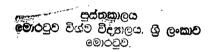
18/ . AD NON/ 55/00

·····

ţ


Ā

ì

PC – BASED IMAGE RECONSTRUCTION FOR MR IMAGING

Dissertation submitted in partial fulfilment for the degree of Master of Engineering

in Electronic and Telecommunication

S. N. Hettiwatte

72357

621.38 "@@" 531.68:681.3

June 2000

TH

72357

The work presented in this dissertation has not been submitted for the fulfilment of any other degree.

UOM Verified Signature	UOM Verified Signature	UOM Verified Signature
	. 0110 120	15/10/2000
S. N. Hettiwatte	Dr. J. A. K. S. Jayasinghe	Mr. B. S. Samarasiri
Candidate	Supervisor	Co-Supervisor

9

á

ł

ý

4

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk .

Acknowledgements

I wish to convey my gratitude to all those persons who supported me in carrying out this project. In particular, I wish to thank my supervisor, Dr. J. A. K. S. Jayasinghe for the guidance, advice and the overall supervision of the project and my co-supervisor, Mr. B. S. Samarasiri, for the literature provided during Medical Electronics classes. Those printed materials were very useful during the literature review phase of this project.

I also wish to thank Dr. Pawel F. Tokarczuk of Imaging Science and Biomedical Engineering Research Group at the University of Manchester for sending me some MRI data from Prof. Kunio Takaya's office at the University of Saskatchewan in Canada. Without those data my project would not have taken off the ground.

Finally, I wish to convey my gratitude to my employer, the Open University of Sri Lanka, for sponsorship.

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Reconstruction is the abstract *rebuilding* of something that has been torn apart. In the medical imaging context, it is often necessary to acquire data from methods that essentially *tear* data apart in order to be able to view what is inside. Also, a big part of reconstruction is then being able to view, or visualise, all the data once it is been put back together again. In MRI, the imaging device acquires data of a cross-sectional plane of the tissue being studied. The process of reconstruction then involves rebuilding of the cross-sectional view of that plane from the acquired data. Usually, the imaging device acquires data from a number of cross-sectional planes of the tissue being examined. Then, in reconstruction, all these planes are stacked back together to obtain a complete picture of the tissue.

Image reconstruction in MRI is usually performed by dedicated hardware. A typical system usually consists of multi-processors, application specific integrated circuits (ASIC) and uses parallel processing techniques. These systems are capable of high-speed image reconstruction, both 2D and 3D, high resolution image display and manipulation. Obviously, these systems are fairly expensive.

In this project a general purpose PC operating on Microsoft[®] Windows[®] 98 operating system was used to reconstruct a 2D image of a slice through the human head, using head scan data available from a MRI scanner. The FID signals from the scanner were available as projection data, which have been collected by suitably rotating the magnetic gradients. The filtered back-projection algorithm with nearest neighbour interpolation scheme was used in the reconstruction program, which was written in Matlab[®]. The resulting image from this system is acceptable. With the ever-increasing processor power of PC's and cost of PC's coming down, PC-based image reconstruction would find its way in a cost effective MRI system.

i

List of Figures

Y

¥

h

1. A typical MRI system	
2. Typical MR imaging systems in use today	4
3. Randomly oriented nuclear magnetic moments	5
4. Magnetic moments in the presence of an external magnetic field	6
5. RF energy at the Larmor frequency acts as a second magnetic field	7
6. Free Induction Decay (FID) signal induced in the receiver coil	7
7. Flipping a magnetic moment	8
8. Three different gradients are used to measure the FT of an object	11
9. Projection geometry	14
10. Projection of an object at an angle θ	15
11. Frequency response of filter	19
12. Transfer function of filter	22
13. Flow chart of filtered back-projection algorithm	
14. Frequency response of a Ram-Lak filter obtained using Matlab	
15. Frequency response of filters obtained using Matlab	
16. FID projection data	
17. Reconstructed image with the filter used	30

ii

List of Tables

Á

1. Comparison of time for reconstruction

٩

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk 31

List of Abbreviations Used

A/D	Analog to Digital
ASIC	Application Specific Integrated Circuit
CT	Computerised Tomography
DFT	Discrete Fourier Transform
ÉPI	Echo Planar Imaging
FFT	Fast Fourier Transform
FID	Free Induction Decay
FT	Fourier Transform
GB	Giga Bytes
GUI	Graphical User Interface
IFFT	Inverse Fast Fourier Transform
KB	Kilo Bytes
MB	Mega Bytes
MMX [®]	Multi Media Extension
MR	Magnetic Resonance
MRI	Magnetic Resonance Imaging
NMR	Nuclear Magnetic Resonance
NMRI	Nuclear Magnetic Resonance Imaging
PC	Personal Computer
RF	Radio Frequency
SIMD	Single Instruction Multiple Data
SNR	Signal to Noise Ratio
ZP	Zero Pad Electronic Theses & Dissertations www.lib.mrt.ac.lk

iv

Contents

Abstract	· i
List of Figures	ii
List of Tables	iii
List of Abbreviations Used	iv
1. Introduction	1
1.1 Project Objectives	2
1.2 PC Configuration	2
1.2.1 Operating System	2
1.2.2 Application Software	2
2. Brief History on MR Imaging and Present Systems	3
3. Basic Theory of Magnetic Resonance	5
3.1 Magnetic Moments	5
3.2 RF Magnetic Field	6
3.3 The Free Induction Decay (FID) Signal	7
3.4 Magnetic Field Gradient	9
3.5 Frequency Encoding	10
3.6 Slice Selection	10
4. Current Reconstruction Practice	11
4.1 Fourier Imaging and Spin Warp Imaging	11
4.2 Zeugmatography	12
4.3 Echo Planar Imaging (EPI)	12
5. Projection Reconstruction as used in this Project	
5.1 Fourier Slice Theorem	16
5.2 Derivation of the Filtered Back-Projection Algorithm	17
	t

5.3 Discrete Representation	19
5.4 Implementation on a Personal Computer (PC)	21
5.5 Implementation using Matlab	27
6. Results	29
7. Discussion and Conclusions	32
7.1 Conclusions	32
7.2 Scope for Further Work	32
References	34
Appendix I	
Matlab <i>m</i> -file for Implementing Filtered Back-Projection Algorithm	36
Appendix II	
GUI Designed with Matlab GUI Layout and Call-Backs University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mt.ac.lk	39 40
Matlab Functions used in the Program and GUI	41

\$