110V UNIVERSAL BATTERY CHARGING PANEL USING PIC MICROCONTROLLER

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science

by

SWARNA KUMARA VIJITHANANDA

Supervised by: Dr. J.P Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

December 2006

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

S.K Vijithananda Date: 11 01 2007

We/I endorse the declaration by the candidate.

UOM Verified Signature

Ι

CONTENTS

Declaration	Ι
Abstract	IV
Acknowledgement	VI
List of Figures	VII
List of Tables	IX

CHAPTER 1

1.00 In	ntroduction	.1
	1.10 Requirement of the Project.	.1
	1.20 Project Benefits	.1
	1.30 Technical Concept & Techniques	.2
	1.40 Project Tools & Materials	.2

CHAPTER 2

2.00 Structure of the Project	12
2.10 Hardware Circuitry	13
2.11 Design of DC-DC Converter	15
2.12 Testing Circuit with 555 Timer	21
2.13 Converter Switching Amplifier Circuits	
2.14 Overcurrent & Over/Under Voltage Circuits	
2.20 Software Programming.	
2.21 Introduction to PIC (16F876A) Microcontroller	
2.22 Analog to Digital Converter (A/D) Module	
2.23 Operation in PWM Mode	45
2.24 Assembly Programs for A/D Conversion	49
& PWM operation	
2.24 (i) A/D Conversion	49
2.24 (ii) PWM Operation	49

CHAPTER 3

	3.00 Results and Practical Observation
	3.10 Waveforms of the DC-DC Converter
60	3.20 Voltage variation of the Panel Output
64	3.30 Project Photos

CHAPTER 4

4.00 Practical Limitations Challenges & Difficulties	
4.10 Technical limitations & Challenges	
4.20 Financial Difficulties	

CHAPTER 5

5.00 Conclusion
5.10 Conclusion and Remarks
5.20 Recommendation for Future Developments

References	
Appendix A	Definitions of the terms74
Appendix B	Program Codes77

Abstract

Conventional power electronics and electronic control circuits have been replacing by the intervention of the microprocessors/microcontrollers in modern industrial applications. This is mainly because with their applications the whole systems becomes more and more compact while enhancing the durability. On the other even with the more robust applications hand more accurate & fine operation could achieve by using such modern programming devices.

This project was origin from based on an actual requirement of designing 110v battery charging panel (to energize the batteries in spring charge type breakers)for electrical engineering division of Jaya Container Terminal(J.C.T) of Sri Lanka Ports Authority. But this technique would use to not only to charge batteries of spring charge breakers , but also batteries widely use in VHF communication hand held sets, explosive detectors, emergency lamps, etc...

Rechargeable batteries are vital to portable electronic equipment such as laptop computers and cell phones. Fast charging circuits must be carefully designed and are highly dependent on the particular battery's chemistry. The most popular types of rechargeable batteries in use today are the Sealed-Lead-Acid (SLA), Nickel-Cadmium (NiCd), Nickel-Metal-Hydride (NiMH), and Lithium-Ion (Li-Ion). Li-Ion is fast becoming the chemistry of choice for many portable applications because it offers a high capacity-to-size (weight) ratio and a low self-discharge characteristic.

Depending on the battery chemistry the charging characteristics of a battery differs to each other. In this project simply what I have done is allows the particular battery to follow its charging characteristic curve when they where you could not find in conventional charging techniques. The charging process is controlled by the software program microcontroller (PIC16F876).Since the battery chemistries are different for different types of batteries, several sets of programs would have to written to the controller for each battery given by the manufacturer.

IV

There are some theoretical design calculations included for designing of power electronics modules. (DC-DC converter, square pulse generator, single rail power & dual rail power supplies,etc...) Calculations have been done based on highly theoretical facts. Therefore some practical observations are tends to differ from the theoretical approach. Most of the theories studied in the power electronic lessons of my M.Sc post graduate were widely used in doing above mentioned designs.

At the beginning the actual target was to built a battery charging panel of 110V, but due to some limitations of purchasing of high capacity transformer which suit to this application, the project was limited to 40V panel only. But the concept, approach & the guide line would be more or less same for the more advanced systems also.

