/Comsumer		Amount ('000 MT)	
	Maha	Yala	Total	Population	Maha	Yala	Maha	Yala	Maha	Yala
Sri Lanka	1735926	1194104	2930030	17463	86.205243	86.20524				
Colombo	12435	2499	14934	2273	5.47	1.1	D	D	-183.51	-193.44
Kalutara	39946	31434	71380	1031	38.74	30.49	D	D	-48.94	-57.44
Galle	40016	23365	63381	1057	37.86	22.11	D	D	-51.1	-67.75
Matara	46998	47046	94044	875	53.71	53.77	D	D	-28.43	-28.38
Kegalle	34064	14386	48450	800	42.58	17.98	D	D	-34.9	-54.58
Ratnapura	41899	31985	73884	1053	39.79	30.38	D	D	-48.88	-58.78
Kandy	42114	23026	65140	1426	29.53	16.15	D	D	-80.82	-99.9
Nuwaraeliya	11443	3764	15207	607	18.85	6.2	D	D	-40.88	-48.56
Badulla	72371	39849	112220	826	87.62	48.24	S	D	0	-30.19
Puttalam	26322	18137	44459	685	38.43	26.48	D	D	-32.73	-40.91
Kurunagala	237364	55735	293099	1568	151.38	35.55	S	D	22.76	0
Matale	48036	19951	67987	474	101.34	42.09	S	D	0	-13.74

Monaragala	50589	21220	71809	399	126.79	53.18	S	D	3.01	0
Jaffna	21253		21253	937	22.68		D		-59.52	
Vauniya	19136	2790	21926	133	143.88	20.98	S	D	0	-1
Mannar	17203	2037	19240	150	114.69	13.58	S	D	0	-6.62
Anuradhapura	192053	214149	406202	814	235.94	263.08	S	S	121.88	143.98
Polonnaruwa	317000	192012	509012	360	880.56	533.37	S	S	285.97	160.98
Tincomalee	61261	45948	107209	363	168.76	126.58	S	S	29.97	14.66
Batticaloa	89320	48188	137508	499	179	96.57	S	S	46.3	5.17
Ampara	192857	243106	435963	565	341.34	430.28	S	S	144.15	194.4
Hambantota	Table B.2 Data sheet of the year 2000							113477	235723	568

Table B. 2 Data sheet of the year 2000
(0) Uninersity of Moratuwa, Sri Lanki

Electronic Theses \& Dissertations
www lib mrtac lk

| Maha | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 00 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Colombo | -106.88 | 139.29 | 134.46 | -129.24 | 143.77 | -152.28 | 151.79 | -120.08 | 128.93 | 161.97 | -172.52 | 183.51 |
| Kalutara | -20.82 | -32.92 | -27.1 | -24.78 | -38.96 | -35.1 | -36.18 | -26.11 | -26.1 | -44.86 | -41.69 | -48.94 |
| Galle | -13.96 | -34.76 | -32.4 | -30.22 | -37.92 | -37.76 | -32.95 | -29.65 | -28.33 | -40.31 | -46.79 | -51.1 |
| Matara | -2.13 | -13.19 | -20.5 | -5.44 | -20.2 | -20.55 | -22.98 | -12.92 | -8.55 | -24.3 | -25.74 | -28.43 |
| Kegalle | -11.2 | -23.39 | -21.28 | -21.91 | -21.25 | -26.49 | -23.25 | -12.82 | -14.84 | -50.62 | -34.34 | -34.9 |
| Ratnapura | -17.28 | -22.03 | -35.1 | -35.48 | -41.42 | -41.9 | -41.49. | -27.16 | -25.18 | -44.33 | -47.62 | -48.88 |
| Kandy | -27.83 | -51.47 | -44.7 | -50.45 | -65.52 | -67.36 | -62.44 | -36.3 | -44.81 | -68.66 | -78.68 | -80.82 |
| Nuwaraeliya | -21.24 | -30.08 | -27.17 | -28.62 | -29.11 | -29.78 | -30.63 | -19.82 | -24.98 | -31.51 | -36.88 | -40.88 |
| Badulla | 8.06 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -9.58 | -0.14 | 0 |
| Puttalam | -8.14 | -31.88 | -16.67 | -14.13 | -22.14 | -17.25 | -17.02 | -8.45 | -22.67 | -17.71 | -20.26 | -32.73 |
| Kurunagala | 82.22 | 93.76 | 139.94 | 116.58 | 100.87 | 102.27 | 104.29 | 0 | 78.98 | 86.25 | 81.68 | 22.77 |
| Matale | 0 | 2.69 | 5.85 | -0. | 0 | 0 | 0 | 8.27 | 0 | 1.3 | 0 | 0 |

