REVIEW THE EXISTING LOAD SHEDDING SCHEME USED IN SRI LANKA POWER SYSTEM AND DESIGN A NEW LOAD SHEDDING SCHEME

DINAYA DURA PERCY YASARATHNA

A dissertation submitted in the partial fulfillment of the requirements for The degree of Master of Engineering in Electrical Engineering

Department Of Electrical Engineering University Of Moratuwa Sri Lanka 77712

ABSTRACT

This dissertation includes the individual project details/results, which has been completed as a part of Master of Engineering Program at Department of Electrical Engineering in University of Moratuwa, Sri Lanka in 2002

In completion of this individual project, I was selected to study the Sri Lanka Power Transmission System. The study consist of reviewing the existing load shedding scheme and make necessary modifications or a design new Load Shedding Scheme to ensure reliable operation of the System.

The performance of the existing load shedding is considered and the factors related to the necessity of a new design are revealed. Hence a completely new load shedding scheme has been developed based on a widely accepted methodology to meet the present characteristics of the Sri Lanka power system When the system expanded, it may be necessary to do modifications to the load-shedding scheme to match with the changing conditions. To facilitate this, the methodology behind the designing of the load shedding scheme to be kept clear and understandable

In order to have a proper simulation to check the design performance the PSS/E software was used.

ACKNOWLEDEMENTS

In completion of this design project it is appreciated and thanks to Dr.Jahan Peiris the Senior Lecturer, Department of Electrical Engineering in University of Moratuwa, who encouraged and gave me fullest support as my Project Supervisor.

I would like to remember and pay my sincere thanks to Ceylon Electricity Board (C.E.B) and staff of the System Control Branch who helped me to collect data and sharing their views and experiences with me to achieve this project.

Also I would like to thanks to my colleagues working in the Transmission Planning Branch in C.E.B., who helped me to run the simulation software PSS/E, to check the performance of this design.

Finally it is great pleasure to remind specially and pay my sincere to my beloved parents and my wife who gave me the fullest support in so many ways in completion of this project.

LIST OF FIGURES

1.	The T
Page	NA
Page	TIU
0 -	

Fig. 2.1	Map of the Present Sri Lanka Transmission System	06
Fig. 2.2	The Schematic representation of Installed	
	Generation capacity by type	07
Fig. 2.3.1	Schematic diagram of Year 2002 Transmission system	09
Fig. 2.3.2	The Presentation of Electricity sales by Tariff	10
Fig. 2.4	Transmission system of Year 2002 incorporate with	
	Present load shedding scheme	12
Fig. 6.1	System Daily Demand Curve	26
Fig. 6.3	Frequency drops and recovers for small over loading	30
Fig. 6.4.1	First Stage – Frequency drops and recovery	31
Fig. 6.4.2	Second Stage – Frequency drops and recovery	32
Fig. 6.4.3	Third Stage – Frequency drops and recovery	33
Fig. 6.4.4	Fourth Stage – Frequency drops and recovery	33
Fig. 6.4.5	Frequency Recoveryb.mrt.ac.lk *	35
Fig. 7.1	The Loss of 30MW at night peak	40
Fig. 7.2	The Loss of 30MW at low load	41
Fig. 7.3	The Loss of 50MW at day peak	42
Fig. 7.4	The Loss of 400MW at night peak	43
Fig. 7.5	The Loss of 130MW at low load	44
Fig. 7.6	Performance comparison	45
Fig. 8.1	Proposed load shedding scheme marked on a	
	Diagram of the power system	48

LIST OF TABLES

	Page	e No
Table 2.2.1	Existing Grid Substation Capacities	08
Table 2.2.2	Existing Transmission Line Length	08
Table 2.3	The Distribution Line Length	10
Table 2.4.1	Existing Load Shedding Scheme	11
Table 2.4.2	Types of Under Frequency Relays and Locations	13
Table 6.1.1	Installed capacities of Generators	24
Table 6.1.2	Grouping of Probable System Overload	25
Table 6.2.1	Size of Load Shedding Steps	27
Table 6.2.2	The Summary of the system Overloading	28
Table 6.3	Under frequency protection setting of Generators	29
Table 6.4	Frequency & time setting of new shedding scheme	34
Table 6.5	Selected Feeders and Summary of Loading	36
Table 8.1	Details of Under Frequency Relays	46
Table 8.2	Proposed Load Shedding Scheme	49
Table 11(a)	Failure Details – Year 2001	52
Table 11(b)	Typical night peak selection of Generators &	
	Load allocation schedule	53
Table 11(c)	Under Frequency Relay Characteristics	54
Table 11(d).1	Data of existing Generator Transformer	57
Table 11(d).2	Main Transformer data base	58
Table 11(d).3	Existing Transmission Lines/U.G.Cables	63
Table 11(d).4	Data of existing Transformers	66
Table 11(d).5	Generator Data for power flow analysis	68

TABLE OF CONTENTS

	Page No
ABSTRACT	Ι
AKNOWLEDGEMENTS	II
LIST OF FIGURES	III
LIST OF TABLES	IV
TABLE OF CONTENTS	V
CHAPTER 1 1.0 Introduction	01
1.10bjectives of the Study	01
1.2 Background of the Organization	01
1.3 Problem Definition	01
1.4 Significance of the Problem	02
1.5 Context of the Study	03
1.6 Methodology University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	04
CHAPTER 2 2.0 Overview of the Sri Lanka Power System	05
2.1 Power Generation	05
2.2 Power Transmission	07
2.3 Power Distribution	08
2.4 The Frequency Stability of the present System	10
CHAPTER 3	1.5
3.0 Factors related to System reliability Planning	15
3.1 Adequacy	15
3.2 Security	15
3.3 Integrity	15
3.4 Restorability	15
3.5 Role of a Load Shedding Scheme	16

CHAPTER 4	
4.0 Literature Review	17
CHAPTER 5	
	01
5.0 Formation of a new Load Shedding Scheme	21
5.1 Maximum anticipating Overload	21
5.2 Number of Load Shedding Steps	21
5.3 Size of the Load Shed at each step	22
5.4 Frequency Settings	22
5.5 Time lag	23
5.6 Location of frequency Relays	23
CHAPTER 6	
6.0 Design of a new Load Shedding Scheme	24
6.1 Grouping of Probable Over Loads	24
6.2 Numbers and Size of Load Shedding Steps Lanka	27
6.3 Selection of Frequency margin and Protection	
Setting of Generators	29
6.4 Selection of Frequency Settings and Time lags	30
6.5 Selection of Feeders	36
CHAPTER 7	
7.0 Simulation of Results	37
CHAPTER 8	
8.0 Conclusion	46
CHAPTER 9	
9.0 References	50
CHAPTER 10	
10.0 Appendices	51
VI	NON .
TBB;	RY W
2 14	IL S

÷