Acknowledgement

Thanks are due first to my supervisor, Dr. J.P Karunadasa, for his great insight, perspectives, guidance and of humor. My sincere thanks go to the JCT Electrical engineering staff of J.C.T (Jaya Container Terminal) of Sri Lanka Ports Authority for helping in various ways to clarify things related to my academic works in time with excellent corporation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

I extend sincere gratitude to my superiors, Mr. A.D.T Gunasekara (Chief Electrical Engineer of Sri Lanka Ports Authority) who made me to be released from my duties to success this project & Mr.H.A.N.S Fernando (Deputy Chief Electrical Engineer) who suggested this project concept for this thesis.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process success. May be I could not have made it without your supports.

List of Figures

Figure Page Figure 1.3.1 Basic Functional Block 3 Figure 1.3.2 Typical Characteristics of Ni-Cd battery 4 Figure 1.3.3 Basic Software Algorithm 6 Figure 1.4.1 Pin Configuration of PIC 16F876A 8 Figure 1.4.2 Demonstration Circuit 10 Figure 1.4.3 PIC Programmer Circuit 10 Figure 2.1.14 Bridge Rectifier 13 Figure 2.1.2 DC-DC Converter Circuit 14 Figure 2.1.3 Single Rail Power Supplies 14 Figure 2.1.4 Dual Rail Power Supplies 14 Figure 2.11 (a) Dimensions of the Core 17 Figure 2.11 (b) Core Loss Curves 19 Figure 2.12 (a) Pin Configuration of 555 Timer 23 Figure 2.12 (b) Pin Data of 555 Timer 25 Figure 2.12 (c) Square Pulse Generator using 555 Timer 26 Figure 2.13 (a) Pin Configuration of TL082 family 27 Figure 2.13 (b) Internal View of TL082 28 Figure 2.13 (c) Frequency & Temperature Characteristics of TL082 28 Figure 2.13 (d) Load & Voltage Characteristics TL082 29 Figure 2.13 (e) Switching Amplifier Circuit 30 Figure 2.14 (a) Figure 2.14-(a) Pin Configuration of TL082 31 Figure 2.14 (b) Typical Characteristics of LM339 (Vcc=15v;Ta=25^o) 33 Figure 2.14 (b) Comparator Circuit 33 Figure 2.21 (a) Pin Configuration of PIC16F876A 34 Figure 2.21(b) Demonstration Circuit 37

Figure 2.22(a) ADCON0 Register

38

Figure 2.22(b) ADCON1 Register	40
Figure 11.2 Analog Input Model	42
Figure 11.3 A/D Conversion T _{AD} Cycle	44
Figure 11.4 A/D Result Justification	45
Figure 2.23(a) CCP Module in PWM Mode	46
Figure 2.23(b) PWM Output	46
Figure 2.23(c) Data of the PIC16F876A	48
Figure 3.0 (a) Voltage across the Primary Winding (Theoretical)	55
Figure 3.0 (b) Voltage across the Primary Winding (Observed)	56
Figure 3.0 (c) Current of the Primary side of the Converter (Theoretical)	56
Figure 3.0 (d) Current of the Secondary side of the Converter (Observed)	57
Figure 3.0 (e) Current through the Secondary Diode	57
Figure 3.0 (f) Duty Cycle 50%	58
Figure 3.0 (g) Duty Cycle 35%	58
Figure 3.0 (h) Duty Cycle 10%	59
Figure 3.21(a) Voltmeter reading & desired value vs. time (8 hrs.)	62
Figure 3.21(b) Voltage Error vs. Time (8 hrs.)	63
Figure 3.3 (a) Switching Amplifiers	64
Figure 3.3 (b) Controller Circuit Operate with the main Panel	64
Figure 3.3 (c) Fly-Back Transformer of the Converter	65
Figure 3.3 (d) Overvoltage Comparator Circuit	65
Figure 3.3 (e) Power Transformer Output to the Dual Supply	66
Figure 3.3 (f) Top view of the Panel	66
Figure 3.3 (g) 3 Push Buttons Assigned for 3 Battery Types	67
& the Reset Button (left corner)	
Figure 3.3 (h) 4 -Bridge Rectifier testing with a Variac	67
Figure 3.3 (i) 3 Sets of Batteries under Charging.	68
Figure Appendix A: (i) Comparator Symbol	75

VIII

List of Tables

Table	Page	
Table 1: Operating characteristics of TL082	27	
Table 2: Ratings of the LM339 comparator	32	
Table 3: Analog / Digital channel configuration	40	
Table 11.1: TAD vs. maximum device operating frequency	44	
Table 3.20 Voltmeter reading during eight hours	61	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

IX