LB/DON /24 /07

UPGRADING OF PANNIPITIYA – RATMALANA 132KV TRANSMISSION LINE TO IMPROVE THE CURRENT CARRYING CAPACITY

A dissertation submitted to the

Department of Electrical Engineering, University of Moratuwa
in partial fulfillment of the requirement for the

Degree of Master of Science

2003/2005

by

GARUSINGHE DEWAGE NISHANTHA SUNIL GARUSINGHE

UMIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Supervised by

Prof. H.Y.R. Perera

Eng. H. Rajamanthri

621.3 "06"

Department of Electrical Engineering,
University of Moratuwa

Sri Lanka

University of Moratuwa 87270

December 2006

87270

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

G.D.N.S. Garusinghe December 22, 2006

We endorse the declaration by the candidate.

UOM Verified Signature

Prof. H.Y.R. Perera

UOM Verified Signature

Eng. H. Rajamanthri

Abstract

There is a constant increase in demand for electric energy both in industrial and domestic sectors. Meeting this demand encounters problems associated with construction of new transmission lines not only in urban areas but also in rural areas. In addition to the environmental clearance, obtaining of right of way for the power lines is becoming more and more difficult. It is therefore much advantageous if the power transmission capacity can be increased in the existing transmission lines.

The aim of this thesis is to examine the possibilities of using the new types of conductors with higher current carrying capacity in existing transmission lines with capacity restrictions. The replacement of conductors shall improve the line capacity while satisfying the other conditions such as ground clearance, transmission loss etc. Power interruptions necessary for the replacement work must be kept as low as possible and in order to achieve this, modifications required for the existing structures shall be minimized. The analysis is done for Pannipitiya - Ratmalana 132kV transmission line which is critical in transmission network.

Limits of the operation of the new conductor selected for the purpose are demarcated considering the design parameters of the existing line. Also the other components and structures of the line are checked for their sustainability for new loads due to the Gap type conductor and necessary modifications are identified for successful enhancement of the transmission capacity.

By re-conductoring and improving the current carrying capacity of transmission line it provides significant cost savings both in keeping transmission costs down, and differing or even eliminating the need for new transmission line.

Acknowledgements

I would like to express my gratitude to the University of Moratuwa for providing me with opportunity of following the Master's Degree Programme in Electrical Engineering.

I am deeply indebted to my supervisor Professor H.Y.R. Perera, Department of Electrical Engineering, University of Moratuwa whose suggestions, supports and encouragements helped me in all the time of research and writing of this thesis.

I would extent my sincere gratitude to Mr. Hemantha Rajamanthri, Project Manger (Vavniya-Kilinochchi Transmission Project) of Ceylon Electricity Board who helped in numerous ways among others in selecting the research area and collecting materials needed to complete the research.

Also I would like to thank the Transmission Division of Ceylon Electricity Board for giving this opportunity to carryout the research which will also be benefited to the organization as well. I have furthermore to thank Mr R.J. Gunawardane AGM (Transmission), Mr. E.G. Abayasekara DGM (Generation & Transmission Planning), Mrs. Y.M. Samarasinghe DGM (Transmission Projects), Mr. L.A.S. Fernando DGM(O&MS) and Mr A.J. Sudurikku PM(Power Sector Development Transmission Project) who gave their support and encouragement for me to go ahead with my thesis.

I wish to acknowledge my heartfelt gratitude to my parents and teachers, who have brought me up, guided me, taught me and helped me in various ways to be knowledgeable to carry out the research work. Also, I am grateful to my wife Udayangani for the inspiration and moral support she provided throughout my research and my two sons, Sasandu and Bihadu for tolerating my long hours spent on research work and for their having managed with much less attention that I would have normally devoted to them and to my home.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success.

