DCF 23/33

55

THE RESPONSE OF CONVENTIONAL STRUCTURES IN SRI LANKA TO ADVERSE FORCES OF NATURE

Ву

K. S. MANGALA SILVA (M.Eng.in Structural Eng. Design 2003/2004)

Supervised By

PROF. M. T. R. JAYASINGHE

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGNS

University of Moratuwa
89729

Department of Civil Engineering
University of Moratuwa
Sri Lanka

624 07 624.01(043)

89729

SEPTEMBER 2007

DECLARATION

I, Kuruneruge Samantha Mangala Silva, hereby declare that the content of this thesis is the output of original research work carried out at the Department of Civil Engineering, University of Moratuwa. Whenever others' work is included in this thesis, it is appropriately acknowledged as a reference.

ACKNOWLEDGEMENT

I am immensely grateful to my supervisor, Prof. M.T.R. Jayasinghe, Professor in Civil Engineering at the Department of Civil Engineering for his invaluable guidance and support throughout my research period.

I also thank Dr.Susantha Keragala (Senior lecturer of the Department of Engineering Mathematics University of Peradeniya) for his valuable advice, which helped to make this research a success.

My thanks are also due to all the other lectures at the UOM and UOP for the positive attitude they adopted in promoting this research project.

I wish to acknowledge Architect Piyal Silva, Director/CEO of the Architecture and Building group of ECL my employer, who tolerate me attending to the research works working hours when necessary. His valuable advice on my project is greatly appreciated.

The assistance given my batch-mates and friends who are working at the National Water Supply and Drainage Board are also appreciated.

Finally my thanks are also extended to Rifaadh, Inoka, Sandun, Hashen, Deeva and Uditha and all other colleagues at ECL who assisted and helped me in proof reading of this thesis and giving valuable advice on its formulation and presentation.

Last but not least a special gratitude goes to my parents and Loretta for bearing with me in making this study a success.

ABSTRACT

With the experience of minor earthquakes in deferent areas in Sri Lanka recent times, structural adequacy of existing structures has been questioned. Since a lot of research has already been carried out on buildings in related to their behavior in seismic loads, this research focus on Special structure such as "Kalutara Dagaba", Dagaba at Colombo port and Elevated water towers.

Due to unavailability of required data for detailed analysis of first two structures this study has mainly concentrated on elevated water towers.

Since the "Intze" type is the most common type of the water tower for more than 500m³ capacities, the scope of this study has further reduced to study of "Intze" type water towers.

Since the effect of wind as well as earth quake would be acting horizontally; there is a general belief among the engineers that those structures design to resist wind forces can withstand minor earth quakes as well.

In this back ground, this study has concentrated on the impact of wind and earthquakes on "Intze" type water towers of deferent capacities.

Analysis shows that exiting water towers which have designed for wind loads are not adequately strong for the resisting earthquakes. It is hoped that this study will shed light some structural deficiencies available in existing structures with respect to lateral loads of dynamic nature.

CONTENTS

	PTER 1	
1.1	duction General	1
1.2	Objectives	3
1.3	Methodology	3
1.4	Main findings	4
1.5	Arrangement of thesis	5
CHAI	PTER 2	
	ture Review	
2.1	Introduction	6
2.2	Spring mass model for seismic analysis	6
2.3	Circular and rectangular tanks	8
2.4 2.5	Elevated tanks	13 15
2.5	Response spectrum concept	15
CHA	PTER 3	
Existi	ng Structures & Mathematical Modeling	
3.1	Existing structures	16
3.2	Mathematical Modeling	
	3.2.1 Modeling for 6 tanks for tank full,	16
	75%fill, 50%fill and tank empty	
	Conditions 3.2.2 Modeling Tanks for Different Heights	17
	3.2.3 Modeling Tanks for Different Fleights 3.2.3 Modeling Tanks for Different Shaft	17
	Thicknesses	' '
	3.2.4 Modeling Tanks for Different	17
	Diameters of Supporting Shaft	
	3.2.5 Modeling Tanks for Different	17
	Concrete Grades of Supporting	
	Shaft	
CHAI	PTER 4	
	vsis of Structures	
	Analysis of 6 tanks for tank full, 75% fill,	
	50% fill and tank empty Conditions	
	4.1.1 Analysis for Earthquakes	18
	4.1.2 Analysis for Wind loads	19
4.2	Analysis for Different Heights	20
4.3	Analysis for Different Shaft Thicknesses	20
4.4	Analysis for Different Diameters of	20
1 E	Supporting Shaft Analysis for Different Concrete Grades of	20
4.5	Supporting Shaft	20
4.6	Dimensions of tanks	21
7.0	Diffiction of taring	