Monaragala	0	0	8.93	0	0	0	0	2.77	-0.98	0	2.22	3.02
Jaffna	-44.31	-47.15		-49.35	-56.21	-57.71	-50.78	-55.59	-45.43	-72.92	-63.53	-59.52
Vauniya	-0.53	-2.27		0	0	0.89	13.58	-6.02	-0.76	-0.34	-0.71	0
Mannar	-1.66	12.05		1.18	-1.36	-1.49	0	-0.12	0	0	0	0
Anuradhapura	-29.75	10.38	11.48	29.82	22.64	124.99	116.61	0	-2.92	145.1	110.57	121.88
Polonnaruwa	181.83	249.48	263.64	245.54	273.54	193.76	286.89	271.75	280	271.27	251.64	285.97
Trincomalee	0	0		10.28	30.46	35.23	14.78	8.46	16.52	22.21	35.45	29.97
Batticaloa	36	60.75		37.81	47.61	25.15	-23.72	7.93	-3.89	44.2	44.99	46.3
Ampara	135.44	138.47	96.8	143.42	128.26	99.18	9.87	154.35	178.6	161.06	184.71	144.15
Hambantota	97.87	76.54	73.52	93.04	95.89	87.08	83.01	79.27	69.02	82.52	79.99	73.28

Table B. 3 Adjusted supply and demand(minus values) amount of each year 'Maha' season
(D) University of Morntuwa, Sri Lanka.

Yala	89	90	91	92	9	94	95	96	97	98	99	00
Colombo	115.49	-147.28	142.46	146.25	-156.75	-161.43	-163.76	-132.08	141.68	175.69	180.03	-193.44
Kalutara	-23.17	-39.92	-42.1	-42.78	-50.67	-48.41	-50.36	-38.57	-39.29	-58.57	-56.54	-57.44
Galle	-30.98	-39.75	-46.4	-52.23	-55.24	-52.13	-60.18	-41.83	-51.24	-80.02	-59.27	-67.75
Matara	-14.43	-18.18	-32.49	-28.43	-30.56	-27.16	-30.95	-19.36	-24.28	-39.44	-26.78	-28.38
Kegalle	-22.27	-33.39	-31.28	-26.91	-29.02	-33.82	-35.83	-30	-25.83	-17.81	-40.82	-54.58
Ratnapura	-33.41	-41.02	-44.1	-47.48	-41.82	-46.99	-44.53	-33.75	-37.77	-55.86	-56.89	-58.78
Kandy	-40.49	-59.47	-61.7	-59.45	-78.2	-86.62	-72.45	-59.67	-61.99	-89.87	-86.39	-99.9
Nuwaraeliya	-26.97	-38.08	-34.16	-34.63	-35.88	-37.51	-37.34	-29.01	-32.21	-42.54	-45.2	-48.56
Badulla	0	-15.96	-9.67	-19.46	-14.76	-20.92	-25.87	-13.84	-18.76	-25.81	-37.04	-30.19
Puttalam	-31.11	-37.88	-35.67	-37.13	-41.19	-33.72	-35.78	-37.31	-35.49	-38.53	-37.78	-40.91
Kurunagala	0	0	8.94	27.58	0	0	26.62	-50.14	0	0	14.17	0
Matale	-3.25	0	0	-4.9	-3.46	-16.12	-7.68	0	-6.63	0	-11.9	-13.74

Monaragala	-8.85	-8.92	0	-16.93	-0.27	-5.99	-6.47	0	-15.04	-3.29	0	0
Jaffna												
Vauniya			-11.95		-5.85	0	0		-8.27	-7.56	-7.22	-1
Mannar		0			-10.24	-8.5	-6.35	-7.26	-0.76	-7.86	-4.98	-6.62
Anuradhapura	-41.4	0	0	0	0	3.11	0	-10.18	-41.01	0	0	143.98
Polonnaruwa	0	117.48	126.64	74.54	142.41	167.56	163.55	92.28	127.48	156.36	175.22	160.98
Trincomalee	-9.02	-5.92	0		3.35	7.83	14.84	0	0	1.07	13.21	14.66
Batticaloa	15.35	8.68	0	0	3.99	0	23.3	0	-15.66	0	5.07	5.17
Ampara	77.94	86.36	89.81	107.42	139.02	155.72	148.34	181.87	125.84	179.64	165.87	194.4
Hambantota	71.89	57.55	39.51	2.04	43.73	64.2	65.13	51.05	57.82	58.96	54.96	64.51

