ACKNOWLEDGEMENT

I am extremely grateful and deeply indebted to my principal supervisor Prof. M.T.R.Jayasinghe for his enthusiastic and expertise guidance, constructive suggestions, encouragements throughout the course of study and valuable assistance in many ways. His immense patience and availability for comments whenever approached even amidst his heavy pressure of work throughout the entire period of study deserve grateful appreciation. I would like to express my sincere gratitude to all other lecturers who taught me during the period of study.

Also the guidance and the help given by the Principal Structural Engineer- Mott MacDonals, UAE, Abdul Wahab shall be highly appreciated. I must thank to all of my friends who helped me in different ways and means to bring this study success.

Finally I wish to express my appreciation to my family for their support encouragement

and patience.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

25

Contents

Abstract

Acknowledgement

Table of contents

List of figures

List of tables

1.0	Introduction		1
	1.1 Background		1
	1.2 Objectives of the study		3
	1.3 Methodology		3
	1.4 Main findings of the study		4
2.0	Literature review		6
	2.1 Historical development of suspension bridges		6
	2.2 Theoretical background of suspension bridges		10
	2.3 Types of suspension bridges		13
	2.4 Measures against excessive vibration of slender foot bridges		14
	2.5 BS 5400 recommendations on human induced vibrations		16
	2.6 Aerodynamic effect and criteria for the design		- 16
	2.7 Seismic analysis criteria on suspension bridge		19
3.0	Review on existing passenger foot bridges in Sri Lanka		21
4.0	Load on the foot bridge model considered		27
	4.1 Dead load		27
	4.2 Imposed load	.25	27
	4.3 Wind loads		27
	4.4 Dynamic loads		29

5.0 Development of suspension bridge model for passenger and light vehicular traffic 30

	5.1	General	30
	5.2	The cable	31
	5.3	The stiffening girder	32
	5.4	The towers	34
	5.5	The hangers	35
	5.6	The anchor block	36
6.0	Com	puter modeling of suspension bridge models considered	38
	6.1	Model 1 - Concept	38
	6.2	Model 2 - Concept	40
	6.3	Model 3 - Concept	42
	6.4	Model 4 - Concept	44
	6.5	Model 5 - Concept	45

Contents

Abstract

Acknowledgement

Table of contents

List of figures

List of tables

1.0	Intro	duction .		1
	1.1	Background		1
	1.2	Objectives of the study		3
	1.3	Methodology		3
	1.4	Main findings of the study		4
2.0	Liter	ature review		6
	2.1	Historical development of suspension bridges		6
	2.2	Theoretical background of suspension bridges		10
	2.3	Types of suspension bridges		13
	2.4	Measures against excessive vibration of slender foot bridges		14
	2.5	BS 5400 recommendations on human induced vibrations		16
	2.6	Aerodynamic effect and criteria for the design		16
	2.7	Seismic analysis criteria on suspension bridge		19
3.0	Revi	ew on existing passenger foot bridges in Sri Lanka		21
4.0	Load	l on the foot bridge model considered		27
	4.1	Dead load		27
	4.2	Imposed load	.20	27
	4.3	Wind loads		27
	4.4	Dynamic loads		29

5.0 Development of suspension bridge model for passenger and light vehicular traffic 30

	5.1	General	30
	5.2	The cable	31
	5.3	The stiffening girder	32
	5.4	The towers	34
	5.5	The hangers	35
	5.6	The anchor block	36
6.0	Computer modeling of suspension bridge models considered		38
	6.1	Model 1 - Concept	38
	6.2	Model 2 - Concept	40
	6.3	Model 3 - Concept	42
	6.4	Model 4 - Concept	44
	6.5	Model 5 - Concept	45

7.0	Results and summary		47
	7.1	Analysis results	50
	7.2	Conclusion	52
	7.3	Suggestion for future works	52
8.0	Re	ferences	54

Appendix

1.	Output data	for bridge	span 45m	- model-1
----	-------------	------------	----------	-----------

- 2. Output data for bridge span 45m model-2
- 3. Output data for bridge span 45m model-3
- 4. Output data for bridge span 45m model-4
- 5. Output data for bridge span 45m model-5
- 6. Output data for bridge span 60m model-1
- 7. Output data for bridge span 60m model-2
- 8. Output data for bridge span 60m model-3 wa, Sri Lanka.
- 9. Output data for bridge span 60m model-4
- 10. Output data for bridge span 60m model-5
- 11. Output data for bridge span 75m model-1
- 12. Output data for bridge span 75m model-2
- 13. Output data for bridge span 75m model-3
- 14. Output data for bridge span 75m model-4
- 15. Output data for bridge span 75m model-5 and the computer output results

×.

LIST OF FIGURES

Fig. 2.1.1 : Niagara Falls Bridge	09
Fig. 2.1.1 : Old St. Clair Bridge	10
Fig. 2.2.1 : Elevation of typical suspension bridge	12
Fig. 2.2.2 : 3D view of typical suspension bridge	12
Fig 2.2.3 : Types of suspension bridges.	13
Fig-3.1 Suspension footbridge at Hiniduma across Gin ganga	23
Fig-3.2 Suspension footbridge at Kosgulana across Kukule ganga	24
Fig-3.3 Suspension footbridge at Peradeniya across Mahaweli ganga	25
Fig-3.4 Suspension footbridge at Nagoda across Gin ganga	26
Fig 6.1.1 : Model-1 of proposed foot bridge structure	39
Fig 6.1.2 : Model-1 (PROKON) of proposed foot bridge structure	40
Fig 6.2.1 : Model-2 of proposed foot bridge structure	41
Fig 6.2.2 : Model-2 (PROKON) of proposed foot bridge structure	42
Fig 6.3.1 : Model-3 of proposed foot bridge structure	43
Fig 6.3.2 : Model-3 (PROKON) of proposed foot bridge structure	43
Fig 6.4.1 : Model-4 of proposed foot bridge structure	44
Fig 6.4.2 : Model-4 (PROKON) of proposed foot bridge structure	45
Fig 6.5.1 : Model-5 of proposed foot bridge structure	46
Fig 6.5.2 : Model-5 of proposed foot bridge structure	46

LIST OF TABLES

Table 5.1.1 Details of suspension bridges already constructed in Sri Lanka	30
Table 7.1 : Dimensions of the deck depending on the span	47
Table 7.2 : Member sizes of the deck depending on the span and the depth	48
Table 7.3 : Deflections of the deck depending on the span and the model	49

÷

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.7.