CHA	PIER 5	
Resul	ts	
5.1	Water towers for different percentages of	28
	filling	
5.2	Tanks for different heights	40
5.3	Tanks for different shaft thicknesses	42
5.4	Tanks for different diameters of supporting	44
	shaft	
5.5	Tanks for different concrete grades of	46
	supporting shaft	
5.6	Natural period of vibration for different tanks	47
5.7	Comments on Results	48
CHA	PTER 6	
Conc	lusion & Future Works	
6.1	Conclusions	48
6.2	Future works	48
Refere	ences	49

LIST OF TABLES

10
19
28
29
30
31
32
33
34
35
36
37
38
39
40
- 10
42
- 33
44
46
47

LIST OF FIGURES

Figure 1.1	Collapsed 265m ³ water tower in chobari	1
Figure 1.2	Damaged shaft of Gulaotal water tower in	2
	Garha area of Jablpur city	
Figure 1.3	Flextural tension cracks in shaft of 500m ³ tower in Morbi	2
Eiguro 2 1		7
Figure 2.1	Qualitative description of hydrodynamic	- 1
Figure 2.2	pressure distribution on tank wall and base.	11
Figure 2.2	Parameters Of The Spring Mass Model For Circular Tank.	11
Figure 2.2		12
Figure 2.3	Parameters Of The Spring Mass Model For Rectangular Tank.	12
Figure 2.4	Two Mass Idealizations for Elevated Tank	14
Figure 4.1	Normalized Response Spectrum	18
Figure 4.2	Cross section of a typical Intze type tank	21
Figure 4.3	Cross section of a typical intertype tank Cross section of a 225m ³ Intze type tank	22
Figure 4.4	Cross section of a 450m ³ Intze type tank	23
Figure 4.5	Cross section of a 450m intertype tank Cross section of a 950m ³ Intze type tank	24
Figure 4.6	Cross section of a 1125m ³ Intze type tank	25
Figure 4.7	Cross section of a 1450m ³ Intze type tank	26
_	Cross section of a 1430m Intze type tank Cross section of a 1600m ³ Intze type tank	27
Figure 4.8	Base Shear values of 225m ³ tank	
Figure 5.1.1	Base Shear values of 225m tank Base Shear values of 225m³ tank	28
Figure 5.1.2		29
Figure 5.1.3	Base Shear values of 450m ³ tank	30
Figure 5.1.4	Base Shear values of 450m ³ tank	31
Figure 5.1.5	Base Shear values of 950m ³ tank	32
Figure 5.1.6	Base Shear values of 950m³ tank	33
Figure 5.1.7	Base Shear values of 1125m ³ tank	34
Figure 5.1.8	Base Shear values of 1125m ³ tank	35
Figure 5.1.9	Base Shear values of 1450m ³ tank	36
Figure 5.1.10	Base Shear values of 1450m ³ tank	37
Figure 5.1.11	Base Shear values of 1600m ³ tank	38
Figure 5.1.12	Base Shear values of 1600m³ tank	39
Figure 5.2.1	Base Shear values of 450m ³ tank for different heights	40
Figure 5.2.2	Base Moment values of 450m ³ tank for	40
1 19410 0.2.2	different heights	. •
Figure 5.2.3	Base Shear values of 1450m³ tank for	41
riguic 5.2.5	different heights	
Figure 5.2.4	Base Moment values of 1450m ³ tank for	41
i igule 5.2.4	different heights	
Figure 5.3.1	Base Shear values of 450m ³ tank for	42
rigule 3.3.1	different Shaft Thicknesses	74
Ciarra E 2 2	Base Moment values of 450m ³ tank for	42
Figure 5.3.2		72
Fig. 12.2	different Shaft Thicknesses Base Shear values of 1450m³ tank for	43
Figure 5.3.3		43
	different Shaft Thicknesses	43
Figure 5.3.4	Base Moment values of 1450m ³ tank for	43
	different Shaft Thicknesses	

Figure 5.4.1	Base Shear values of 450m ³ tank for	44
	different Shaft Diameters	
Figure 5.4.2	Base Moment values of 450m ³ tank for	44
	different Shaft Diameters	
Figure 5.4.3	Base Shear values of 1450m ³ tank for	45
	different Shaft Diameters	
Figure 5.4.4	Base Moment values of 1450m ³ tank for	45
	different Shaft Diameters	
Figure 5.5.1	Base Shear values of 1450m ³ tank for	46
	different concrete grades of supporting shaft	
Figure 5.5.2	Base Moment values of 1450m ³ tank for	46
	different concrete grades of supporting shaft	

LIST OF ANNEXTURES

Annexure 1	Modeling and Analysis of Water towers for different
/ WITCAGE 1	Percentages of Filling
Annexure 2	Analysis of Water towers for Wind Loads
Annexure 3	Modeling and Analysis of Water towers for different Heights
Annexure 4	Modeling and Analysis of Water towers for different Shaft Thicknesses
Annexure 5	Modeling and Analysis of Water towers for different Diameters of Supporting Shaft
Annexure 6	Modeling and Analysis of Water towers for different Concrete Grades of Supporting Shaft