12 1030 100 109

MODELING OF MULTIMODE FIBER SYSTEMS

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk MURUGESAPILLAI MAHESWARAN

> LIBRARY C. L. TOLY V. MCHAYUUP, 873 LANNA MGRATUWA

> > Supervised by

DR. PRIYANTHA THILAKUMARA

621.38° (643)

In partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE IN TELECOMMUNICATIONS

DEPT. OF ELECTRONIC AND TELECOMMUNICATION ENGINEERING, FACULTY OF ENGINEERING,

UNIVERSITY OF MORATUWA,

Open:

4 2

SRI LANKA May 2008

92054

DECLARATION

I do hereby declare that the work reported in this research project was exclusively carried out by me under the supervision of Dr. R. P. Thilakumara. The work included in the thesis has not been submitted for any other academic qualification at any institution.

Signature: UOM Verified Signature

Date: 24.05.2008

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Certified by: Supervisor: Dr. R. P. Thilakumara

Signature:

UOM Verified Signature

24-05-2008 Date:

This is dedicated to my father,

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Late. Mr. S. Murugesapillai www.lio.mrt.ac.ik

ACKNOWLEDGEMENTS

I would like to make this great opportunity to thank everyone who helped me in numerous ways to complete this research project successfully.

First of all, I wish to express my sincere thanks to my supervisor Dr. Priyantha. Thilakumara of the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka. University of Moratuwa, Sri Lanka. University of Moratuwa, Sri Lanka for his kind, untiring supervision and guidance Electronic Theses & Dissertations during the project workww.lib.mrt.ac.lk

I am also thankful to all of my friends, for their support and encouragement extended towards the successful completion of this research project. Finally, I would like to thank my family for their constant love and unending support.

TABLE OF CONTENTS

AC	ACKNOWLEDGEMENTS LIST OF FIGURES LIST OF TABLES				
LIS					
LIS					
AB	STRACT		x		
1.	INTRO	DUCTION	1		
	1.1.	History of optical communication			
	1.2	Motivation of multimode fiber	2		
	1.3	Data communication aspects			
		1.3.1 10-gigabit Ethernet	6		
	1	3.2 University of Moratuwa, Sri Lanka.	6		
	1	13.3 Electronic Theses & Dissertations Dark fiber metro applications	7		
		1.3.4 Dark wavelength metro applications with DWDM	8		
		1.3.5 10 gigabit Ethernet WAN applications	9		
	1.4	Issues	11		
	1.5	Scope of works	12		
2.	LASER	AND FIBER ELECTRIC FIELD MODELS	13		
	2.1	Laser	13		
		2.1.1 Laser model	14		
		2.1.2 VCSEL electric field and modes	16		
		2.1.3 Far field profiles	19		
	2.2	Fiber	22		
		2.2.1 Fiber properties	22		

3.	MODELING METHOD FOR VCSEL MODE MMF LINKS			
	3.1	Overvi	ew of link simulation	33
	3.2	Modeli	ng of system link	36
		3.2.1	Conventional modeling method	36
		3.2.2	Modified modeling method	38
	3.3	Differe	ntial mode delay profile	39
		3.3.1	Measurement of differential mode delay	40
		3.3.2	Deduction of differential mode delay	42
4.	SIMU	LATION	RESULTS	45
	4.1	Fiber a	nd laser electric field patterns	45
	4.2	Modal	power distribution	47
	4.3	Power	emitted from VCSEL	48
	4.4	Transn	nitted unfiltered eye diagrams and Q-Factors	49
	4.5		Electronic Theses & Dissertations	57
5.	CON	LUSION	www.lib.mrt.ac.lk	58
	5.1	Major	results	58
	5.2	Future	works	59
AP	APPENDIX A		FINITE DIFFERENCE METHOD FOR FIBER	
			MODE SOLVING	60
APPENDIX B		ХВ	SIMULATION CODES	62
RF	FERE	NCES		72

