CHAOS THEORY BASED CRYPTOGRAPHY IN DIGITAL IMAGE DISTRIBUTION

Visibility Controlled Image Encryption Scheme (ViCIEn)

University of Moratuwa, Sri Lanka, EMSc IN COMPUTER SCIENCE tations www.lib.mrt.ac.lk

M.H.P. RANMUTHUGALA

UNIVERSITY OF MORATUWA

SRI LANKA

DECEMBER 2008

CHAOS THEORY BASED CRYPTOGRAPHY IN DIGITAL

IMAGE DISTRIBUTION

Visibility Controlled Image Encryption Scheme (ViCIEn)

M.H.P. RANMUTHUGALA

This Dissertation was Submitted to the Department of Computer Science and Engineering of the University of Moratuwa in Partial Fulfillment of the requirements for the Degree of M.Sc in Computer Science specializing in Information Systems Security

> Department of Computer Science and Engineering University of Moratuwa December 2008

Declaration

"The work included in this report was done by me, and only by me, and the work has not been submitted for any other academic qualification at any institution"

Name: M.H.P. Ranmuthugala (078269G)

Date: 2008.12.31

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

"I certify that the declaration above by the candidate is true to the best of my knowledge and that this dissertation is acceptable for evaluation for the Degree of M.Sc in Computer Science specializing in Information Systems Security"

Project Supervisor: Dr. Chandana Gamage

Date: 2008.12.31

Chaos Theory Based Cryptography in Digital Image Distribution

Visibility Controlled Image Encryption scheme (ViCIEn)

The amount of visual information available in digital format has grown exponentially in recent years due to the wide availability of equipments such as digital cameras and camera phones, changes in the way people socially interact by setting up community web pages, wide spread use of the Internet in all types of personal and business activities, and developments in high speed transmission of digital images with high reliability.

However, the wide accessibility of the Internet and its connected hosts and availability of technology to capture network traffic or penetrate hosts have made digital images vulnerable to unauthorized access while in storage and during transmission over a network. Hence users of the Internet and application that use or process digital images need to address security issues to protect commercial value of images and also ensure user privacy and other issues. Apart from the above security related issues, electronic image trading has become a mainstream trade in cyber space and pay-after-trial services of digital multimedia are in wide practice. For example, thumbnail versions of images are used to provide previews to customers prior to the transaction in order to have a choice of selection. Current practices include showing only a small tile (thumbnail) of the original image, showing a lower-resolution version of the full image, showing the original image overlaid with a visible watermark image, or partial encryption of the images allowing only for a low visibility level than the original image.

Among these schemes, except for the method using partial encryption, other methods can be successfully attacked to obtain the original image by watermark removal, image enhancement, etc. In this context, image encryption becomes important in achieving the security requirements listed earlier to protect commercial interests and

ensure privacy. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The objective of the research presented in this thesis is to propose an image encryption technique which is capable of encrypting an image effectively and securely with a predefined visibility level. Unlike a conventional symmetric key encryption scheme, apart from the input plaintext image and the secret encryption key, there will be a third input defining the visibility level of the output ciphertext image. This research studies the use of chaos theory in implementing such an encryption scheme and proposes a concrete image encryption scheme using 2D chaotic maps called Ikeda map and the Kaplan-Yorke map achieving the stipulated objective.

ACKNOWLEDGMENTS

The author wish to sincerely thank the following people for providing assistance, support, encouragement and inspiration during the writing of this dissertation. First I would like to thank my parents, the project supervisor Dr. Chandana Gamage and the project coordinator Dr. Sanath Jayasena. They provided guidance, encouragement, opportunities and knowledge at a level that few advisors are capable of. Second I would like to thank all the academic staff members at the Department of Computer Science and Engineering, University of Moratuwa. They have provided invaluable academic advises and utmost facilitate in successful completion of the project.

University of Moratuwa, Sri Lanka.

The process of review gave me the opportunity to correct a number of small errors or omissions that has been observed in the first draft of the thesis. Many of these were first noticed and brought to my attention by alert readers. In particular, I would like to thank Janani for pointing out and correcting such mistakes.

No student or group of students can survive in a university without the help of their fellow students to discuss ideas, share opinions, and to make time spent in the lab and all round enjoyable experience. I would be grateful for all M.Sc 07 colleagues for the corporation given to the successful completion of my project involvements.

Finally I would like to thank all people who provided a great help during my time at the Department of Computer Science & Engineering, University of Moratuwa.

