LE/DON/98/07

DESIGNING AND IMPLIMENTATION OF AN IMPROVED REMOTE SUPERVISORY CONTROL AND VOLTAGE REGULATION SYSTEM AT WIMALASURENDRA POWER STATION

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirements for the Degree of Master of Science

By

S.W. KUMARAWADU

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Supervised by Dr. Trishantha Nanayakkara

89422

Department of Electrical Engineering

621.3 06 621.3 (043)

89422

University of Moratuwa

December 2006

89422

DECLARATION

I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any University to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary tobe made available to outside organizations.

100

S.W. Kumarawadu

Date: 28/01 2007

We/I endorse the declaration by the candidate.

UOM Verified Signature

Dr. D.P. Trishantha Nanayakkara Supervisor

Date: 30/01/2007

CONTENTS

DECLA	ARATIO	N		ii
CONTENTS				111
ABSTR	RACT			v
ACKN	OWLED	GEMENT		vi
LIST C	F FIGUR	RES		vii
LIST C	F TABL	ES		viii
CHAP	rer - 1			
1	Introdu	ction		01
	1.1	Backgro	ound and motivation	02
		1.1.1. W	/imalasurendra power station (WPS)	02
		1.1.2. Pi	resent status of WPS	03
	1.2	Excitation	on system of WPS	03
	1.3	Governi	ng system of WPS	04
	1.4	Evolutio	on of supervisory and control technologies	05
	1.5	Scope o	f work	06
CHAP	rer - 2			
2	Designi	Designing and implementation of Remote Supervisory & Control System		
	2.1	Remote	Terminal Unit (RTU)	07
		2.1.1	ADAM-4000 series	07
		2.1.1.1	Remotely Programmable Input Ranges	07
		2.1.1.2	Watchdog Timer	07
		2.1.1.3	Ready for the Industrial Environment	08
		2.1.1.4	Communication	08
		2.1.1.5	RS-485 protocol	08
		2.1.2	Analog Signal Inputs (4-20mA current loops)	08
		2.1.3.	Drawing Survey	09
		2.1.3.1	Digital (Status) Inputs	09
		2.1.3.2.	Digital Relay Outputs (Control Commands)	09
		2.1.3.3	Drawings of the Modified Circuits	10
		2.1.4	Relay Circuits for interfacing old system	10
		2.1.5	Digital Input Module (ADAM-4051)	15
		2.2.6	Analog Input Module (ADAM-4017)	16
		2.1.7	Digital Output Module (ADAM-4068)	16
	2.2.	Control	Station	18
		2.2.1.	Converter module (ADAM-4520)	18
		2.2.1.1	Built-in Intelligence	18

PAGE

.

iii

		2.2.1.2	RS-485 network with Automatic Data Flow Control	18
		2.2.1.3	Features of ADAM-4520	18
		2.2.2	HMI (Human Machine Interface)	19
	2.3.	Basic C	onfiguration	21
СНАРТ	ER - 3			
3	Improv	ing the vo	oltage regulation system of WPS	22
	using n	ew superv	visory & control system.	
	3.1	Back-gr	ound	22
	3.2.	Voltage	Regulation	22
		3.2.1	Duties of the automatic voltage regulator	22
		3.2.2	Operational behaviour of synchronous machines	24
		3.2.3	The principle of cross-current compensation	26
		3.2.4	Special sequences in undisturbed operation	27
		3.2.5	The transient behaviour generator – network	28
		3.2.6	Excitation systems for synchronous machines	28
	3.3.	Existing	g voltage regulating system in WPS	29
		3.3.1	BJ-30 regulator	29
		3.3.2	Operation principle of existing system	30
		3.3.3	Present condition	32
	3.4.	Testing	of the existing system, for the new design	32
		3.4.1	Voltage variation During a normal operation	32
		3.4.2	Behaviour of the voltage variation during	
			a system instability ac. k	33
		3.4.3	Analysis for voltage feed back, generator current sensing	34
			and field current Sensing	
		3.4.3.1	Analysis of Gen. Voltage feedback	34
		3.4.3.2	Generator current sensing	36
		3.4.4.	Voltage variation for normal & quick response contacts	38
			QR and QL	
	3.5.	Modific	cation of the excitation system for the design of new AVR	39
		3.5.1	Description of the Circuit (AVR CCT 1)	39
	3.6.	PLC base	ed new voltage regulation system	41
		3.6.1	Vision 230 PLC unit	41
		3.6.2.	Description of the AVR CCT 2	42
		3.6.3.	Ladder programming and limit calculations for	44
			voltage feed-back control	
	3.7	Performance analysis		45
		3.7.1.	Voltage variation during a normal operation	45
		3.7.2.	Voltage variation during a load rejection	45

ACKNOWLEDGEMENT

First of all, I would like to thank Dr. D.P. Thrishantha Nanayakkara, who guided me through the entire project as the supervisor, with my appreciation and profound indebtedness for his help and advice.