vi

LIST OF FIGURES

Figure 1.1	:	Network topology for high-speed connectivity and distribution	
		of network services. Data rate customer network ranges from	
		10 Mb/ s	4
Figure 1.2	:	10 GbE LAN applications	7
Figure 1.3	:	10 GbE MAN applications	8
Figure 1.4	:	10 Gigabit Ethernet in the WAN	10
Figure 1.5	:	(a) Raytrace pictorial of step index multimode fiber. (b)	
		Raytrace pictorial of graded-index multimode fiber	12
Figure 2.1	:	Differences between edge-emitter and VCSEL	14
Figure 2.2	:	Schematic of correspondence between hybrid and LP modes in	
Figure 2.3		weakly guiding approximation. Arrows indicate direction of University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Aperture and observation coordinate system in the Rayleigh- WWW.llo.mrt.ac.lk	17
		Sommerfeld approximation	19
Figure 2.4	:	Spectral distribution of losses for a typical multimode fiber	23
Figure 2.5	:	(a) A macro bend and (b) a micro bend	24
Figure 2.6	:	Effects of pulse spreading on data rate: (a) Well-resolved	
		pulses at input, (b) Unresolved (overlapping) pulses at output	25
Figure 2.7	:	Index profile of graded-index profile for communication links.	
		Parabolic index, where $\alpha \approx 2$	28
Figure 2.8	:	Profile dispersion of 13.5 % GeO ₂ -doped fused-silica	
		multimode fiber [32]	30
Figure 3.1	:	Various components included in the link model [1]	34
Figure 3.2	:	Schematics of the VCSEL-to-fiber coupling scenario	35
Figure 3.3	:	Conventional model of the VCSEL based MMF link	37
Figure 3.4	:	Modified model of the VCSEL based MMF link	38
Figure 3.5	:	End face of a MMF, showing three idealized launching spots	
		into the core and an idealized and resulting DMD plot	40

Figure 3.6	:	Summary of experimental layout [12]	41
Figure 3.7	:	Original low DMD profile proposed by Okamoto and Okoshi.	
		Relatively deep extension of the core beneath the cladding is	
		typical	42
Figure 3.8	:	MMF profile with low DMD of higher order modes [6]	43
Figure 4.1	:	Fiber traverse electric field distribution of (a) LP_{01} and (b) LP_{33}	46
Figure 4.2	:	Laser traverse electric field distribution of (a) LP_{01} and (b) LP_{11}	46
Figure 4.3	:	Traverse electric field distribution of LP_{01} (a) near field and (b)	
		far field with 100 μm separation distance	47
Figure 4.4	:	Modal power distribution of a MMF as in specification given	
		above	48
Figure 4.5	:	Power excited from (a) individual laser LP c-modes,	
		(b) individual laser s-modes and (c) total power excited from	
		laser at 1 Gb/ s	49
Figure 4.6		Transmitted unfiltered eye diagrams of (a) conventional model	
		and (b) modified model at & Gb(s bit sequences in a 1000 m	
		linkof/MMP#Inin the table 4.1	50
Figure 4.7	•	Transmitted unfiltered eye diagrams of (a) conventional model	
		and (b) modified model at 10 Gb/ s bit sequences in a 300 m	
		link of MMF #1 in the table 4.1	51
Figure 4.8	:	Transmitted filtered eye diagrams of (a) conventional model	
		and (b) modified model at 1 Gb/ s bit sequences in a 1000 m	
		link of MMF #2 in the table 4.1	52
Figure 4.9	:	Transmitted filtered eye diagrams of (a) conventional model	
		and (b) modified model at 10 Gb/ s bit sequences in a 300 m	
		link of MMF #7 in the table 4.1	53
Figure 4.10	:	Refractive index profile of the MMF #7 in the table 4.1	55
Figure 4.11	:	Q-factors for conventional and modified models with 1 Gb/ s	
		and 10 Gb/s laser optimized MMF links	55
Figure 4.12	:	DMD profile of MMF #1 in the table 4.1 for a 300 m link	56

LIST OF TABLES

Table 1.1	:	Digitized video requirements [15]	3
Table 1.2	:	Types of fiber typical bandwidths [2]	10
Table 1.3	:	Description of different kind of MMFs	54
Table 1.4	:	Q-factors for different kind of MMFs in the table 4.1 with	
		modified and conventional models	54

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

The optical communication is of great interest in developing extensive, highspeed networking infrastructures. Optical fibers provide many advantages over traditional copper cables and wireless links. Among these advantages are high security, low electromagnetic interference, extremely low loss, very high bandwidths, and highly manageable cabling. However, the very small wavelengths associated with optical radiation require very small waveguide dimensions. Waveguide dimension of single mode fiber (SMF) are < 10 μ m, resulting in relatively poor yield in device manufacturing. For most of the last-mile networks topologies, cost constraints limit the appeal of SMF. Large core fibers allow for less restrictive manufacturing tolerances; however, they also results to many modes. The distortion can be prohibitively large for data rates approaching and exceeding 1 Gb/s.

Improvement of the deployability of these multimode fibers depends on the proper design of the multimode fiber link parameters for the reduction of the over estimation. Conventional multimode fiber model ignores all the effects of the different laser mode profiles in the link simulation and over estimates the penalty. Proposed modified model for vertical cavity surface emitting laser (VCSEL) based multimode fiber (MMF) links considers all effects of different laser mode profiles and compare the transmitted eye diagrams and Q-Factors with the conventional model.

Significant differences observed in the eye diagrams and the Q-factors of the modified model compared to the conventional model with various kinds of graded index multimode fibers and VCSEL. 29 % of Q-factor improvement observed in laser optimized MMF link with rate of 10 Gb/s and distance of 300 m.

Х