TABLE OF CONTENTS

Declar	eclaration i			
Abstra	tract			
Ackno	Acknowledgements			
Table	of Cont	ents	v	
List of	f Figure	S	vii	
List of	f Tables		ix	
Chapt	ter 1 – 1	Introduction	1	
Chapt	ter 2 - (Chaos based Image Encryption	5	
2.1	Chaos	based Cryptography	5	
2.2	Specif	based Cryptography ic properties of chaotic systems and Cryptography – Illustration of basic principles	6	
2.3	Chaos	and Cryptography – Illustration of basic principles	9	
	2.3.1	Logistic map and analysis	9	
	2.3.2	Lorenz System	11	
	2.3.3	Baptista method and Logistic map	14	
2.4	Analo	g and Digital chaos systems	16	
	2.4.1	Chaos Synchronization	17	
	2.4.2	Analog Chaos based Secure Communications	17	
	2.4.3	Digital Chaos-based cryptosystems	20	
2.5	Image	Encryption, Why?	21	
	2.5.1	Some Special Features of Image Encryption Schemes	21	
2.6	Image	Encryption design Architectures	22	
2.7	Chaos	based Crypto System Design rules	27	
	2.7.1	Crypto Analysis	34	
	2.7.2	Chaos specific attacks	38	
2.8	Chara	cteristics of an Image Cryptosystem	38	
2.9	Image Encryption Algorithms 3			
2.10	Research Issues of an Image Cryptosystems 4			

	2.10.1	Experiences and Lessons	44
2.11	Other	Mechanisms used for Image Protection	46
Chap	Chapter 3 - The Design of ViCIEn Scheme		
3.1	Propos	sed Image Encryption Architecture	49
	3.1.1	The Encryption Process	49
	3.1.2	The Decryption Process	68
Chap	ter 4 - S	ecurity Analysis of ViCIEn	71
4.1	Statist	ical Analysis	71
	4.1.1	Histogram Analysis.	72
	4.1.2	Correlation Coefficient Analysis	72
4.2	Sensit	ivity/ Differential Analysis	76
	4.2.1	Number of Pixels Change Rate.	77
	4.2.2	Unified Average Changing Intensity	77
4.3	Inform	ation Entropy Analysis	79
4.4	12 / 18	pace Analysis TSITY of Moraturya. Sri Lanka	81
		Exhaustive Key Search	81
	4.4.2	Key Sensitivity Analysis	81
Chap	ter 5 - (Conclusion	85
References			91

LIST OF FIGURES

1.0	Image Encryption Illustrated	3
2.1	Bifurcation Diagram	10
2.2	Sensitivity to initial conditions	10
2.3	Invariant distribution of the iterates	11
2.4	Time series x(t) for chaotic Lorenz parameters	12
2.5	Phase space plot of the Lorenz Attractor	13
2.6	Frequency Distribution of iterates of Logistic map	15
2.7	Basic structure of a typical chaotic masking system	18
2.8	Basic structure of a typical chaotic switching system	19
2.9	Basic structure of a typical chaotic modulation system	19
2.10	Typical architecture of a chaos-based image cryptosystem	23
2.11	Secret Key Encryption Theses & Dissertations	29
2.12	Public key ciphers	30
2.13	Bifurcation diagram of the Rossler attractor	32
2.14	Cryptographic elements in a symmetric cryptosystem	36
3.1	The Image Encryption Process	49
3.2	Point Trajectories of Ikeda map for various <i>u</i> values	53
3.3	The bifurcation diagram of Ikeda map	54
3.4	The Ikeda attracter	55
3.5	The Kaplan Yorke map Chaotic Attractor	56
3.6	2D Image Convolution	59
3.7	Kaplan Yorke Visibility Level control parameter variation	63
3.8	The Decryption Process	68
4.1	Distribution of two vertically adj. pixels in the plain image	74
4.2	Distribution of two vertically adj. pixels in the encrypted image	75

4.3	Distribution of two horizontally adjacent pixels in the plain image	75
4.4	Distribution of two horizontally adj. pixels in the encrypted image	75
4.5	Distribution of two diagonally adj. pixels in the plain image	76
4.6	Distribution of two diagonally adj. pixels in the encrypted image	76
4.7	Information Entropy Vs. α – Value (Image: Lena)	80
4.8	Information Entropy Vs. α – Value (Image: Cman)	80
4.9	Cman Image – Decrypted Image and the histogram	82
4.10	Cman Image – Decrypted image and the Histogram	82
5.1	Correlation Coefficient & Entropy value Variation (Image: Cman)	90

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

2.1	Chaotic Properties and cryptographic relationship	7
2.2	Division of Logistic Attractor into S sites	14
3.1	Image Encryption results – Ikeda Map	61
3.2 (A))Image Encryption results (Lena) – Kaplan-Yorke Map	64
3.2 (B)) Image Encryption results (Cman) – Kaplan-Yorke Map	65
3.3	Image Encryption Quality Analysis	67
4.1	Correlation Coefficient Analysis	74
4.2	NPCR Analysis Results.	78
4.3	UACI Analysis Results IV of Moratuwa. Sri Lanka. Electronic Theses & Dissertations	78
4.4	Information Entropy Analysis for Lena and Cman Images	79
4.5	Key Sensitivity Analysis – Cman Image	83
4.6	P _(interim) value variation and Decrypted Images	84