Table B.4 Adjusted supply and demand(minus values) amount of each year 'Yala' season

Maha	Mean	std dev	Variance	$\begin{aligned} & \text { Alpha }= \\ & 0.85 \end{aligned}$	$\begin{aligned} & \text { alpha }= \\ & 0.95 \end{aligned}$	$\begin{aligned} & \text { Alpha } \\ & =0.99 \end{aligned}$
				$\begin{aligned} & \text { 1-beta }= \\ & 0.85 \end{aligned}$	$\begin{aligned} & \text { 1-beta }= \\ & 0.95 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1-beta }= \\ & 0.99 \end{aligned}$
Colombo	-140.11	18.99	360.74	-159.86	-171.444	-184.167
Kalutara	-32.24	7.78	60.57	-40.3312	-45.077	-50.2896
Galle	-33.19	8.35	69.68	-41.874	-46.9675	-52.562
Matara	-16.05	8.05	64.78	-24.422	-29.3325	-34.726
Kegalle	-23.76	11.02	121.41	-35.2208	-41.943	-49.3264
Ratnapura	-34.45	10.07	101.43	-44.9228	-51.0655	-57.8124
Kandy	-54.38	15.47	239.29	-70.4688	-79.9055	-90.2704
Nuwaraeliya	-28.17	4.79	22.93	-33.1516	-36.0735	-39.2828
Badulla	-0.15	3.96	15.65	-4.2684	-6.684	-9.3372

Puttalam	-17.85	6.66	44.32	-24.7764	-28.839	-33.3012
Kurunagala	89.71	34.72	1205.19	125.8188	146.998	170.2604
Matale	1.65	2.86	8.17	4.6244	6.369	8.2852
Monaragala	1.18	2.79	7.81	4.0816	5.7835	7.6528
Jaffna	-54.3	8.92	79.48	-63.5768	-69.018	-74.9944
Vauniya	0.38	5.02	25.18	5.6008	8.663	12.0264
Mannar	0.86	4.03	16.23	5.0512	7.5095	10.2096
Anuradhapura	48.99	62.15	3863.19	113.626	151.5375	193.178
Polonnaruwa	251.76	34.24	1172.55	287.3696	308.256	331.1968
Trincomalee	17.34	13.25	175.68	31.12	39.2025	48.08
Batticaloa	27.68	26.4	696.7	55.136	71.24	88.928
Ampara	130.01	48.66	2368.06	180.6164	210.299	242.9012
Hambantota	83.43	9.24	85.29	93.0396	98.676	104.8668

Table B. 5 Simulated supply and demand (minus) amounts for Maha season of the year 2000 . The α and $1-\beta$ probabilities are $0.85,0.95$ and 0.99 .

Yala	Mean	Std dev	Variance	$\begin{aligned} & \text { Alpha = } \\ & 0.85 \end{aligned}$	$\begin{aligned} & \text { alpha }= \\ & 0.95 \end{aligned}$	$\begin{aligned} & \text { Alpha } \\ & =0.99 \end{aligned}$
				$\begin{aligned} & \text { beta }= \\ & 0.15 \end{aligned}$	$\begin{aligned} & \text { beta }= \\ & 0.05 \end{aligned}$	$\begin{aligned} & \text { beta }= \\ & 0.01 \end{aligned}$
Colombo	-151.17	18.90	357.18	-170.825	-182.354	-195.016
Kalutara	-44.58	9.89	97.75	-54.8625	-60.8935	-67.5178
Galle	-51.75	12.81	164.20	-65.0768	-72.8935	-81.479
Matara	-26.55	7.17	51.46	-34.0108	-38.3868	-43.1932
Kegalle	-29.73	6.44	41.42	-36.4233	-40.3492	-44.6612
Ratnapura	-43.97	7.73	59.78	-52.011	-56.7274	-61.9076
Kandy	-68.75	15.26	232.86	-84.6203	-93.9288	-104.153
Nuwaraeliya	-35.78	5.34	28.53	-41.335	-44.5932	-48.172
Badulla	-18.37	9.59	92.05	-28.3482	-34.2007	-40.629
Puttalam	-36.51	2.64	6.97	-39.2561	-40.8667	-42.6359
Kurunagala	2.47	Ell 20.49	cse 419.69	023.7758	36.27247	49.99832
Matale	-4.9	Www 5.35	cll 28.64	-10.4661	-13.7309	-17.3168
Monaragala	-5.98	6.05	36.62	-12.2737	-15.9653	-20.0199
Jaffna						
Vauniya	-5.84	4.40	19.39	-10.419	-13.1047	-16.0546
Mannar	-5.74	3.65	13.34	-9.53829	-11.7661	-14.2131
Anuradhapura	-8.13	16.68	278.12	-25.474	-35.647	-46.8205
Polonnaruwa	122.14	51.31	2632.32	175.4984	206.7951	241.1702
Trincomalee	2.54	7.60	57.83	10.44901	15.08796	20.18319
Batticaloa	3.7	9.95	98.99	14.04736	20.11649	26.78258
Ampara	132.53	37.69	1420.72	171.7301	194.7225	219.9765
Hambantota	51.53	18.86	355.76	71.14608	82.65166	95.28894