Also I particularly want to thank Prof. Ranjith Perera and Dr. Sisil Kumarawadu for their guidance for the completion of the project.

I extend my sincere thank to Mr. C.P.W. Akarawita, DGM (L/C), CEB, for granting approval to purchase necessary equipment and implement the project at Wimalasurendra Power Station, Mr. S.S.B. Karuanaratne, CE(I & C) and Mr. W.M.T. Wijayananda, EE(I & C) of Laxapana complex for helping me during the project design and implementation and Mr. Vass Gunawardana, ES(m) and the maintenance staff of WPS, for helping me numerous ways.

Further, I would like to extend my sincere thank to My wife Dinusha, daughter Malmudu, loving mother and mother in-law for bearing my absence which they felt badly during the busy period I had while working on this project.

LIST OF FIGURES

Figure	Description	Page
Fig. 1-1.	Wimalasurendra Power Station	02
Fig. 1-2	Excitation System of WPS	04
Fig. 1-3	The evolution of supervisory and control technologies	05
Fig. 2-1.	Basic Configuration of Analog Circuits	08
Fig. 2-2.	12VDC intermediate Auxiliary relays	10
Fig. 2-3.	48VDC relays used for control commands	10
Fig. 2-4.	Status inputs	11
Fig. 2 - 5.	Control commands	12
Fig. 2-6.	Excitation control	13
Fig. 2 - 7.	Governor control	14
Fig. 2-8	Digital input, digital output and analog input modules with	17
E I	temporary connections	
Fig. 2-9	Control station with ADAM4520 converter module, power	19
W	supply and the visual interface	
Fig. 2-10	Old panel base HMI	20
Fig. 2-11	New HMI at remote PC	20
Fig. 2-12.	Basic Configuration	21
Fig. 3-1.	Network structure and substitution diagram	23
Fig. 3-2.	Analogy between governor speed control and AVR voltage control	25
Fig. 3-3.	Principle of current compensation	27
Fig. 3.4.	BJ30 Regulator	29
Fig. 3-5.	Contactor panel	30
Fig. 3-6.	Schematic wiring diagram of DC exciter generator excitation	31
	System with type BJ 30 generator voltage regulator	
Fig. 3-7.	Generator voltage waveform with manual excitation control during	32
	normal operation	
Fig. 3-8.	Voltage waveform during the load rejection of 3.1MW, 3MVAr	33
Fig. 3-9.	Graph_Voltage of feed-back analysis	34
Fig. 3-10.	Graph_Voltage of feed-back analysis	35
Fig. 3-11.	Graph_Voltage of feed-back analysis	36
Fig. 3-12.	Graph_Gen. current feed-back analysis	37
Fig. 3-13.	Graph_ Field current feed-back analysis	38
Fig. 3-14	Voltage variation for quick response contacts QR and QL	38

Fig. 3-15	Schematic wiring diagram of the excitation system	39
	with new voltage regulating system	
Fig. 3-16.	Gen. T/F combination in parallel operation	40
Fig. 3-17	PLC based new circuit (AVR CCT 2)	* 42
Fig. 3-18.	Temporary connected AVR circuitry	43
Fig. 3-19	Integer of transducer for voltage Vs Actual voltage	44
Fig. 3-20	Voltage variation during a normal operation	45
Fig. 3-21.	Active and reactive power at load rejection	46
Fig. 3-22.	Voltage prior to and after the load rejection status II	46
Fig. 3-23.	Voltage prior to and after the load rejection status III	47
Fig. 4-2.	Schematic diagram of the AVR with PID controller to prevent	49
	Relay hunting	

LIST OF TABLES

Table	Description	Page
Table 2-1.	Digital Status inputsversity of Moratuwa, Sri	
Table 2-2.	Digital relay outputs Theses & Disserta	09 ⁰¹⁵
Table 2-3.	Digital input channels	15
Table 2-4.	Analog input channels	16
Table 2-5.	Digital o/p channels	17
Table 3-1.	Feed backs Vs Output voltage	34
Table 3-2	Vol across the fb coil Vs R_{mu} (resistive element)	35
Table 3-3.	Current feed back	37
Table 3-4.	Field current feed back	37