Contents

Abstra	act	ii
Ackno	owledgements	iii
List of	f Figures	vi
List of	f Tables	vii
Chapt	er 1	1
1.0	Introduction	1
Chapt	er 2	4
2.0	Selection of a Conductor.	4
2.1	Line Current	
2.2	Gap Type Conductor-	
2.3	Invar Core type Conductor-	8
2.4	Conductor Operating Temperatures-	
2.5	Current Carrying Capacity of Conductor	
2.6	Conductor Creep	12
2.7	Sag-Tension Characteristics	15
Chapt	er 3	21
3.0	Analysis of transmission line components	21
3.1	Insulators -	
3.2	Hardware Fittings	21
3.3	Towers	22
3.4	Tower Foundations	26
3.5	Ground Clearance	27
Chapt	er 4	30
4.0	Stringing Charts	30
4.1	Stringing Sag Tension Calculation	
Chant	er 5	33

5.0 Transmission Loss REduction and Financial analysis	33
5.1 Transmission Loss Calculation	33
5.2 Financial Analysis	34
Chapter 6	36
6.0 Conclusion	36
References	37
Appendices	38
Appendix A-1 - Map of Sri Lanka Transmission System – 2005	38
Appendix A-2 - Schematic Diagram of Transmission System	39
Appendix -B - Tower List of Pannipitiya - Ratmalana 132kV Line	40
Appendix-C - Variation of Sag with Temperature - Gap Type and ACSR Lyn	nx Conductors 42
Appendix-D - Results of Tower Design Check	56
Appendix-E – Revised Tower List	58
Appendix-F - Revised Tower List - Sag Tension Characteristics of Gap Type ACSR Lynx Conductor	
Appendix-G - Financial Analysis	72

List of Figures

Fure 2-1 Current Rating Vs Conductor Temperature of ACSR Lynx Conductor
Figure 2-2 Cross-sectional view of Gap type conductor
Figure 2-3 Construction of Gap type conductor
Figure 2-4 Variation of sag with temperature of conventional type ACSR and Gap type heat
resistant conductor
Figure 2-5 Cross sectional view of Invar Core conductor
Figure 2-6 Current Rating Vs Conductor Temperature of ACSR Lynx and Gap Type (200
mm ²) Conductors
Figure 2-7 Variation of Sag of Lynx and Gap type conductor in each section
Figure 4-1 Variation of sag – Initial sag of Lynx conductor and Initial and Final sag of Gap
Type 200 mm ² Conductors
Figure 10-1 Sag Vs Temperature Curves of Gap Type (200mm²) and ACSR Lynx
conductors in Section 1 (Eq. Span = 323.8m)
Figure 10-2 Sag Vs Temperature Curves of Gap Type (200mm²) and ACSR Lynx conductors
in Section 2 (Eq. Span = 353.8m)
Figure 10-3 Variation of Sag with Temperature of ACSR Lynx and Gap Type (200mm ²)
conductors in Section 3 (Eq. Span = 353.3m)
Figure 10-4 Variation of Sag with Temperature of ACSR Lynx and Gap Type (200mm ²)
conductors in Section 4(Eq. Span = 408.4m)
Figure 10-5 Variation of Sag with Temperature of ACSR Lynx and Gap Type (200mm ²)
conductors in Section 5(Eq. Span = 285.3m)
Figure 10-5 Variation of Sag with Temperature, ACSR Lynx Conductor and Small Gap Type
Conductor
Figure 13-1 Initial & Final Sag Curve of Gap Type (200mm ²) and Initial Sag of ACSR Lynx
conductor - Section 1 of Revised Tower List
Figure 13-2 Initial & Final Sag Curve of Gap Type (200mm ²) and Initial Sag of ACSR Lynx
conductor - Section 2 of Revised Tower List
Figure 13-3 Initial & Final Sag Curve of Gap Type (200mm ²) and Initial Sag of ACSR Lynx
conductor - Section 3 of Revised Tower List
Figure 13-4 Initial & Final Sag Curve of Gap Type (200mm ²) and Initial Sag of ACSR Lynx
conductor - Section 3 of Revised Tower List
Figure 13-5 Initial & Final Sag Curve of Gap Type (200mm ²) and Initial Sag of ACSR Lynx
conductor - Section 3 of Revised Tower List