Table B. 6 Simulated supply and demand (minus) amounts for Yala season of the
year 2000 . The α and $1-\beta$ probabilities are $0.85,0.95$ and 0.99 .

	$\begin{aligned} & \text { alph } a=0.85,1- \\ & \text { beta }=0.85 \end{aligned}$		$\begin{aligned} & \text { alpha }=0.95,1 \text { - } \\ & \text { beta }=0.95 \end{aligned}$		$\begin{aligned} & \text { alpha }=0.99,1- \\ & \text { beta }=0.99 \end{aligned}$	
District	Maha	Yala	Maha	Yala	Maha	Yala
Colombo	-159.86	-170.83	-171.44	-182.35	-184.17	-195.02
Kalutara	-40.33	-54.86	-45.08	-60.89	-50.29	-67.52
Galle	-41.87	-65.08	-46.97	-72.89	-52.56	-81.48
Matara	-24.42	-34.01	-29.33	-38.39	-34.73	-43.19
Kegalle	-35.22	-36.42	-41.94	-40.35	-49.33	-44.66
Ratnapura	-44.92	-52.01	-51.07	-56.73	-57.81	-61.91
Kandy	-70.47	-84.62	-79.91	-93.93	-90.27	-104.15
Nuwaraeliya	-33.15	-41.34	-36.07	-44.59	-39.28	-48.17
Badulla	-4.27	-28.35	- -6.68	-34.2	-9.34	-40.63
Puttalam	-24.78	- - -39.26	11. -28.84	-40.87	-33.3	-42.64
Kurunagaia	125.82	23.78	147	36.27	170.26	50
Matale	0	-5.84	0	-7.36	0	-9.03
Monaragala	0	-8.19	0	-10.18	0	-12.37
Jaffna	-63.5768		-69.018		-74.9944	
Vauniya	0	-4.82	0	-4.44	0	-4.03
Mannar	0	-4.49	0	-4.26	0	-4
Anuradhapura	88.15	0	115.89	0	146.36	0
Polonnaruwa	287.37	175.5	308.26	206.8	331.2	241.17
Trincomalee	31.12	10.45	39.2	15.09	48.08	20.18
Batticaloa	55.14	14.05	71.24	20.12	88.93	26.78
Ampara	180.62	171.73	210.3	194.72	242.9	219.98
Hambantota	93.04	71.15	98.68	82.65	104.87	95.29

Table B. 7 Adjusted supply and demand(minus values) amount of the year 2000 simulated values for the α and $1-\beta$ probabilities are $0.85,0.95$ and 0.99 .

BIBLIOGRAPHY

Hamdy A Taha Operations Research an Introduction. Pretice Hall of India, 1999.

Harvey M Wagner Principles of Operations Researib with Applications to Managerial Decisions. Pretice Hall of India, New Delhi, 1999.
Girija Sharan and T Madhavan (1999) An Operation study of patel V egitable and Fruit Market of Abmedabad. Opsearch 36, 2,151-164

G T F De Silva, R A Ahlip (Dec. 1979). Rice Transportation Strategy for Sri Lanka. SLAAS Annual Session.
Mohan,C. and Nguyen, H. T. (1997) A Fuzzifying Approach to Stochastic Programming. Opsearch 34, 2, 7396
Pearce R. P., and Mohanty U. C. ,(1984) Onset of the Asian Summer Monsoon 1979-82. Journal of Atmospheric Science 41, 16201639

University of Moratuwa, Sri Lanka.
Electronic Theses \& Dissertations
WWW lit mit at tit

[^0]: *Supply and demand values are adjusted if a particular district play as the supplicr in 'Maha' season and the consumer in 'Yala' scason. So as much as 'Yala' season requirement fulfil by the 'Maha' season product by storing rather than transportation.

