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ABSTRACT

A variety of stoves are used for household cooking in Sri Lanka. Fuel-wood,
Liquefied Petroleum Gas (LPG), Electricity, Kerosene oil, Biogas etc. are the
common cooking fuels used. Combustion process in a cooking stove is a complicated
phenomenon. [t is very difficult to predict the distributions of temperature, flow
properties and combustion product concentrations of the cooking stove. It is
emphasized that a detailed understanding of the combustion process taking place in a
cooking stove is essential for the development of better stove designs. Computational
modelling is an efficient tool that could be used successfully in describing the
combustion in cooking stoves. Modelling of combustion in a cooking stove that uses a
gaseous fuel is comparatively easier than that uses a solid fuel, mainly due to the
complexity of the combustion process that the solid fuel undergoes. On this basis
present work is involved in the modelling of combustion taking place in a biogas fired

luid Dynamics (CFD) code

extensively used for fire modelling. The combustion flow field of the stove has been

cooking stove using

modelled using the k-¢ turbulence model for turbulence and one-step reaction fast
chemistry represents combustion chemistry. Simulations are conducted for the biogas
cooking flame alone and also for the single-burner biogas fired stove with a square-
shaped cooking pan. Temperature, density and combustion product concentration
predictions have been made using simulations. The predicted temperatures are
compared with the experimental measurements. The results generated could be used
as a basis for further research in combustion in cooking stoves in order to develop

better designs.
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NOMENCLATURE

D¢ Fin diameter (m)

g Acceleration due to gravity (ms™)
h Heat transfer coefficient (WmK™")
k Turbulent kinetic energy (m’s?)

k¢ Thermal conductivity of fin material (Wm™'K™")
L Length of fin (m)

mg  Time averaged mass fraction of fuel

mex  Time averaged mass fraction of oxidant

p Thermodynamic pressure (Nm?)

qr Rate of conduction heat loss from a long fin (W)
Qw Wall heat flux (Wm™)

Te Fin-end temperature (K)

T¢ Flame temperature (K)

To Base temperature of fin (K)

Ty Temperature at near wall point (K)

Ts Sensor temperature (K)

Tw Wall temperature (K)

T« Ambient air temperature (K)

t Time (s)

U Velocity (ms™)

Yq Mass fraction of species o

Greek Symbols

£ Dissipation of the turbulent kinetic energy (m’s™)
Eth emissivity of the thermocouple junction surface
0 Polar angle (rad.)

K Von Karman constant

1) Mixture molecular viscosity (Nsm?)

Ll Turbulent eddy viscosity (Nsm?)

Y Kinematic viscosity (m’s™)

p Density of the mixture (kgm'3 )

c Stefan-Boltzmann constant (Wm™2K™)

o} Turbulent Prandtl/Schmidt number

T Characteristic turbulent time scale (s)

Ty Spectral transmissivity

Tw Wall shear stress (Nm™?)

() Azimuthal angle (rad.)
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