List of Tables

Table 2-1 (Comparison of Properties of Hard Drawn Aluminium and Heat Resistant	
	Aluminium	6
Table 2-2 I	Properties of ACSR Lynx and Gap type GZTACSR 200mm2 Conductors	7
Table 2-3 I	Properties of ACSR Lynx and Gap type (Z)TACIR 190 mm ² Conductors 1	0
Table 2-4	Comparison of Gap type, Invar Core type and ACSR conductors 1	0
Table 2-5 C	Current Carrying Capacity of ACSR Lynx and Gap Type conductors 1	3
Table 2-6 I	Design Data1	6
Table 2-7 T	ower List and details of spans (structure list) of Pannipitiya-Ratmalana 132kV	
	Transmission line	8
Table 2-8	Comparison of Sag of Lynx and Gap type conductor 1	9
Table 3-1	Fower Types2	24
Table 3-2	Tower Design Parameter	25
Table 3-3	Tower Design Loads	25
Table 3-4 I	Revised Tower List	29
Table 4-1 S	ag of Lynx conductor and Gap type conductor after introducing towers	31
Table 5-1	Conductor Data3	33
Table 5-2 T	ransmission Loss with Lynx Conductor and Gap Type Conductor (200mm ²) 3	34
	40	
Table 9-1	Fower List and details of spans (structure list) of Pannipitiya-Ratmalana 132kV	
	Transmission line	‡ 1
Table 10-1	Variation of Sag and Tension of Gap Type Conductor (200mm ²) in Section 1 a	t
	different Temperatures	12
Table 10-2	Variation of Sag and Tension of ACSR Lynx conductor in Section 1 at different	ıt
	Temperatures	43
Table 10-3	Variation of Sag and Tension of Gap Type Conductor (200mm ²) in Section 2 a	t
	different Temperatures	45
Table 10-4	Variation of Sag and Tension of ACSR Lynx conductor in Section 2 at different	nt
	Temperatures	46
Table 10-5	Variation of Sag and Tension of Gap Type (200mm ²) and ACSR Lynx	
	Conductors in Section 3 at different Temperatures	48
Table 10-6	Variation of Sag and Tension of Gap Type (200mm ²) and ACSR Lynx	
	Conductors in Section 4 at different Temperatures	50

Table 10 –	7 Variation of Sag and Tension of Gap Type (200mm²) and ACSR Lynx	
	Conductors in Section 4 at different Temperatures	52
Table 10-8	Sag and Tension Characteristics of Small Gap Type Conductor and ACSR Lyn	X
	Conductor	54
Table11-1	Actual Vertical Loads of each Tower and Design Check Results	56
Table11-2	Actual Horizontal Loads of each Tower and Design Check Results	57
Table 12-1	Revised Tower List and details of spans (structure list) of Pannipitiya-Ratmala	ına
	132kV Transmission line.	59
Table 13-1	Sag and Tension Characteristics of Gap Type (200mm ²) and ACSR Lynx	
	Conductors with Temperature in Section 1-Revised Tower List	60
Table 13-2	Sag and Tension Characteristics of Gap Type (200mm ²) and ACSR Lynx	
	Conductors with Temperature in Section 2-Revised Tower List	63
Table 13-3	Sag and Tension Characteristics of Gap Type (200mm ²) and ACSR Lynx	
	Conductors with Temperature in Section 3-Revised Tower List	66
Table 13-4	Sag and Tension Characteristics of Gap Type (200mm ²) and ACSR Lynx	
	Conductors with Temperature in Section 4-Revised Tower List	68
Table 13-5	Sag and Tension Characteristics of Gap Type (200mm²) and ACSR Lynx	
	Conductors with Temperature in Section 5-Revised Tower List	70
Table 14-1	Cost of Construction New ACSR Zebra Conductor Line	72
Table 14-2	Cost of Replacement of ACSR Lynx Conductor with Gap Type	73